An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard

Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; pp. E10991 - E11000
Main Authors Cornelis, Guillaume, Funk, Mathis, Vernochet, Cécile, Leal, Francisca, Tarazona, Oscar Alejandro, Meurice, Guillaume, Heidmann, Odile, Dupressoir, Anne, Miralles, Aurélien, Ramirez-Pinilla, Martha Patricia, Heidmann, Thierry
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.12.2017
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1714590114

Cover

Abstract Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named “syncytin-Mab1,” that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
AbstractList Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Scincidae. Here, we performed high-throughput RNA sequencing of a placenta transcriptome and screened for the presence of retroviral genes with a full-length ORF. We identified one such gene, which we named " ," that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Retroviral envelope gene capture and exaptation for a placental function has been demonstrated in mammals. Remarkably, placental structures have also emerged on rare occasions in nonmammalian vertebrates, resulting in related modes of reproduction. The Mabuya lizard, which emerged 25 Mya, possesses a placenta closely related to that of mammals. Here, we identified a specific retroviral envelope gene capture that shows all the characteristic features of a bona fide mammalian syncytin, being conserved in Mabuya evolution, expressed in the placenta, and fusogenic. Together with the present identification of its cognate receptor, these results show that syncytin capture is not restricted to mammals and is likely to be a major driving force for placenta emergence. Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named “ syncytin-Mab1 ,” that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named “syncytin-Mab1,” that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named "syncytin-Mab1," that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named "syncytin-Mab1," that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Author Leal, Francisca
Dupressoir, Anne
Meurice, Guillaume
Heidmann, Odile
Ramirez-Pinilla, Martha Patricia
Cornelis, Guillaume
Vernochet, Cécile
Tarazona, Oscar Alejandro
Funk, Mathis
Heidmann, Thierry
Miralles, Aurélien
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Cornelis
  fullname: Cornelis, Guillaume
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
– sequence: 2
  givenname: Mathis
  surname: Funk
  fullname: Funk, Mathis
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
– sequence: 3
  givenname: Cécile
  surname: Vernochet
  fullname: Vernochet, Cécile
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
– sequence: 4
  givenname: Francisca
  surname: Leal
  fullname: Leal, Francisca
  organization: Laboratorio de Biologia Reproductiva de Vertebrados, Escuela de Biologia, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
– sequence: 5
  givenname: Oscar Alejandro
  surname: Tarazona
  fullname: Tarazona, Oscar Alejandro
  organization: Laboratorio de Biologia Reproductiva de Vertebrados, Escuela de Biologia, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
– sequence: 6
  givenname: Guillaume
  surname: Meurice
  fullname: Meurice, Guillaume
  organization: Plateforme de Bioinformatique, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, F-94805, France
– sequence: 7
  givenname: Odile
  surname: Heidmann
  fullname: Heidmann, Odile
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
– sequence: 8
  givenname: Anne
  surname: Dupressoir
  fullname: Dupressoir, Anne
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
– sequence: 9
  givenname: Aurélien
  surname: Miralles
  fullname: Miralles, Aurélien
  organization: Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, CNRS UPMC EPHE, Sorbonne Universités, Paris, F-75005, France
– sequence: 10
  givenname: Martha Patricia
  surname: Ramirez-Pinilla
  fullname: Ramirez-Pinilla, Martha Patricia
  organization: Laboratorio de Biologia Reproductiva de Vertebrados, Escuela de Biologia, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
– sequence: 11
  givenname: Thierry
  surname: Heidmann
  fullname: Heidmann, Thierry
  organization: Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Gustave Roussy, Villejuif, F-94805, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29162694$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMydQJC5c0tqOk9gXpKriSyriAmdr1p5svcrawXZWLH89jralUImTJc97P7_xOyMnPngk5CWjF4z2zeXkIV2wnolWUcbEE7JiVLG6E4qekBWlvK-l4OKUnKW0pZSqVtJn5JQr1vFOiRX5eeUr9DZs0Ic5VRFzDHsXYSy3exzDhFU6eHPIzlfgbeVyqkzYeMhYxAanHGLlLPrsBodl7qt8i9Xe7d0EcUFOI5gyLsQvsJ4PUI3uF0T7nDwdYEz44u48J98_vP92_am--frx8_XVTW2EaHJtzaCAWjRG9QACYBCiHQS10oKxRqyVlM3QMNUZw7vO8qbpFOVcrhEtQN-ck3dH7jSvd2iXKGU7PUW3g3jQAZz-d-Ldrd6EvW77VkjKCuDtHSCGHzOmrHcuGRxH8Fj20-XpXnSStbRI3zySbsMcfVlPc8pFwZWPL6rXfyf6E-W-lCJojwITQ0oRB21chuzCEtCNmlG9lK-X8vVD-cV3-ch3j_6_49XRsU2lx4cknZAtk23zGx41v6Y
CitedBy_id crossref_primary_10_3390_microbiolres14020047
crossref_primary_10_1128_jvi_00356_22
crossref_primary_10_1590_1678_9199_jvatitd_2019_0058
crossref_primary_10_3390_genes13020217
crossref_primary_10_1016_j_celrep_2023_112625
crossref_primary_10_3389_fcell_2023_1113046
crossref_primary_10_1186_s13059_018_1577_z
crossref_primary_10_3390_biom13071130
crossref_primary_10_3389_fmicb_2019_00051
crossref_primary_10_3390_cells11152458
crossref_primary_10_1016_j_arr_2023_101881
crossref_primary_10_1073_pnas_1719189114
crossref_primary_10_1146_annurev_genet_112618_043717
crossref_primary_10_1038_s41467_023_43186_2
crossref_primary_10_1093_ve_vez057
crossref_primary_10_1007_s00232_022_00242_0
crossref_primary_10_1111_zygo_12590
crossref_primary_10_1016_j_ympev_2019_04_002
crossref_primary_10_1038_s41579_019_0189_2
crossref_primary_10_1111_brv_13145
crossref_primary_10_1002_jez_2165
crossref_primary_10_1007_s00429_021_02306_8
crossref_primary_10_1038_s41564_021_01026_3
crossref_primary_10_1016_j_placenta_2021_02_011
crossref_primary_10_1093_gbe_evz163
crossref_primary_10_3390_ijms22041767
crossref_primary_10_1038_s41576_019_0165_8
crossref_primary_10_3390_ijms232416071
crossref_primary_10_1098_rstb_2021_0261
crossref_primary_10_1093_molbev_msad090
crossref_primary_10_1242_jeb_237891
crossref_primary_10_1128_JVI_00542_19
crossref_primary_10_1186_s13100_020_00229_5
crossref_primary_10_1051_medsci_2022171
crossref_primary_10_1128_jvi_00535_23
crossref_primary_10_3390_biom13101482
crossref_primary_10_1002_bies_201900173
crossref_primary_10_1016_j_cell_2024_01_011
crossref_primary_10_3389_fcell_2021_713918
crossref_primary_10_3390_v11070641
crossref_primary_10_1016_j_virusres_2019_197645
crossref_primary_10_1093_molbev_msae061
crossref_primary_10_1093_molbev_msaa180
crossref_primary_10_1128_JVI_01806_20
crossref_primary_10_1073_pnas_2122026119
crossref_primary_10_1038_s41576_021_00385_1
crossref_primary_10_3390_ijms20112837
crossref_primary_10_3390_ijms22115738
crossref_primary_10_1371_journal_pbio_3000028
crossref_primary_10_1016_j_jmb_2019_10_020
crossref_primary_10_1128_JVI_01811_18
crossref_primary_10_1093_gbe_evae067
crossref_primary_10_1016_j_virs_2022_01_019
crossref_primary_10_1016_j_virusres_2020_198101
crossref_primary_10_3390_v16071061
crossref_primary_10_12688_f1000research_13115_1
crossref_primary_10_1103_PhysRevE_108_044407
crossref_primary_10_1016_j_tig_2023_10_014
crossref_primary_10_3390_ijms26072859
crossref_primary_10_1093_molbev_msac176
crossref_primary_10_1093_molbev_msaa030
crossref_primary_10_1371_journal_pbio_3001867
crossref_primary_10_1093_molbev_msab245
crossref_primary_10_3389_fonc_2021_687631
crossref_primary_10_1016_j_coviro_2018_07_011
crossref_primary_10_1038_s41598_021_03168_0
crossref_primary_10_3390_v15020274
crossref_primary_10_1128_jvi_00063_22
crossref_primary_10_1016_j_isci_2020_101086
crossref_primary_10_1016_j_placenta_2021_01_006
crossref_primary_10_1371_journal_pgen_1010458
crossref_primary_10_7554_eLife_85993
crossref_primary_10_1093_gbe_evae079
crossref_primary_10_1007_s00239_019_09913_4
crossref_primary_10_1016_j_cois_2021_11_007
Cites_doi 10.1042/bj20020935
10.1073/pnas.2132646100
10.1073/pnas.1412268111
10.1111/apm.12474
10.1128/JVI.77.19.10414-10422.2003
10.1002/jcb.21334
10.1002/ar.20609
10.1073/pnas.1112304108
10.1073/pnas.81.15.4860
10.1016/j.gene.2006.09.026
10.1038/nmeth.2251
10.1073/pnas.0406509102
10.1002/jez.a.10289
10.1098/rsbl.2016.0430
10.1128/JVI.00141-14
10.1530/REP-16-0325
10.1074/jbc.273.45.29367
10.1002/1097-4687(200103)247:3<264::AID-JMOR1016>3.0.CO;2-P
10.1073/pnas.1417000112
10.1128/JVI.74.7.3321-3329.2000
10.1002/jmor.11011
10.1038/cr.2013.158
10.1016/j.ympev.2016.05.033
10.1038/nmeth.1923
10.1093/bioinformatics/btu531
10.1016/j.celrep.2014.12.052
10.1128/JVI.01442-12
10.1074/jbc.M801382200
10.1007/s12064-013-0178-3
10.1002/jmor.1045
10.1074/jbc.M111914200
10.1016/j.ympev.2015.07.016
10.1098/rstb.2012.0506
10.1038/gt.2010.4
10.1002/jmor.20272
10.1038/ncomms13954
10.1002/jmor.10138
10.1007/s00360-010-0514-6
10.1038/35001608
10.1186/1742-4690-6-107
10.1095/biolreprod.114.124818
10.1073/pnas.1115346109
10.7717/peerj.3194
10.1073/pnas.1215787110
10.1093/sysbio/syq010
10.1016/j.placenta.2010.04.001
10.1007/978-3-540-78797-6
10.1080/10623320802125250
10.1007/s00360-011-0584-0
10.1002/jmor.10005
10.1093/gbe/evs013
10.1016/j.tig.2013.05.010
10.1073/pnas.0807413105
10.1038/nature06966
10.1111/brv.12189
10.1093/molbev/msx149
10.1098/rstb.2012.0507
10.1073/pnas.0902925106
10.1002/jmor.10471
10.1093/gbe/evs045
10.1016/j.crvi.2005.10.001
10.1002/ar.20733
10.1093/hmg/5.3.339
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 19, 2017
2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 19, 2017
– notice: 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1714590114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed


Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A syncytin in a placental lizard
EISSN 1091-6490
EndPage E11000
ExternalDocumentID PMC5754801
29162694
10_1073_pnas_1714590114
26485185
Genre Journal Article
Feature
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  grantid: RETRO-PLACENTA
– fundername: Ligue Contre le Cancer
  grantid: EL2013.LNCC/TH
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: FDT20170437061
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-dcf9a0decc97aa4aaf445f40d8dacdc4b9883f3196cc266d233690228beedaa73
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:18 EDT 2025
Thu Sep 04 17:57:21 EDT 2025
Mon Jun 30 08:19:59 EDT 2025
Wed Feb 19 02:43:01 EST 2025
Thu Apr 24 22:53:29 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri May 30 11:46:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords syncytin
placenta
receptor
envelope protein
endogenous retrovirus
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-dcf9a0decc97aa4aaf445f40d8dacdc4b9883f3196cc266d233690228beedaa73
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: G.C., M.F., and T.H. designed research; G.C., M.F., and C.V. performed research; F.L., O.A.T., A.M., and M.P.R.-P. collected and processed live biological materials and samples; G.M. contributed analytic tools; G.C., M.F., C.V., G.M., O.H., A.D., A.M., M.P.R.-P., and T.H. analyzed data; and G.C., M.F., and T.H. wrote the paper.
1G.C. and M.F. contributed equally to this work.
4Present address: Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611.
3Present address: Department of Biology, University of Florida, Gainesville, FL 32611.
2Present address: Department of Genetics, Stanford University, Stanford, CA 94305.
Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved October 26, 2017 (received for review August 23, 2017)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5754801
PMID 29162694
PQID 2024480291
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754801
proquest_miscellaneous_1967468150
proquest_journals_2024480291
pubmed_primary_29162694
crossref_citationtrail_10_1073_pnas_1714590114
crossref_primary_10_1073_pnas_1714590114
jstor_primary_26485185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-19
PublicationDateYYYYMMDD 2017-12-19
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Mi S (e_1_3_4_5_2) 2000; 403
Long JA (e_1_3_4_48_2) 2008; 453
Aiewsakun P (e_1_3_4_50_2) 2017; 8
Flemming AF (e_1_3_4_47_2) 2001; 247
Blackburn DG (e_1_3_4_21_2) 2010; 5
Wooding FBP (e_1_3_4_27_2) 2010; 31
de Parseval N (e_1_3_4_67_2) 2003; 77
Dupressoir A (e_1_3_4_4_2) 2011; 108
Dupressoir A (e_1_3_4_3_2) 2009; 106
Metallinou M (e_1_3_4_52_2) 2016; 12
Gyapay G (e_1_3_4_39_2) 1996; 5
Blackburn DG (e_1_3_4_18_2) 1984; 81
Dufaure J (e_1_3_4_33_2) 1961; 50
Zhao ZJ (e_1_3_4_42_2) 1998; 273
Kusano K (e_1_3_4_44_2) 2008; 15
Zhao R (e_1_3_4_29_2) 2002; 277
Heidmann O (e_1_3_4_9_2) 2009; 6
Redelsperger F (e_1_3_4_13_2) 2014; 88
Murphy BF (e_1_3_4_23_2) 2011; 181
Vidal N (e_1_3_4_64_2) 2005; 328
Lynch VJ (e_1_3_4_59_2) 2015; 10
Jia D (e_1_3_4_32_2) 2014; 24
Guindon S (e_1_3_4_62_2) 2010; 59
Cornelis G (e_1_3_4_11_2) 2013; 110
Ramírez-Pinilla MP (e_1_3_4_25_2) 2006; 267
Gilbert DG (e_1_3_4_54_2) 2013
Kumazawa Y (e_1_3_4_65_2) 2007; 388
Ostrovsky AN (e_1_3_4_45_2) 2016; 91
Blackburn DG (e_1_3_4_16_2) 2015; 276
Ramírez-Pinilla MP (e_1_3_4_53_2) 2011; 181
Lefort V (e_1_3_4_63_2) 2017; 34
Henzy JE (e_1_3_4_35_2) 2013; 368
Leal F (e_1_3_4_26_2) 2008; 291
Henzy JE (e_1_3_4_66_2) 2013; 87
Dupressoir A (e_1_3_4_8_2) 2005; 102
Jerez A (e_1_3_4_24_2) 2003; 258
Karin BR (e_1_3_4_37_2) 2016; 102
Blackburn DG (e_1_3_4_20_2) 2002; 254
Eminaga S (e_1_3_4_43_2) 2008; 283
Langmead B (e_1_3_4_55_2) 2012; 9
Blackburn DG (e_1_3_4_46_2) 2012; 273
Henzy JE (e_1_3_4_51_2) 2017; 34
Cornelis G (e_1_3_4_15_2) 2015; 112
Cornelis G (e_1_3_4_10_2) 2012; 109
Vernochet C (e_1_3_4_14_2) 2014; 91
Wagner GP (e_1_3_4_34_2) 2013; 132
Roberts A (e_1_3_4_56_2) 2013; 10
Roubelakis MG (e_1_3_4_31_2) 2007; 102
Jerez A (e_1_3_4_19_2) 2001; 249
Cornelis G (e_1_3_4_12_2) 2014; 111
Eisenberg E (e_1_3_4_60_2) 2013; 29
Larsson A (e_1_3_4_61_2) 2014; 30
Zannettino AC (e_1_3_4_30_2) 2003; 370
Vieira S (e_1_3_4_38_2) 2007; 290
Lavialle C (e_1_3_4_1_2) 2013; 368
Boehnke M (e_1_3_4_41_2) 1991; 49
Pinto-Sánchez NR (e_1_3_4_28_2) 2015; 93
Perro M (e_1_3_4_68_2) 2010; 17
Denner J (e_1_3_4_2_2) 2016; 124
Pereira AG (e_1_3_4_36_2) 2017; 5
Esnault C (e_1_3_4_40_2) 2008; 105
Wooding P (e_1_3_4_49_2) 2008
Blaise S (e_1_3_4_7_2) 2003; 100
Hou Z-C (e_1_3_4_57_2) 2012; 4
Brandley MC (e_1_3_4_58_2) 2012; 4
Blond JL (e_1_3_4_6_2) 2000; 74
Roberts RM (e_1_3_4_17_2) 2016; 152
Flemming AF (e_1_3_4_22_2) 2003; 299
References_xml – volume: 370
  start-page: 537
  year: 2003
  ident: e_1_3_4_30_2
  article-title: Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: Identification, molecular cloning and effects on cell migration
  publication-title: Biochem J
  doi: 10.1042/bj20020935
– volume: 100
  start-page: 13013
  year: 2003
  ident: e_1_3_4_7_2
  article-title: Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2132646100
– volume: 49
  start-page: 1174
  year: 1991
  ident: e_1_3_4_41_2
  article-title: Statistical methods for multipoint radiation hybrid mapping
  publication-title: Am J Hum Genet
– volume: 111
  start-page: E4332
  year: 2014
  ident: e_1_3_4_12_2
  article-title: Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1412268111
– volume: 124
  start-page: 31
  year: 2016
  ident: e_1_3_4_2_2
  article-title: Expression and function of endogenous retroviruses in the placenta
  publication-title: APMIS
  doi: 10.1111/apm.12474
– volume: 77
  start-page: 10414
  year: 2003
  ident: e_1_3_4_67_2
  article-title: Survey of human genes of retroviral origin: Identification and transcriptome of the genes with coding capacity for complete envelope proteins
  publication-title: J Virol
  doi: 10.1128/JVI.77.19.10414-10422.2003
– volume: 102
  start-page: 955
  year: 2007
  ident: e_1_3_4_31_2
  article-title: The murine ortholog of the SHP-2 binding molecule, PZR accelerates cell migration on fibronectin and is expressed in early embryo formation
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21334
– volume: 290
  start-page: 1508
  year: 2007
  ident: e_1_3_4_38_2
  article-title: Invasive cells in the placentome of Andean populations of Mabuya: An endotheliochorial contribution to the placenta?
  publication-title: Anat Rec (Hoboken)
  doi: 10.1002/ar.20609
– volume: 108
  start-page: E1164
  year: 2011
  ident: e_1_3_4_4_2
  article-title: A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1112304108
– volume: 81
  start-page: 4860
  year: 1984
  ident: e_1_3_4_18_2
  article-title: Eutherian-like reproductive specializations in a viviparous reptile
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.81.15.4860
– volume: 388
  start-page: 19
  year: 2007
  ident: e_1_3_4_65_2
  article-title: Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations
  publication-title: Gene
  doi: 10.1016/j.gene.2006.09.026
– volume: 10
  start-page: 71
  year: 2013
  ident: e_1_3_4_56_2
  article-title: Streaming fragment assignment for real-time analysis of sequencing experiments
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2251
– volume: 102
  start-page: 725
  year: 2005
  ident: e_1_3_4_8_2
  article-title: Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406509102
– volume: 299
  start-page: 33
  year: 2003
  ident: e_1_3_4_22_2
  article-title: Evolution of placental specializations in viviparous African and South American lizards
  publication-title: J Exp Zool A Comp Exp Biol
  doi: 10.1002/jez.a.10289
– volume: 12
  start-page: 20160430
  year: 2016
  ident: e_1_3_4_52_2
  article-title: A single origin of extreme matrotrophy in African mabuyine skinks
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2016.0430
– volume: 88
  start-page: 7915
  year: 2014
  ident: e_1_3_4_13_2
  article-title: Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the Rodentia squirrel-related clade
  publication-title: J Virol
  doi: 10.1128/JVI.00141-14
– volume: 152
  start-page: R179
  year: 2016
  ident: e_1_3_4_17_2
  article-title: The evolution of the placenta
  publication-title: Reproduction
  doi: 10.1530/REP-16-0325
– volume: 273
  start-page: 29367
  year: 1998
  ident: e_1_3_4_42_2
  article-title: Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.45.29367
– volume: 247
  start-page: 264
  year: 2001
  ident: e_1_3_4_47_2
  article-title: Extraordinary case of matrotrophy in the African skink Eumecia anchietae
  publication-title: J Morphol
  doi: 10.1002/1097-4687(200103)247:3<264::AID-JMOR1016>3.0.CO;2-P
– volume: 112
  start-page: E487
  year: 2015
  ident: e_1_3_4_15_2
  article-title: Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1417000112
– volume: 74
  start-page: 3321
  year: 2000
  ident: e_1_3_4_6_2
  article-title: An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor
  publication-title: J Virol
  doi: 10.1128/JVI.74.7.3321-3329.2000
– volume: 273
  start-page: 137
  year: 2012
  ident: e_1_3_4_46_2
  article-title: Invasive implantation and intimate placental associations in a placentotrophic African lizard, Trachylepis ivensi (Scincidae)
  publication-title: J Morphol
  doi: 10.1002/jmor.11011
– volume: 24
  start-page: 204
  year: 2014
  ident: e_1_3_4_32_2
  article-title: Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma
  publication-title: Cell Res
  doi: 10.1038/cr.2013.158
– volume: 102
  start-page: 220
  year: 2016
  ident: e_1_3_4_37_2
  article-title: Resolving the higher-order phylogenetic relationships of the circumtropical Mabuya group (Squamata: Scincidae): An out-of-Asia diversification
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2016.05.033
– volume: 9
  start-page: 357
  year: 2012
  ident: e_1_3_4_55_2
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 30
  start-page: 3276
  year: 2014
  ident: e_1_3_4_61_2
  article-title: AliView: A fast and lightweight alignment viewer and editor for large datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu531
– volume: 10
  start-page: 551
  year: 2015
  ident: e_1_3_4_59_2
  article-title: Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.052
– volume: 87
  start-page: 1937
  year: 2013
  ident: e_1_3_4_66_2
  article-title: Betaretroviral envelope subunits are noncovalently associated and restricted to the mammalian class
  publication-title: J Virol
  doi: 10.1128/JVI.01442-12
– volume: 283
  start-page: 15328
  year: 2008
  ident: e_1_3_4_43_2
  article-title: Noonan syndrome-associated SHP-2/Ptpn11 mutants enhance SIRPalpha and PZR tyrosyl phosphorylation and promote adhesion-mediated ERK activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M801382200
– volume: 132
  start-page: 159
  year: 2013
  ident: e_1_3_4_34_2
  article-title: A model based criterion for gene expression calls using RNA-seq data
  publication-title: Theory Biosci
  doi: 10.1007/s12064-013-0178-3
– volume: 249
  start-page: 132
  year: 2001
  ident: e_1_3_4_19_2
  article-title: The allantoplacenta of Mabuya mabouya (Sauria, Scincidae)
  publication-title: J Morphol
  doi: 10.1002/jmor.1045
– volume: 277
  start-page: 7882
  year: 2002
  ident: e_1_3_4_29_2
  article-title: Cell surface glycoprotein PZR is a major mediator of concanavalin A-induced cell signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111914200
– volume: 93
  start-page: 188
  year: 2015
  ident: e_1_3_4_28_2
  article-title: Molecular phylogenetics and biogeography of the Neotropical skink genus Mabuya Fitzinger (Squamata: Scincidae) with emphasis on Colombian populations
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2015.07.016
– volume: 368
  start-page: 20120506
  year: 2013
  ident: e_1_3_4_35_2
  article-title: Pushing the endogenous envelope
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2012.0506
– volume: 17
  start-page: 721
  year: 2010
  ident: e_1_3_4_68_2
  article-title: Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer
  publication-title: Gene Ther
  doi: 10.1038/gt.2010.4
– volume: 276
  start-page: 961
  year: 2015
  ident: e_1_3_4_16_2
  article-title: Evolution of vertebrate viviparity and specializations for fetal nutrition: A quantitative and qualitative analysis
  publication-title: J Morphol
  doi: 10.1002/jmor.20272
– year: 2013
  ident: e_1_3_4_54_2
  article-title: Gene-omes built from mRNA-seq not genome DNA
  publication-title: Seventh Annu Arthropod Genomics Symposium
– volume: 5
  start-page: 263
  year: 2010
  ident: e_1_3_4_21_2
  article-title: Reproductive specializations in a viviparous African skink and its implications for evolution and conservation
  publication-title: Herpetol Conserv Biol
– volume: 8
  start-page: 13954
  year: 2017
  ident: e_1_3_4_50_2
  article-title: Marine origin of retroviruses in the early Palaeozoic Era
  publication-title: Nat Commun
  doi: 10.1038/ncomms13954
– volume: 258
  start-page: 158
  year: 2003
  ident: e_1_3_4_24_2
  article-title: Morphogenesis of extraembryonic membranes and placentation in Mabuya mabouya (Squamata, Scincidae)
  publication-title: J Morphol
  doi: 10.1002/jmor.10138
– volume: 34
  start-page: 634
  year: 2017
  ident: e_1_3_4_51_2
  article-title: An intact retroviral gene conserved in spiny-rayed fishes for over 100 My
  publication-title: Mol Biol Evol
– volume: 181
  start-page: 249
  year: 2011
  ident: e_1_3_4_53_2
  article-title: Transplacental nutrient transfer during gestation in the Andean lizard Mabuya sp. (Squamata, Scincidae)
  publication-title: J Comp Physiol B
  doi: 10.1007/s00360-010-0514-6
– volume: 403
  start-page: 785
  year: 2000
  ident: e_1_3_4_5_2
  article-title: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis
  publication-title: Nature
  doi: 10.1038/35001608
– volume: 6
  start-page: 107
  year: 2009
  ident: e_1_3_4_9_2
  article-title: Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: A new “syncytin” in a third order of mammals
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-6-107
– volume: 91
  start-page: 148
  year: 2014
  ident: e_1_3_4_14_2
  article-title: The captured retroviral envelope syncytin-A and syncytin-B genes are conserved in the Spalacidae together with hemotrichorial placentation
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.114.124818
– volume: 109
  start-page: E432
  year: 2012
  ident: e_1_3_4_10_2
  article-title: Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1115346109
– volume: 5
  start-page: e3194
  year: 2017
  ident: e_1_3_4_36_2
  article-title: Arrival and diversification of mabuyine skinks (Squamata: Scincidae) in the Neotropics based on a fossil-calibrated timetree
  publication-title: PeerJ
  doi: 10.7717/peerj.3194
– volume: 110
  start-page: E828
  year: 2013
  ident: e_1_3_4_11_2
  article-title: Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1215787110
– volume: 59
  start-page: 307
  year: 2010
  ident: e_1_3_4_62_2
  article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq010
– volume: 31
  start-page: 675
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Functional studies of the placenta of the lizard Mabuya sp. (Scincidae) using immunocytochemistry
  publication-title: Placenta
  doi: 10.1016/j.placenta.2010.04.001
– volume-title: Comparative Placentation - Structures, Functions and Evolution
  year: 2008
  ident: e_1_3_4_49_2
  doi: 10.1007/978-3-540-78797-6
– volume: 15
  start-page: 127
  year: 2008
  ident: e_1_3_4_44_2
  article-title: Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells
  publication-title: Endothelium
  doi: 10.1080/10623320802125250
– volume: 181
  start-page: 575
  year: 2011
  ident: e_1_3_4_23_2
  article-title: A review of the evolution of viviparity in squamate reptiles: The past, present and future role of molecular biology and genomics
  publication-title: J Comp Physiol B
  doi: 10.1007/s00360-011-0584-0
– volume: 254
  start-page: 121
  year: 2002
  ident: e_1_3_4_20_2
  article-title: Specializations of the chorioallantoic placenta in the Brazilian scincid lizard, Mabuya heathi: A new placental morphotype for reptiles
  publication-title: J Morphol
  doi: 10.1002/jmor.10005
– volume: 4
  start-page: 394
  year: 2012
  ident: e_1_3_4_58_2
  article-title: Uterine gene expression in the live-bearing lizard, Chalcides ocellatus, reveals convergence of squamate reptile and mammalian pregnancy mechanisms
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evs013
– volume: 29
  start-page: 569
  year: 2013
  ident: e_1_3_4_60_2
  article-title: Human housekeeping genes, revisited
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2013.05.010
– volume: 50
  start-page: 309
  year: 1961
  ident: e_1_3_4_33_2
  article-title: Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin
  publication-title: Arch Anat Microsc Morphol Exp
– volume: 105
  start-page: 17532
  year: 2008
  ident: e_1_3_4_40_2
  article-title: A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0807413105
– volume: 453
  start-page: 650
  year: 2008
  ident: e_1_3_4_48_2
  article-title: Live birth in the Devonian period
  publication-title: Nature
  doi: 10.1038/nature06966
– volume: 91
  start-page: 673
  year: 2016
  ident: e_1_3_4_45_2
  article-title: Matrotrophy and placentation in invertebrates: A new paradigm
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1111/brv.12189
– volume: 34
  start-page: 2422
  year: 2017
  ident: e_1_3_4_63_2
  article-title: SMS: Smart model selection in PhyML
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx149
– volume: 368
  start-page: 20120507
  year: 2013
  ident: e_1_3_4_1_2
  article-title: Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2012.0507
– volume: 106
  start-page: 12127
  year: 2009
  ident: e_1_3_4_3_2
  article-title: Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0902925106
– volume: 267
  start-page: 1227
  year: 2006
  ident: e_1_3_4_25_2
  article-title: Allantoplacental ultrastructure of an Andean population of Mabuya (Squamata, Scincidae)
  publication-title: J Morphol
  doi: 10.1002/jmor.10471
– volume: 4
  start-page: 713
  year: 2012
  ident: e_1_3_4_57_2
  article-title: Elephant transcriptome provides insights into the evolution of eutherian placentation
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evs045
– volume: 328
  start-page: 1000
  year: 2005
  ident: e_1_3_4_64_2
  article-title: The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes
  publication-title: C R Biol
  doi: 10.1016/j.crvi.2005.10.001
– volume: 291
  start-page: 1124
  year: 2008
  ident: e_1_3_4_26_2
  article-title: Morphological variation in the allantoplacenta within the genus Mabuya (Squamata: Scincidae)
  publication-title: Anat Rec (Hoboken)
  doi: 10.1002/ar.20733
– volume: 5
  start-page: 339
  year: 1996
  ident: e_1_3_4_39_2
  article-title: A radiation hybrid map of the human genome
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/5.3.339
SSID ssj0009580
Score 2.5354977
Snippet Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all...
Retroviral envelope gene capture and exaptation for a placental function has been demonstrated in mammals. Remarkably, placental structures have also emerged...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E10991
SubjectTerms Biological evolution
Biological Sciences
Cell migration
Endogenous retroviruses
Evolutionary genetics
Gene expression
Gene sequencing
Genes
Hybridization
Immunohistochemistry
Lizards
Mabuya
Mammals
Marsupials
Membrane proteins
Placenta
PNAS Plus
Ribonucleic acid
RNA
Scincidae
Signal transduction
Syncytin
Vertebrates
Viral envelope proteins
Title An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard
URI https://www.jstor.org/stable/26485185
https://www.ncbi.nlm.nih.gov/pubmed/29162694
https://www.proquest.com/docview/2024480291
https://www.proquest.com/docview/1967468150
https://pubmed.ncbi.nlm.nih.gov/PMC5754801
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBgEBjISh6EqpU3c_DhWU8uEurJDi3qLHNsRFcOd2mRi_D_8n7wX28k6FWlwqSrHcdu8r8_P9vfeR8j7YTIIhUpTv0i49Fke534aRMIPYokF63icJpiNfD6Lzhbs83K47HR-32ItVWXeE7_25pX8j1WhDeyKWbL_YNlmUGiA92BfeAULw-u9bDzSXaXl2tZZ3agS9wcw417pmgqksCCBuClXujkjQLoQhJfQGfksSEaXhi-kpKM8Xq-uV1d8g0PWjK06X_Kc59UN7yIJbLOj7XnRzIBbxzeYuQ3GUZuuYn3Itut3L2at-PHpeqOVlWT_VKECUvWjgdqk0t9NPhGqJrvWr2qjUebL8FXMQb9YXTZ3TVWtYeAkQywVyW5swGQ5CHzrPo0vhlDGj5hRE-2pPW3OgZs0VItUW7_W-OMxHvwN9k4V4NtQ31jzbQ9F4OscXNbOio4JMPuSTRbTaTYfL-cPyMMgjms2QL0p1NR2TkzRC_vdXAWpOPx4Z_id4MfwX_etbO4SdG9FPPMn5LFdqtCRwd0h6Sj9lBw6Q9ITW7H8wzPyc6RpC0TaApE6IFIHRApApABEaoFIHRBpC0QK3QBHtAUibYBIDRCpAeJzspiM56dnvpX08AVjYelLUaS8L8FvpDHnjPOCsWHB-jKRXEjB8jRJwgKnBSEgdJRBGEYplmjKAcmcx-EROdBrrV4SKriA5XeBCgo5i0KVxjId8KSIYE0SFFJ4pOeedSZsvXuUXbnMat5FHGZonKw1jkdOmhuuTKmXv3c9qo3X9EOe6BBCX48cO2tm1lFsswDiYJb0g3TgkXfNZXDjeDbHtYLHmMEvjlmUwPLMIy-M8dvBYQmHCeceiXdg0XTAEvG7V_TqW10qHhZjWB_q1T0-9zV51P4Lj8lBuanUGwi4y_xtDfc_sRzeXw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+endogenous+retroviral+envelope+syncytin+and+its+cognate+receptor+identified+in+the+viviparous+placental+Mabuya+lizard&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cornelis%2C+Guillaume&rft.au=Funk%2C+Mathis&rft.au=Vernochet%2C+C%C3%A9cile&rft.au=Leal%2C+Francisca&rft.date=2017-12-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=51&rft.spage=E10991&rft_id=info:doi/10.1073%2Fpnas.1714590114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon