Neutron and X-ray Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network of the Toho-1 β-Lactamase for the Acylation Reaction

The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the cataly...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 7; pp. 4715 - 4722
Main Authors Tomanicek, Stephen J., Standaert, Robert F., Weiss, Kevin L., Ostermann, Andreas, Schrader, Tobias E., Ng, Joseph D., Coates, Leighton
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2013
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction. Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog. Conclusion: Glu-166 is implicated as the general base in the acylation reaction. Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors.
AbstractList The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction. Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog. Conclusion: Glu-166 is implicated as the general base in the acylation reaction. Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors.
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog. Conclusion: Glu-166 is implicated as the general base in the acylation reaction. Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors. The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11 B, as 10 B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Author Ostermann, Andreas
Ng, Joseph D.
Coates, Leighton
Schrader, Tobias E.
Weiss, Kevin L.
Tomanicek, Stephen J.
Standaert, Robert F.
Author_xml – sequence: 1
  givenname: Stephen J.
  surname: Tomanicek
  fullname: Tomanicek, Stephen J.
  organization: From the Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
– sequence: 2
  givenname: Robert F.
  surname: Standaert
  fullname: Standaert, Robert F.
  organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
– sequence: 3
  givenname: Kevin L.
  surname: Weiss
  fullname: Weiss, Kevin L.
  organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
– sequence: 4
  givenname: Andreas
  surname: Ostermann
  fullname: Ostermann, Andreas
  organization: the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, D-85747 Garching, Germany
– sequence: 5
  givenname: Tobias E.
  surname: Schrader
  fullname: Schrader, Tobias E.
  organization: the Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at FRM II, D-85747 Garching, Germany, and
– sequence: 6
  givenname: Joseph D.
  surname: Ng
  fullname: Ng, Joseph D.
  organization: the Department of Biological Sciences, University of Alabama, Huntsville, Alabama 35899
– sequence: 7
  givenname: Leighton
  surname: Coates
  fullname: Coates, Leighton
  email: coatesl@ornl.gov
  organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23255594$$D View this record in MEDLINE/PubMed
BookMark eNp1Ustu1DAUtVARnRbW7JCXbDKN4ziPDVIVFVppKFUpUneWY18zLkk8tZ2B9JNY8iF8Ew7TIkCqN7bueUnX5wDtDXYAhF6SdEnSMj-6aeXyPSHZMqdFRqsnaEHSiiaUkes9tEjTjCR1xqp9dOD9TRpPXpNnaD-jGWOszhfo-zmMwdkBi0Hh68SJCTdu8kF0-GNwowyjA4-txgJfgFORDE4EUPhkuJt6wGfD2rQmWIcb2286-IYvYQtRHdaAGxF9pmAkvnA2xJBzCF-t-zL7zfiVXduE4J8_kpWQQfTCA9bRasaO5dSJYKLoEiIYH8_RUy06Dy_u70P06e3JVXOarD68O2uOV4nMcxoSRURRqKJsaaYrqVutVF2XTNFUEcWoyrQScZy3oBktZVHpAjIoS2jLVNeU0kP0Zue7GdselIQhONHxjTO9cBO3wvB_kcGs-We75ZSVRVoW0eD1vYGztyP4wHvjJXSdGMCOnpOsquqa5aSM1Fd_Z_0JefigSGA7gnTWeweaSxN-7yVGm46TlM9F4LEIfC4C3xUh6o7-0z1YP66odwqIu90acNxLA4MEZRzIwJU1j2p_AVNtzoU
CitedBy_id crossref_primary_10_1107_S1600576714010772
crossref_primary_10_1002_chem_202001261
crossref_primary_10_1002_anie_201509989
crossref_primary_10_1107_S2053230X17012171
crossref_primary_10_1016_j_abb_2015_11_033
crossref_primary_10_1074_jbc_RA117_001681
crossref_primary_10_1128_AAC_01636_16
crossref_primary_10_1126_science_1256754
crossref_primary_10_1039_c3cp51760h
crossref_primary_10_1107_S2059798316002837
crossref_primary_10_1080_10448632_2015_996032
crossref_primary_10_1002_cplu_201500452
crossref_primary_10_1371_journal_pone_0203241
crossref_primary_10_3389_fmicb_2021_688509
crossref_primary_10_1111_febs_14315
crossref_primary_10_1002_pro_2889
crossref_primary_10_3390_e21111130
crossref_primary_10_1016_j_jcis_2018_09_022
crossref_primary_10_1002_2211_5463_12132
crossref_primary_10_1107_S2059798318017503
crossref_primary_10_1002_ange_201509989
crossref_primary_10_1021_acscatal_7b04114
crossref_primary_10_1073_pnas_1922203117
crossref_primary_10_1002_slct_201600631
crossref_primary_10_1107_S205979831800640X
crossref_primary_10_1021_jacs_5b00749
crossref_primary_10_1071_CH14337
crossref_primary_10_1107_S1600576719008665
crossref_primary_10_1007_s10858_021_00375_9
crossref_primary_10_1107_S2059798319016334
crossref_primary_10_1107_S2059798320003599
crossref_primary_10_1021_acs_jmedchem_9b00728
crossref_primary_10_1042_ETLS20170083
crossref_primary_10_1039_c3cp53831a
crossref_primary_10_5611_hamon_24_1_45
Cites_doi 10.1016/S0924-8579(99)00165-X
10.1073/pnas.0711659105
10.1016/S0076-6879(97)76066-X
10.1080/08893110902965003
10.1016/j.jmb.2005.02.010
10.1093/nar/gkm216
10.1128/AAC.39.10.2269
10.1107/S0907444912012589
10.1107/S1744309109008240
10.1021/ja0259640
10.1107/S0907444994003112
10.1042/bj2720613
10.1016/S0022-2836(02)00400-X
10.1042/bj3300581
10.1016/j.bbapap.2009.10.023
10.1093/jac/35.1.7
10.1021/bi0502700
10.1107/S0907444902016657
10.1074/jbc.M313143200
10.1021/ja051592u
10.1021/bi972501b
10.1016/j.jmb.2009.12.036
10.1074/jbc.M207884200
10.1128/AAC.48.1.1-14.2004
10.1107/S0907444910005494
10.1021/ja042850a
10.1107/S0108767307043930
10.1016/j.febslet.2010.12.017
10.1021/bi00190a015
10.1080/10426509308034326
10.1006/jmbi.1998.2432
10.1007/978-1-59745-483-4_18
10.1042/bj2790213
10.1073/pnas.060024697
10.1007/BF00469464
10.1021/ja034434g
10.1016/j.jmb.2010.04.062
10.1021/ja0712064
10.1128/AAC.39.12.2593
10.1021/bi049418q
10.1042/bj2760269
10.1107/S0907444909011548
10.1021/bi992681k
10.1016/S0022-2836(03)00210-9
10.1038/359700a0
10.1021/bi0342822
10.1021/ja044210d
10.1039/a705983c
ContentType Journal Article
Copyright 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
Copyright_xml – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M112.436238
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Proton Network of the Toho-1 β-Lactamase during Acylation
EISSN 1083-351X
EndPage 4722
ExternalDocumentID PMC3576076
23255594
10_1074_jbc_M112_436238
S002192582046274X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c443t-d1a66d67b32f8cfbfdd9975d30d1d53d2fdacfb4bef537c68f6e2e77eb70f9333
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:07:35 EDT 2025
Fri Jul 11 07:03:55 EDT 2025
Wed Feb 19 02:30:09 EST 2025
Thu Apr 24 23:00:09 EDT 2025
Tue Jul 01 00:41:00 EDT 2025
Fri Feb 23 02:46:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Enzyme Mechanisms
Crystal Structure
X-ray Crystallography
Neutron Scattering
Neutron Diffraction
Crystallography
Class A Beta-Lactamase
Transition State Analog
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-d1a66d67b32f8cfbfdd9975d30d1d53d2fdacfb4bef537c68f6e2e77eb70f9333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M112.436238
PMID 23255594
PQID 1288995417
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3576076
proquest_miscellaneous_1288995417
pubmed_primary_23255594
crossref_citationtrail_10_1074_jbc_M112_436238
crossref_primary_10_1074_jbc_M112_436238
elsevier_sciencedirect_doi_10_1074_jbc_M112_436238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-15
PublicationDateYYYYMMDD 2013-02-15
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2013
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Wang, Minasov, Shoichet (bib25) 2002; 320
Lamotte-Brasseur, Dive, Dideberg, Charlier, Frère, Ghuysen (bib13) 1991; 279
Hermann, Hensen, Ridder, Mulholland, Höltje (bib49) 2005; 127
Escobar, Tan, Lewis, Fink (bib28) 1994; 33
Meroueh, Fisher, Schlegel, Mobashery (bib14) 2005; 127
Clark, Primak (bib33) 1993; 84
Shu, Ramakrishnan, Schoenborn (bib32) 2000; 97
Ibuka, Ishii, Galleni, Ishiguro, Yamaguchi, Frère, Matsuzawa, Sakai (bib8) 2003; 42
Sheldrick (bib45) 2008; 64
Du Bois, Marriott, Amyes (bib7) 1995; 35
Ibuka, Taguchi, Ishiguro, Fushinobu, Ishii, Kamitori, Okuyama, Yamaguchi, Konno, Matsuzawa (bib17) 1999; 285
Matagne, Lamotte-Brasseur, Frère (bib5) 1998; 330
Adams, Mustyakimov, Afonine, Langan (bib39) 2009; 65
Golemi-Kotra, Meroueh, Kim, Vakulenko, Bulychev, Stemmler, Stemmler, Mobashery (bib11) 2004; 279
Thomas, Golemi-Kotra, Kim, Vakulenko, Mobashery, Shoichet (bib50) 2005; 44
Shimamura, Nitanai, Uchiyama, Matsuzawa (bib23) 2009; 65
Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib41) 2002; 58
Ishii, Ohno, Taguchi, Imajo, Ishiguro, Matsuzawa (bib9) 1995; 39
Tomanicek, Wang, Weiss, Blakeley, Cooper, Chen, Coates (bib27) 2011; 585
Davis, Leaver-Fay, Chen, Block, Kapral, Wang, Murray, Arendall, Snoeyink, Richardson, Richardson (bib42) 2007; 35
Nitanai, Shimamura, Uchiyama, Ishii, Takehira, Yutani, Matsuzawa, Miyano (bib20) 2010; 1804
Strynadka, Adachi, Jensen, Johns, Sielecki, Betzel, Sutoh, James (bib24) 1992; 359
Chen, Shoichet, Bonnet (bib44) 2005; 127
Knox (bib4) 1995; 39
Hermann, Ridder, Mulholland, Höltje (bib12) 2003; 125
Chen, Delmas, Sirot, Shoichet, Bonnet (bib43) 2005; 348
Gardberg, Del Castillo, Weiss, Meilleur, Blakeley, Myles (bib31) 2010; 66
Chen, Bonnet, Shoichet (bib15) 2007; 129
Blakeley (bib29) 2009; 15
(bib38) 1994; 50
Afonine, Grosse-Kunstleve, Adams (bib40) 2005
Tomanicek, Blakeley, Cooper, Chen, Afonine, Coates (bib26) 2010; 396
Otwinowski, Minor (bib37) 1997; 276
Matagne, Dubus, Galleni, Frère (bib1) 1999; 16
Ambler, Coulson, Frère, Ghuysen, Joris, Forsman, Levesque, Tiraby, Waley (bib2) 1991; 276
Blakeley, Ruiz, Cachau, Hazemann, Meilleur, Mitschler, Ginell, Afonine, Ventura, Cousido-Siah, Haertlein, Joachimiak, Myles, Podjarny (bib30) 2008; 105
Fisher, Blakeley, Cianci, McSweeney, Helliwell (bib46) 2012; 68
Shimamura, Ibuka, Fushinobu, Wakagi, Ishiguro, Ishii, Matsuzawa (bib22) 2002; 277
Meilleur, Weiss, Myles (bib36) 2009; 544
Delmas, Leyssene, Dubois, Birck, Vazeille, Robin, Bonnet (bib16) 2010; 400
Atanasov, Mustafi, Makinen (bib48) 2000; 97
Hawthorne, Miller, Aulich (bib34) 1989; 334
Gibson, Christensen, Waley (bib10) 1990; 272
Nukaga, Mayama, Hujer, Bonomo, Knox (bib21) 2003; 328
Lietz, Truher, Kahn, Hokenson, Fink (bib47) 2000; 39
Meilleur, Contzen, Myles, Jung (bib35) 2004; 43
Bonnet (bib3) 2004; 48
Tzouvelekis, Tzelepi, Tassios, Legakis (bib6) 2000; 14
Minasov, Wang, Shoichet (bib19) 2002; 124
Maveyraud, Pratt, Samama (bib18) 1998; 37
Otwinowski (10.1074/jbc.M112.436238_bib37) 1997; 276
Matagne (10.1074/jbc.M112.436238_bib5) 1998; 330
Lamotte-Brasseur (10.1074/jbc.M112.436238_bib13) 1991; 279
Hermann (10.1074/jbc.M112.436238_bib12) 2003; 125
Wang (10.1074/jbc.M112.436238_bib25) 2002; 320
Delmas (10.1074/jbc.M112.436238_bib16) 2010; 400
Sheldrick (10.1074/jbc.M112.436238_bib45) 2008; 64
Knox (10.1074/jbc.M112.436238_bib4) 1995; 39
Afonine (10.1074/jbc.M112.436238_bib40) 2005
Clark (10.1074/jbc.M112.436238_bib33) 1993; 84
Blakeley (10.1074/jbc.M112.436238_bib30) 2008; 105
Blakeley (10.1074/jbc.M112.436238_bib29) 2009; 15
Ishii (10.1074/jbc.M112.436238_bib9) 1995; 39
Gardberg (10.1074/jbc.M112.436238_bib31) 2010; 66
Meilleur (10.1074/jbc.M112.436238_bib36) 2009; 544
Thomas (10.1074/jbc.M112.436238_bib50) 2005; 44
Atanasov (10.1074/jbc.M112.436238_bib48) 2000; 97
Tomanicek (10.1074/jbc.M112.436238_bib26) 2010; 396
Tzouvelekis (10.1074/jbc.M112.436238_bib6) 2000; 14
Davis (10.1074/jbc.M112.436238_bib42) 2007; 35
Matagne (10.1074/jbc.M112.436238_bib1) 1999; 16
Ibuka (10.1074/jbc.M112.436238_bib17) 1999; 285
Escobar (10.1074/jbc.M112.436238_bib28) 1994; 33
Shimamura (10.1074/jbc.M112.436238_bib22) 2002; 277
Shimamura (10.1074/jbc.M112.436238_bib23) 2009; 65
Chen (10.1074/jbc.M112.436238_bib43) 2005; 348
Minasov (10.1074/jbc.M112.436238_bib19) 2002; 124
Adams (10.1074/jbc.M112.436238_bib39) 2009; 65
Gibson (10.1074/jbc.M112.436238_bib10) 1990; 272
Du Bois (10.1074/jbc.M112.436238_bib7) 1995; 35
Shu (10.1074/jbc.M112.436238_bib32) 2000; 97
Chen (10.1074/jbc.M112.436238_bib15) 2007; 129
Fisher (10.1074/jbc.M112.436238_bib46) 2012; 68
Nukaga (10.1074/jbc.M112.436238_bib21) 2003; 328
Ambler (10.1074/jbc.M112.436238_bib2) 1991; 276
Hawthorne (10.1074/jbc.M112.436238_bib34) 1989; 334
Strynadka (10.1074/jbc.M112.436238_bib24) 1992; 359
Chen (10.1074/jbc.M112.436238_bib44) 2005; 127
Maveyraud (10.1074/jbc.M112.436238_bib18) 1998; 37
Golemi-Kotra (10.1074/jbc.M112.436238_bib11) 2004; 279
Meroueh (10.1074/jbc.M112.436238_bib14) 2005; 127
(10.1074/jbc.M112.436238_bib38) 1994; 50
Tomanicek (10.1074/jbc.M112.436238_bib27) 2011; 585
Hermann (10.1074/jbc.M112.436238_bib49) 2005; 127
Lietz (10.1074/jbc.M112.436238_bib47) 2000; 39
Meilleur (10.1074/jbc.M112.436238_bib35) 2004; 43
Bonnet (10.1074/jbc.M112.436238_bib3) 2004; 48
Ibuka (10.1074/jbc.M112.436238_bib8) 2003; 42
Nitanai (10.1074/jbc.M112.436238_bib20) 2010; 1804
Adams (10.1074/jbc.M112.436238_bib41) 2002; 58
References_xml – volume: 320
  start-page: 85
  year: 2002
  end-page: 95
  ident: bib25
  article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs
  publication-title: J. Mol. Biol.
– volume: 400
  start-page: 108
  year: 2010
  end-page: 120
  ident: bib16
  article-title: Structural insights into substrate recognition and product expulsion in CTX-M enzymes
  publication-title: J. Mol. Biol.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bib37
  article-title: Processing of x-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 35
  start-page: W375
  year: 2007
  end-page: W383
  ident: bib42
  article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
  publication-title: Nucleic Acids Res.
– volume: 129
  start-page: 5378
  year: 2007
  end-page: 5380
  ident: bib15
  article-title: The acylation mechanism of CTX-M β-lactamase at 0.88 Ä resolution
  publication-title: J. Am. Chem. Soc.
– volume: 348
  start-page: 349
  year: 2005
  end-page: 362
  ident: bib43
  article-title: Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability
  publication-title: J. Mol. Biol.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  ident: bib45
  article-title: A short history of SHELX
  publication-title: Acta Crystallogr. A
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: bib41
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 37
  start-page: 2622
  year: 1998
  end-page: 2628
  ident: bib18
  article-title: Crystal structure of an acylation transition-state analog of the TEM-1 β-lactamase. Mechanistic implications for class A β-lactamases
  publication-title: Biochemistry
– volume: 16
  start-page: 1
  year: 1999
  end-page: 19
  ident: bib1
  article-title: The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity
  publication-title: Nat. Prod. Rep.
– volume: 43
  start-page: 8744
  year: 2004
  end-page: 8753
  ident: bib35
  article-title: Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101)
  publication-title: Biochemistry
– volume: 39
  start-page: 2269
  year: 1995
  end-page: 2275
  ident: bib9
  article-title: Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from
  publication-title: Antimicrob. Agents Chemother.
– volume: 328
  start-page: 289
  year: 2003
  end-page: 301
  ident: bib21
  article-title: Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme
  publication-title: J. Mol. Biol.
– volume: 277
  start-page: 46601
  year: 2002
  end-page: 46608
  ident: bib22
  article-title: Acyl-intermediate structures of the extended-spectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 157
  year: 2009
  end-page: 218
  ident: bib29
  article-title: Neutron macromolecular crystallography
  publication-title: Crystallogr. Rev.
– volume: 39
  start-page: 2593
  year: 1995
  end-page: 2601
  ident: bib4
  article-title: Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure
  publication-title: Antimicrob. Agents Chemother.
– volume: 127
  start-page: 15397
  year: 2005
  end-page: 15407
  ident: bib14
  article-title: QM/MM study of class A β-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 7
  year: 1995
  end-page: 22
  ident: bib7
  article-title: TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure, and function
  publication-title: J. Antimicrob. Chemother.
– volume: 285
  start-page: 2079
  year: 1999
  end-page: 2087
  ident: bib17
  article-title: Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Ä resolution
  publication-title: J. Mol. Biol.
– volume: 66
  start-page: 558
  year: 2010
  end-page: 567
  ident: bib31
  article-title: Unambiguous determination of H-atom positions: Comparing results from neutron and high-resolution x-ray crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 330
  start-page: 581
  year: 1998
  end-page: 598
  ident: bib5
  article-title: Catalytic properties of class A β-lactamases: efficiency and diversity
  publication-title: Biochem. J.
– volume: 125
  start-page: 9590
  year: 2003
  end-page: 9591
  ident: bib12
  article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-lactamases through QM/MM modeling
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1
  year: 2004
  end-page: 14
  ident: bib3
  article-title: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes
  publication-title: Antimicrob. Agents Chemother.
– volume: 279
  start-page: 213
  year: 1991
  end-page: 221
  ident: bib13
  article-title: Mechanism of acyl transfer by the class A serine β-lactamase of
  publication-title: Biochem. J.
– volume: 84
  start-page: 149
  year: 1993
  end-page: 157
  ident: bib33
  article-title: Studies on the deuteration of aromatic organosulfur compounds using aqueous transition metal species
  publication-title: Phosphorus Sulfur Silicon Relat. Elem.
– volume: 359
  start-page: 700
  year: 1992
  end-page: 705
  ident: bib24
  article-title: Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Ä resolution
  publication-title: Nature
– year: 2005
  ident: bib40
  publication-title: CCP4 Newslettetter on Protein Crystallography
– volume: 42
  start-page: 10634
  year: 2003
  end-page: 10643
  ident: bib8
  article-title: Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion
  publication-title: Biochemistry
– volume: 97
  start-page: 3160
  year: 2000
  end-page: 3165
  ident: bib48
  article-title: Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 279
  start-page: 34665
  year: 2004
  end-page: 34673
  ident: bib11
  article-title: The importance of a critical protonation state and the fate of the catalytic steps in class A β-lactamases and penicillin-binding proteins
  publication-title: J. Biol. Chem.
– volume: 276
  start-page: 269
  year: 1991
  end-page: 270
  ident: bib2
  article-title: A standard numbering scheme for the class A β-lactamases
  publication-title: Biochem. J.
– volume: 272
  start-page: 613
  year: 1990
  end-page: 619
  ident: bib10
  article-title: Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73
  publication-title: Biochem. J.
– volume: 44
  start-page: 9330
  year: 2005
  end-page: 9338
  ident: bib50
  article-title: Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase
  publication-title: Biochemistry
– volume: 105
  start-page: 1844
  year: 2008
  end-page: 1848
  ident: bib30
  article-title: Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 39
  start-page: 4971
  year: 2000
  end-page: 4981
  ident: bib47
  article-title: Lysine-73 is involved in the acylation and deacylation of β-lactamase
  publication-title: Biochemistry
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: bib38
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 14
  start-page: 137
  year: 2000
  end-page: 142
  ident: bib6
  article-title: CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes
  publication-title: Int. J. Antimicrob. Agents
– volume: 65
  start-page: 379
  year: 2009
  end-page: 382
  ident: bib23
  article-title: Improvement of crystal quality by surface mutations of β-lactamase Toho-1
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
– volume: 396
  start-page: 1070
  year: 2010
  end-page: 1080
  ident: bib26
  article-title: Neutron diffraction studies of a class A β-lactamase Toho-1 E166A/R274N/R276N triple mutant
  publication-title: J. Mol. Biol.
– volume: 585
  start-page: 364
  year: 2011
  end-page: 368
  ident: bib27
  article-title: The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation
  publication-title: FEBS Lett.
– volume: 33
  start-page: 7619
  year: 1994
  end-page: 7626
  ident: bib28
  article-title: Site-directed mutagenesis of glutamate-166 in β-lactamase leads to a branched path mechanism
  publication-title: Biochemistry
– volume: 68
  start-page: 800
  year: 2012
  end-page: 809
  ident: bib46
  article-title: Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 1804
  start-page: 684
  year: 2010
  end-page: 691
  ident: bib20
  article-title: The catalytic efficiency (
  publication-title: Biochim. Biophys. Acta
– volume: 544
  start-page: 281
  year: 2009
  end-page: 292
  ident: bib36
  article-title: Deuterium labeling for neutron structure-function-dynamics analysis
  publication-title: Methods Mol. Biol.
– volume: 65
  start-page: 567
  year: 2009
  end-page: 573
  ident: bib39
  article-title: Generalized x-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 97
  start-page: 3872
  year: 2000
  end-page: 3877
  ident: bib32
  article-title: Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 124
  start-page: 5333
  year: 2002
  end-page: 5340
  ident: bib19
  article-title: An ultrahigh resolution structure of TEM-1 β-lactamase suggests a role for Glu166 as the general base in acylation
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 421
  year: 1989
  end-page: 426
  ident: bib34
  article-title: Preparation of deuterated aromatic hydrocarbons, heteroatom-containing aromatics, and polychlorinated biphenyls as internal standards for GC/MS analysis
  publication-title: Fresenius Z. Anal. Chem.
– volume: 127
  start-page: 5423
  year: 2005
  end-page: 5434
  ident: bib44
  article-title: Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 4454
  year: 2005
  end-page: 4465
  ident: bib49
  article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin
  publication-title: J. Am. Chem. Soc.
– volume: 97
  start-page: 3160
  year: 2000
  ident: 10.1074/jbc.M112.436238_bib48
  article-title: Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2005
  ident: 10.1074/jbc.M112.436238_bib40
– volume: 14
  start-page: 137
  year: 2000
  ident: 10.1074/jbc.M112.436238_bib6
  article-title: CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/S0924-8579(99)00165-X
– volume: 105
  start-page: 1844
  year: 2008
  ident: 10.1074/jbc.M112.436238_bib30
  article-title: Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711659105
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1074/jbc.M112.436238_bib37
  article-title: Processing of x-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 15
  start-page: 157
  year: 2009
  ident: 10.1074/jbc.M112.436238_bib29
  article-title: Neutron macromolecular crystallography
  publication-title: Crystallogr. Rev.
  doi: 10.1080/08893110902965003
– volume: 348
  start-page: 349
  year: 2005
  ident: 10.1074/jbc.M112.436238_bib43
  article-title: Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.02.010
– volume: 35
  start-page: W375
  year: 2007
  ident: 10.1074/jbc.M112.436238_bib42
  article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm216
– volume: 39
  start-page: 2269
  year: 1995
  ident: 10.1074/jbc.M112.436238_bib9
  article-title: Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.10.2269
– volume: 68
  start-page: 800
  year: 2012
  ident: 10.1074/jbc.M112.436238_bib46
  article-title: Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444912012589
– volume: 65
  start-page: 379
  year: 2009
  ident: 10.1074/jbc.M112.436238_bib23
  article-title: Improvement of crystal quality by surface mutations of β-lactamase Toho-1
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309109008240
– volume: 124
  start-page: 5333
  year: 2002
  ident: 10.1074/jbc.M112.436238_bib19
  article-title: An ultrahigh resolution structure of TEM-1 β-lactamase suggests a role for Glu166 as the general base in acylation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0259640
– volume: 50
  start-page: 760
  year: 1994
  ident: 10.1074/jbc.M112.436238_bib38
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444994003112
– volume: 272
  start-page: 613
  year: 1990
  ident: 10.1074/jbc.M112.436238_bib10
  article-title: Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73
  publication-title: Biochem. J.
  doi: 10.1042/bj2720613
– volume: 320
  start-page: 85
  year: 2002
  ident: 10.1074/jbc.M112.436238_bib25
  article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00400-X
– volume: 330
  start-page: 581
  year: 1998
  ident: 10.1074/jbc.M112.436238_bib5
  article-title: Catalytic properties of class A β-lactamases: efficiency and diversity
  publication-title: Biochem. J.
  doi: 10.1042/bj3300581
– volume: 1804
  start-page: 684
  year: 2010
  ident: 10.1074/jbc.M112.436238_bib20
  article-title: The catalytic efficiency (kcat/Km) of the class A β-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2009.10.023
– volume: 35
  start-page: 7
  year: 1995
  ident: 10.1074/jbc.M112.436238_bib7
  article-title: TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure, and function
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/35.1.7
– volume: 44
  start-page: 9330
  year: 2005
  ident: 10.1074/jbc.M112.436238_bib50
  article-title: Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase
  publication-title: Biochemistry
  doi: 10.1021/bi0502700
– volume: 58
  start-page: 1948
  year: 2002
  ident: 10.1074/jbc.M112.436238_bib41
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444902016657
– volume: 279
  start-page: 34665
  year: 2004
  ident: 10.1074/jbc.M112.436238_bib11
  article-title: The importance of a critical protonation state and the fate of the catalytic steps in class A β-lactamases and penicillin-binding proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313143200
– volume: 127
  start-page: 15397
  year: 2005
  ident: 10.1074/jbc.M112.436238_bib14
  article-title: Ab initio QM/MM study of class A β-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051592u
– volume: 37
  start-page: 2622
  year: 1998
  ident: 10.1074/jbc.M112.436238_bib18
  article-title: Crystal structure of an acylation transition-state analog of the TEM-1 β-lactamase. Mechanistic implications for class A β-lactamases
  publication-title: Biochemistry
  doi: 10.1021/bi972501b
– volume: 396
  start-page: 1070
  year: 2010
  ident: 10.1074/jbc.M112.436238_bib26
  article-title: Neutron diffraction studies of a class A β-lactamase Toho-1 E166A/R274N/R276N triple mutant
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.12.036
– volume: 277
  start-page: 46601
  year: 2002
  ident: 10.1074/jbc.M112.436238_bib22
  article-title: Acyl-intermediate structures of the extended-spectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207884200
– volume: 48
  start-page: 1
  year: 2004
  ident: 10.1074/jbc.M112.436238_bib3
  article-title: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.1.1-14.2004
– volume: 66
  start-page: 558
  year: 2010
  ident: 10.1074/jbc.M112.436238_bib31
  article-title: Unambiguous determination of H-atom positions: Comparing results from neutron and high-resolution x-ray crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910005494
– volume: 127
  start-page: 5423
  year: 2005
  ident: 10.1074/jbc.M112.436238_bib44
  article-title: Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042850a
– volume: 64
  start-page: 112
  year: 2008
  ident: 10.1074/jbc.M112.436238_bib45
  article-title: A short history of SHELX
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767307043930
– volume: 585
  start-page: 364
  year: 2011
  ident: 10.1074/jbc.M112.436238_bib27
  article-title: The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.12.017
– volume: 33
  start-page: 7619
  year: 1994
  ident: 10.1074/jbc.M112.436238_bib28
  article-title: Site-directed mutagenesis of glutamate-166 in β-lactamase leads to a branched path mechanism
  publication-title: Biochemistry
  doi: 10.1021/bi00190a015
– volume: 84
  start-page: 149
  year: 1993
  ident: 10.1074/jbc.M112.436238_bib33
  article-title: Studies on the deuteration of aromatic organosulfur compounds using aqueous transition metal species
  publication-title: Phosphorus Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426509308034326
– volume: 285
  start-page: 2079
  year: 1999
  ident: 10.1074/jbc.M112.436238_bib17
  article-title: Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Ä resolution
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2432
– volume: 544
  start-page: 281
  year: 2009
  ident: 10.1074/jbc.M112.436238_bib36
  article-title: Deuterium labeling for neutron structure-function-dynamics analysis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-483-4_18
– volume: 279
  start-page: 213
  year: 1991
  ident: 10.1074/jbc.M112.436238_bib13
  article-title: Mechanism of acyl transfer by the class A serine β-lactamase of Streptomyces albus G
  publication-title: Biochem. J.
  doi: 10.1042/bj2790213
– volume: 97
  start-page: 3872
  year: 2000
  ident: 10.1074/jbc.M112.436238_bib32
  article-title: Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.060024697
– volume: 334
  start-page: 421
  year: 1989
  ident: 10.1074/jbc.M112.436238_bib34
  article-title: Preparation of deuterated aromatic hydrocarbons, heteroatom-containing aromatics, and polychlorinated biphenyls as internal standards for GC/MS analysis
  publication-title: Fresenius Z. Anal. Chem.
  doi: 10.1007/BF00469464
– volume: 125
  start-page: 9590
  year: 2003
  ident: 10.1074/jbc.M112.436238_bib12
  article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-lactamases through QM/MM modeling
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034434g
– volume: 400
  start-page: 108
  year: 2010
  ident: 10.1074/jbc.M112.436238_bib16
  article-title: Structural insights into substrate recognition and product expulsion in CTX-M enzymes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.04.062
– volume: 129
  start-page: 5378
  year: 2007
  ident: 10.1074/jbc.M112.436238_bib15
  article-title: The acylation mechanism of CTX-M β-lactamase at 0.88 Ä resolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0712064
– volume: 39
  start-page: 2593
  year: 1995
  ident: 10.1074/jbc.M112.436238_bib4
  article-title: Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.12.2593
– volume: 43
  start-page: 8744
  year: 2004
  ident: 10.1074/jbc.M112.436238_bib35
  article-title: Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101)
  publication-title: Biochemistry
  doi: 10.1021/bi049418q
– volume: 276
  start-page: 269
  year: 1991
  ident: 10.1074/jbc.M112.436238_bib2
  article-title: A standard numbering scheme for the class A β-lactamases
  publication-title: Biochem. J.
  doi: 10.1042/bj2760269
– volume: 65
  start-page: 567
  year: 2009
  ident: 10.1074/jbc.M112.436238_bib39
  article-title: Generalized x-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909011548
– volume: 39
  start-page: 4971
  year: 2000
  ident: 10.1074/jbc.M112.436238_bib47
  article-title: Lysine-73 is involved in the acylation and deacylation of β-lactamase
  publication-title: Biochemistry
  doi: 10.1021/bi992681k
– volume: 328
  start-page: 289
  year: 2003
  ident: 10.1074/jbc.M112.436238_bib21
  article-title: Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00210-9
– volume: 359
  start-page: 700
  year: 1992
  ident: 10.1074/jbc.M112.436238_bib24
  article-title: Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Ä resolution
  publication-title: Nature
  doi: 10.1038/359700a0
– volume: 42
  start-page: 10634
  year: 2003
  ident: 10.1074/jbc.M112.436238_bib8
  article-title: Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion
  publication-title: Biochemistry
  doi: 10.1021/bi0342822
– volume: 127
  start-page: 4454
  year: 2005
  ident: 10.1074/jbc.M112.436238_bib49
  article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044210d
– volume: 16
  start-page: 1
  year: 1999
  ident: 10.1074/jbc.M112.436238_bib1
  article-title: The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/a705983c
SSID ssj0000491
Score 2.2787528
Snippet The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental...
Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4715
SubjectTerms Acylation
beta-Lactamases - chemistry
Catalysis
Catalytic Domain
Class A Beta-Lactamase
Crystal Structure
Crystallography
Crystallography, X-Ray - methods
Drug Resistance, Bacterial
Enzyme Inhibitors - pharmacology
Enzyme Mechanisms
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Hydrogen - chemistry
Hydrogen Bonding
Ligands
Models, Chemical
Molecular Conformation
Neutron Diffraction
Neutron Scattering
Neutrons
Nitrogen - chemistry
Protein Structure and Folding
Protons
Thiophenes - chemistry
Transition State Analog
X-ray Crystallography
Title Neutron and X-ray Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network of the Toho-1 β-Lactamase for the Acylation Reaction
URI https://dx.doi.org/10.1074/jbc.M112.436238
https://www.ncbi.nlm.nih.gov/pubmed/23255594
https://www.proquest.com/docview/1288995417
https://pubmed.ncbi.nlm.nih.gov/PMC3576076
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKWcAGQctjeMlIFCGNMs3DjjPLMmpV9QWIVswuih9RC22CpjMS009iyYfwN-y5N06cTGkl6CYaxXmN7rF9bJ97TMhrYMWaczn0dKB8jxkWeIkKjaeV4QoIfB5LHCjuH8TbR2xnzMdLS787qqXZVA7UxZV5JTeJKpyDuGKW7H9E1j0UTsBviC8cIcJw_KcYH5gZzmRXCwBjb5JB9Z7MzzG98VNlCzubWEvZDIXu2swqB2VgmJvFxfwMRZPHJxJq9KRqFU7Nd1wpQKNhJKMjnNeZo53rh0mJ3hsHVjDeiAoOy-PSC_pro821d6G3l6lpdgY9opMtbqi5ldmhTl-58H9p0dnhwtYKypqVNDvQtfPfaNGhzNeOKK2_M3BTQ9VcSJ15ZHXi_S1X-tmc2F3hd4EAFP09V_D-vOqTisKpOrOFGRDcjSL0bA6onZZrUnMWlKNWexJaX_iBsa078E1MXRh3m_8wSTo4F53GHPpt3iEGaKt5ZacDLAw7HakG-8BeBww4QZS0_atTPeLCeICfFGJGsGDjW-R2CKMb3Hhj92Nrcg-DNrvRY_0PGkcqwdYvveQ6MvX3YOmy5rdDog7vk3t1xOmGhfIDsmSKFbK6UWTT8mxO39BKj1wt9KyQO6MGCavkR410CrGmFdJpjXTaIp2WOc3oAtKpRTp1SKc10qlFOgWkUod0apFOa6Tj87DcIp3--tminALKqzKHctqg_CE52to8HG179S4jnmIsmkIjlcWxjoWMwjxRucy1Hg4F15GvA80jHeY6g9NMmpxHQsVJHpvQCGGk8PNhFEWPyHJRFuYJoXkS-FrmQhoTMhNEcmi4ZEwHfiS1MX6PDJpwpaq24MedYE7TSgoiWArxTTG-qY1vj7x1N3yz7jPXXxo28U9r8mxJcQowvf6mVw1SUogorhVmhSln5ynQ1gStIgPRI48tctwXwCCMcz5kPSIWMOUuQMv6xZLi5Liyro-4iH0RP73Jxz4jd9va_5wsA7zMCxgRTOXLqv78AbWxFNg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutron+and+X-ray+Crystal+Structures+of+a+Perdeuterated+Enzyme+Inhibitor+Complex+Reveal+the+Catalytic+Proton+Network+of+the+Toho-1+%CE%B2-Lactamase+for+the+Acylation+Reaction&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Tomanicek%2C+Stephen+J.&rft.au=Standaert%2C+Robert+F.&rft.au=Weiss%2C+Kevin+L.&rft.au=Ostermann%2C+Andreas&rft.date=2013-02-15&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=288&rft.issue=7&rft.spage=4715&rft.epage=4722&rft_id=info:doi/10.1074%2Fjbc.M112.436238&rft.externalDocID=S002192582046274X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon