Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging

The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 31; no. 3; pp. 554 - 562
Main Authors Wei-Ning Lee, Pernot, M., Couade, M., Messas, E., Bruneval, P., Bel, A., Hagege, A. A., Fink, M., Tanter, M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n = 5), the SWI-estimated fiber angles gradually changed from +800 ± 7° (endocardium) to +30° ± 13° (midwall) and -40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r 2 - 0.91 ± 0.02, p <; 0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and - 26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
AbstractList The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5) , the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and -40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings. SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and -26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n = 5), the SWI-estimated fiber angles gradually changed from +800 ± 7° (endocardium) to +30° ± 13° (midwall) and -40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r 2 - 0.91 ± 0.02, p <; 0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and - 26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium [Formula Omitted], the SWI-estimated fiber angles gradually changed from [Formula Omitted] (endocardium) to [Formula Omitted] (midwall) and [Formula Omitted] (epicardium) with 0[Formula Omitted] aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings [Formula Omitted]. SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited [Formula Omitted] (endocardium), [Formula Omitted] (midwall), and [Formula Omitted] (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium ( n = 5 ) , the SWI-estimated fiber angles gradually changed from + 80 [compfn] +/- 7 [compfn] (endocardium) to + 30 [compfn] +/- 13 [compfn] (midwall) and - 40 [compfn] +/- 10 [compfn] (epicardium) with 0 [compfn] aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings ( r 2 = 0.91 +/- 0.02 , p < 0.0001 ) . SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71 [compfn] +/- 13 [compfn] (endocardium), 27 [compfn] +/- 8 [compfn] (midwall), and - 26 [compfn] +/- 30 [compfn] (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
Author Bel, A.
Wei-Ning Lee
Bruneval, P.
Fink, M.
Hagege, A. A.
Tanter, M.
Pernot, M.
Couade, M.
Messas, E.
Author_xml – sequence: 1
  surname: Wei-Ning Lee
  fullname: Wei-Ning Lee
  organization: Inst. Langevin, ESPCI ParisTech, Paris, France
– sequence: 2
  givenname: M.
  surname: Pernot
  fullname: Pernot, M.
  organization: Inst. Langevin, ESPCI ParisTech, Paris, France
– sequence: 3
  givenname: M.
  surname: Couade
  fullname: Couade, M.
  email: mathieu.pernot@espci.fr
  organization: Inst. Langevin, ESPCI ParisTech, Paris, France
– sequence: 4
  givenname: E.
  surname: Messas
  fullname: Messas, E.
  organization: Assistance Publique-Hopitaux de Paris, Univ. Paris Descartes, Paris, France
– sequence: 5
  givenname: P.
  surname: Bruneval
  fullname: Bruneval, P.
  organization: Assistance Publique-Hopitaux de Paris, Univ. Paris Descartes, Paris, France
– sequence: 6
  givenname: A.
  surname: Bel
  fullname: Bel, A.
  email: alain.bel@egp.aphp.fr
  organization: INSERM U633, Hopital Eur. Georges Pompidou, Paris, France
– sequence: 7
  givenname: A. A.
  surname: Hagege
  fullname: Hagege, A. A.
  organization: Assistance Publique-Hopitaux de Paris, Univ. Paris Descartes, Paris, France
– sequence: 8
  givenname: M.
  surname: Fink
  fullname: Fink, M.
  organization: Inst. Langevin, ESPCI ParisTech, Paris, France
– sequence: 9
  givenname: M.
  surname: Tanter
  fullname: Tanter, M.
  organization: Inst. Langevin, ESPCI ParisTech, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22020673$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LwzAUwPEgips_7oIgxYunzvfyq81Rh9OBw4MTvZW0e90qW1uTTdh_b8bmDl485ZDPeyR8T9hh3dTE2AVCDxHM7Xg07HFA7HFMuDZwwLqoVBpzJT8OWRd4ksYAmnfYifefACgVmGPW4Rw46ER02Xhk27aqp9Fo3RTWTSo7jwZVTi56cRXVS7usmjp68xvyUMy2ppk6287W8b31NIleZ2Rd9G6_KRou7DTIM3ZU2rmn8915yt4GD-P-U_z88jjs3z3HhZRiGU-MLnkJlEheUA48V0UhQKM0RgqBwhhATeGhKBJpUGCSpkrlWJIx1mgjTtnNdm_rmq8V-WW2qHxB87mtqVn5zOgUU55y_r_kWkGipQry-o_8bFauDt8ISBmUiCIg2KLCNd47KrPWVQvr1hlCtimThTLZpky2KxNGrnZ7V_mCJvuB3xQBXG5BRUT7aw1KgkrFD-pqkJU
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_jum_14795
crossref_primary_10_1088_1361_6560_aa530b
crossref_primary_10_1109_TUFFC_2014_2994
crossref_primary_10_1177_0954411916638685
crossref_primary_10_1088_0031_9155_57_16_5075
crossref_primary_10_1016_j_ultrasmedbio_2016_03_009
crossref_primary_10_1109_TMI_2012_2192743
crossref_primary_10_1109_TUFFC_2014_006847
crossref_primary_10_3179_jjmu_JJMU_R_209
crossref_primary_10_1109_TUFFC_2018_2851310
crossref_primary_10_1109_TUFFC_2023_3279284
crossref_primary_10_3389_fcvm_2018_00052
crossref_primary_10_1088_0031_9155_59_24_7735
crossref_primary_10_1088_0031_9155_60_3_1289
crossref_primary_10_1371_journal_pone_0124311
crossref_primary_10_1109_TUFFC_2013_2624
crossref_primary_10_1109_TUFFC_2015_007023
crossref_primary_10_1016_j_ultrasmedbio_2017_03_001
crossref_primary_10_1016_j_ultrasmedbio_2018_07_029
crossref_primary_10_1109_TMI_2020_3020147
crossref_primary_10_1007_s10439_015_1403_7
crossref_primary_10_1016_j_athoracsur_2015_03_015
crossref_primary_10_7863_ultra_15_08053
crossref_primary_10_1007_s40778_016_0041_9
crossref_primary_10_1016_j_ultrasmedbio_2020_02_004
crossref_primary_10_1016_j_amcp_2017_10_023
crossref_primary_10_1109_TMI_2013_2262948
crossref_primary_10_1016_j_ultrasmedbio_2013_02_006
crossref_primary_10_1016_j_ultrasmedbio_2012_04_013
crossref_primary_10_1161_JAHA_118_011058
crossref_primary_10_3389_fcvm_2022_1023483
crossref_primary_10_1016_j_ultras_2014_07_013
crossref_primary_10_1088_1361_6560_ab7abf
crossref_primary_10_1109_TMI_2017_2781261
crossref_primary_10_1088_1748_605X_aa57a5
crossref_primary_10_3390_s22030978
crossref_primary_10_1109_TUFFC_2016_2543026
crossref_primary_10_1109_TUFFC_2020_2978299
crossref_primary_10_1016_j_biomaterials_2015_08_011
crossref_primary_10_1016_j_jbiomech_2021_110346
crossref_primary_10_1109_TMI_2014_2360835
crossref_primary_10_1016_j_jmbbm_2023_105807
crossref_primary_10_1088_1361_6560_aaaffe
crossref_primary_10_1109_TUFFC_2014_006543
crossref_primary_10_1016_j_jmps_2016_05_023
crossref_primary_10_3389_fphys_2022_1000612
crossref_primary_10_1088_1361_6560_ac404d
crossref_primary_10_35848_1347_4065_ac5a2c
crossref_primary_10_2478_rjc_2023_0008
crossref_primary_10_1088_0031_9155_59_22_6923
crossref_primary_10_1109_TMI_2022_3141084
crossref_primary_10_1109_TUFFC_2024_3366540
crossref_primary_10_1007_s10396_021_01127_w
crossref_primary_10_1016_j_jcmg_2016_01_022
crossref_primary_10_1109_TMI_2012_2222656
crossref_primary_10_1152_ajpheart_00059_2022
crossref_primary_10_1063_1_4983290
crossref_primary_10_1088_0031_9155_59_19_L1
crossref_primary_10_1016_j_jcmg_2014_06_004
crossref_primary_10_1016_j_jcmg_2015_12_019
crossref_primary_10_1016_j_echo_2014_08_009
crossref_primary_10_1111_echo_14971
crossref_primary_10_1002_cnm_3448
crossref_primary_10_5812_acvi_31252
crossref_primary_10_1186_s12938_019_0641_6
crossref_primary_10_3390_app7080840
crossref_primary_10_1016_j_ultrasmedbio_2017_04_012
crossref_primary_10_1109_TUFFC_2017_2690223
crossref_primary_10_1007_s13244_016_0514_5
crossref_primary_10_1088_0031_9155_61_13_5000
crossref_primary_10_1109_TBME_2021_3115144
crossref_primary_10_1109_TBME_2022_3188441
crossref_primary_10_1016_j_ultrasmedbio_2015_09_024
crossref_primary_10_1088_0031_9155_60_9_3639
crossref_primary_10_1088_1361_6560_abe0fb
crossref_primary_10_1016_j_jcmg_2019_09_019
crossref_primary_10_1021_acsbiomaterials_6b00547
crossref_primary_10_1109_TBME_2021_3087039
crossref_primary_10_1007_s10741_018_9684_1
crossref_primary_10_1186_s40323_018_0121_8
crossref_primary_10_1007_s00059_023_05199_x
crossref_primary_10_1080_17434440_2018_1538782
crossref_primary_10_1016_j_ultrasmedbio_2019_05_002
crossref_primary_10_1080_14763141_2023_2195827
crossref_primary_10_1148_radiol_14140434
Cites_doi 10.1161/01.RES.33.6.656
10.1109/TUFFC.2009.1041
10.1161/01.CIR.78.6.1478
10.1109/TMI.2010.2076829
10.1121/1.2188333
10.1152/ajpheart.2001.280.5.H2222
10.1161/CIRCRESAHA.107.161075
10.1117/1.3200939
10.1152/ajpheart.1998.275.6.H2308
10.1161/01.CIR.90.6.3076
10.1109/TUFFC.2009.1067
10.1152/ajpheart.1999.276.2.H595
10.1161/01.RES.44.5.701
10.1002/jmri.20473
10.1121/1.396118
10.1109/TUFFC.2004.1295425
10.1172/JCI115323
10.1002/mrm.1910340603
10.1016/j.ultrasmedbio.2010.02.013
10.1016/j.jacc.2011.02.042
10.1152/ajpheart.1998.274.5.H1627
10.1177/016173469001200202
10.1161/01.RES.24.3.339
10.1117/1.2937470
10.1152/ajpheart.00337.2007
10.1109/ULTSYM.2003.1293090
10.1145/361237.361242
10.1121/1.396119
10.1002/ar.1091550403
10.1016/j.ultrasmedbio.2005.07.020
10.1161/01.RES.63.3.550
10.1161/CIRCULATIONAHA.105.545863
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2011.2172690
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 562
ExternalDocumentID 2600727501
10_1109_TMI_2011_2172690
22020673
6054058
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c443t-d96f2f0e742ceb02b5cc30614994331399016e2061374913178855b1fe99a9693
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Wed Jul 24 13:21:48 EDT 2024
Thu Jul 25 10:22:28 EDT 2024
Thu Oct 10 16:57:26 EDT 2024
Fri Aug 23 03:15:34 EDT 2024
Sat Sep 28 07:49:53 EDT 2024
Wed Jun 26 19:20:21 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-d96f2f0e742ceb02b5cc30614994331399016e2061374913178855b1fe99a9693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22020673
PQID 925914113
PQPubID 85460
PageCount 9
ParticipantIDs pubmed_primary_22020673
proquest_journals_925914113
proquest_miscellaneous_926507645
crossref_primary_10_1109_TMI_2011_2172690
ieee_primary_6054058
proquest_miscellaneous_968182822
PublicationCentury 2000
PublicationDate 2012-March
2012-Mar
2012-03-00
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
costa (ref4) 1999; 276
scollan (ref13) 1998; 275
ref24
ref23
ref26
arts (ref3) 2001; 280
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref6
ref5
royer (ref28) 2000
hsu (ref12) 1998; 274
References_xml – ident: ref32
  doi: 10.1161/01.RES.33.6.656
– ident: ref19
  doi: 10.1109/TUFFC.2009.1041
– ident: ref7
  doi: 10.1161/01.CIR.78.6.1478
– ident: ref25
  doi: 10.1109/TMI.2010.2076829
– ident: ref18
  doi: 10.1121/1.2188333
– volume: 280
  start-page: 2222h
  year: 2001
  ident: ref3
  article-title: Relating myocardial laminar architecture to shear strain and muscle fiber orientation
  publication-title: Amer J Physiol -Heart Circulation Physiology
  doi: 10.1152/ajpheart.2001.280.5.H2222
  contributor:
    fullname: arts
– ident: ref6
  doi: 10.1161/CIRCRESAHA.107.161075
– ident: ref11
  doi: 10.1117/1.3200939
– volume: 275
  start-page: 2308h
  year: 1998
  ident: ref13
  article-title: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging
  publication-title: Amer J Physiol -Heart Circulation Physiology
  doi: 10.1152/ajpheart.1998.275.6.H2308
  contributor:
    fullname: scollan
– ident: ref9
  doi: 10.1161/01.CIR.90.6.3076
– ident: ref29
  doi: 10.1109/TUFFC.2009.1067
– volume: 276
  start-page: 595h
  year: 1999
  ident: ref4
  article-title: Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium
  publication-title: Amer J Physiol -Heart Circulation Physiology
  doi: 10.1152/ajpheart.1999.276.2.H595
  contributor:
    fullname: costa
– ident: ref8
  doi: 10.1161/01.RES.44.5.701
– ident: ref15
  doi: 10.1002/jmri.20473
– ident: ref17
  doi: 10.1121/1.396118
– ident: ref23
  doi: 10.1109/TUFFC.2004.1295425
– ident: ref22
  doi: 10.1172/JCI115323
– ident: ref14
  doi: 10.1002/mrm.1910340603
– ident: ref24
  doi: 10.1016/j.ultrasmedbio.2010.02.013
– year: 2000
  ident: ref28
  publication-title: Elastic Waves in Solid I Free and Guided Propagation
  contributor:
    fullname: royer
– ident: ref26
  doi: 10.1016/j.jacc.2011.02.042
– volume: 274
  start-page: 1627h
  year: 1998
  ident: ref12
  article-title: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation
  publication-title: Amer J Physiol -Heart Circulation Physiology
  doi: 10.1152/ajpheart.1998.274.5.H1627
  contributor:
    fullname: hsu
– ident: ref30
  doi: 10.1177/016173469001200202
– ident: ref2
  doi: 10.1161/01.RES.24.3.339
– ident: ref10
  doi: 10.1117/1.2937470
– ident: ref33
  doi: 10.1152/ajpheart.00337.2007
– ident: ref27
  doi: 10.1109/ULTSYM.2003.1293090
– ident: ref31
  doi: 10.1145/361237.361242
– ident: ref20
  doi: 10.1121/1.396119
– ident: ref1
  doi: 10.1002/ar.1091550403
– ident: ref21
  doi: 10.1016/j.ultrasmedbio.2005.07.020
– ident: ref5
  doi: 10.1161/01.RES.63.3.550
– ident: ref16
  doi: 10.1161/CIRCULATIONAHA.105.545863
SSID ssj0014509
Score 2.4665365
Snippet The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 554
SubjectTerms Animals
Anisotropy
echocardiography
Echocardiography - methods
fiber
Heart
Heart - anatomy & histology
Heart - physiology
Image Processing, Computer-Assisted - methods
Imaging
In vivo
Myocardium
Myocardium - cytology
Myocytes, Cardiac - physiology
Optical fiber polarization
Probes
shear wave
Sheep
Signal Processing, Computer-Assisted
Swine
Ultrasonic imaging
Title Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging
URI https://ieeexplore.ieee.org/document/6054058
https://www.ncbi.nlm.nih.gov/pubmed/22020673
https://www.proquest.com/docview/925914113
https://search.proquest.com/docview/926507645
https://search.proquest.com/docview/968182822
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLaAA6KHUh6FQIvm0EulZpkkk0l8hIoVVEp7WVRuUSYzQagli-hupfLrsScPtVWpUC6RYimT2BN_ju3PAO8aZWRuaac1idKhMrYKq8bIsEZbSVNhIi1ndIvP-vxSfbpKr1bgw9gL45zzxWduwqc-l2_n9ZJ_lR1rjy_yVVjNZdz1ao0ZA5V25RwxM8ZKHQ8pSYnHs-Ki4-rkYUwUDTIBMMX8PKLlD2_kx6s8jTS9x5luQjGstSs0-TZZLsykfviLxvG5D_MKXvbQU5x0trIFK67dhhe_ERJuw3rRp9p3YFZUTN1wLYpf5O7YjL6LKZeXiC_3N33DUit8xYE4o2-ol-n5r8NT8o1W-GnZ4mv104mLWz8NaRcup2ezj-dhP4IhrJVKFqFF3cSNdBRA187I2KR1nXAQicitVgln1bSLGRRkCiMCI3mepiZqHGKFGpPXsNbOW7cPgiJeAoMUvqQGFdbSaIt0RHmW5anNMID3gyrKu45po_QRisSSNFiyBstegwHs8Asd5fp3GcDhoLuy34o_SqQAL1JRlAQgxqu0hzgxUrVuvmQRwqmZVul_RDQhGy65DWCvM4rx5oMtHfx7UYewQUuPu7q1N7C2uF-6twRkFubIW_AjdvfqSA
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVuJxoNAWCC3gAxcksnUSx8kcAXW1C025bEVvURw7CAFZVHaR6K_vjPMQoBZVuUTKSLE948z3ZcYzAC8bZWRuaac1idKhMrYKq8bIsEZbSVNhIi1HdIsTPTtV78_Ssw14PZ6Fcc755DM34Vsfy7fLes2_yg61xxf5LdgiPy-z7rTWGDNQaZfQEXPNWKnjISgp8XBRzLtqndyOifgglwAm1s9NWv7yR77ByvVY0_uc6TYUw2i7VJOvk_XKTOqLfwo53nQ6D-B-Dz7Fm85aHsKGa3fg3h8lCXfgdtEH23dhUVRcvOGzKH6Tw2ND-iamnGAiPp5_6Y8stcLnHIgj-op6mb4CdviWvKMVvl-2-FT9cmL-3fdD2oPT6dHi3SzsmzCEtVLJKrSom7iRjih07YyMTVrXCdNIRD5slXBcTbuYYUGmMCI4kudpaqLGIVaoMXkEm-2ydU9AEOclOEgEJjWosJZGW6QryrMsT22GAbwaVFH-6GptlJ6jSCxJgyVrsOw1GMAuL-go169lAPuD7sp-M_4skShepKIoCUCMT2kXcWikat1yzSKEVDOt0v-IaMI2nHQbwOPOKMaXD7b09OpBvYA7s0VxXB7PTz7sw12aRtxlsR3A5up87Z4RrFmZ596aLwH7Eu2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Myocardial+Fiber+Orientation+Using+Echocardiography-Based+Shear+Wave+Imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lee%2C+Wei-Ning&rft.au=Pernot%2C+Mathieu&rft.au=Couade%2C+Mathieu&rft.au=Messas%2C+Emmanuel&rft.date=2012-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=31&rft.issue=3&rft.spage=554&rft_id=info:doi/10.1109%2FTMI.2011.2172690&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2600727501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon