Neutron and X-ray Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network of the Toho-1 β-Lactamase for the Acylation Reaction
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the cataly...
Saved in:
Published in | The Journal of biological chemistry Vol. 288; no. 7; pp. 4715 - 4722 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.02.2013
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat.
Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog.
Conclusion: Glu-166 is implicated as the general base in the acylation reaction.
Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors. |
---|---|
AbstractList | The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat.
Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog.
Conclusion: Glu-166 is implicated as the general base in the acylation reaction.
Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors. The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction. The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction. Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog. Conclusion: Glu-166 is implicated as the general base in the acylation reaction. Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors. The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11 B, as 10 B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction. |
Author | Ostermann, Andreas Ng, Joseph D. Coates, Leighton Schrader, Tobias E. Weiss, Kevin L. Tomanicek, Stephen J. Standaert, Robert F. |
Author_xml | – sequence: 1 givenname: Stephen J. surname: Tomanicek fullname: Tomanicek, Stephen J. organization: From the Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 – sequence: 2 givenname: Robert F. surname: Standaert fullname: Standaert, Robert F. organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 – sequence: 3 givenname: Kevin L. surname: Weiss fullname: Weiss, Kevin L. organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 – sequence: 4 givenname: Andreas surname: Ostermann fullname: Ostermann, Andreas organization: the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, D-85747 Garching, Germany – sequence: 5 givenname: Tobias E. surname: Schrader fullname: Schrader, Tobias E. organization: the Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at FRM II, D-85747 Garching, Germany, and – sequence: 6 givenname: Joseph D. surname: Ng fullname: Ng, Joseph D. organization: the Department of Biological Sciences, University of Alabama, Huntsville, Alabama 35899 – sequence: 7 givenname: Leighton surname: Coates fullname: Coates, Leighton email: coatesl@ornl.gov organization: Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23255594$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ustu1DAUtVARnRbW7JCXbDKN4ziPDVIVFVppKFUpUneWY18zLkk8tZ2B9JNY8iF8Ew7TIkCqN7bueUnX5wDtDXYAhF6SdEnSMj-6aeXyPSHZMqdFRqsnaEHSiiaUkes9tEjTjCR1xqp9dOD9TRpPXpNnaD-jGWOszhfo-zmMwdkBi0Hh68SJCTdu8kF0-GNwowyjA4-txgJfgFORDE4EUPhkuJt6wGfD2rQmWIcb2286-IYvYQtRHdaAGxF9pmAkvnA2xJBzCF-t-zL7zfiVXduE4J8_kpWQQfTCA9bRasaO5dSJYKLoEiIYH8_RUy06Dy_u70P06e3JVXOarD68O2uOV4nMcxoSRURRqKJsaaYrqVutVF2XTNFUEcWoyrQScZy3oBktZVHpAjIoS2jLVNeU0kP0Zue7GdselIQhONHxjTO9cBO3wvB_kcGs-We75ZSVRVoW0eD1vYGztyP4wHvjJXSdGMCOnpOsquqa5aSM1Fd_Z_0JefigSGA7gnTWeweaSxN-7yVGm46TlM9F4LEIfC4C3xUh6o7-0z1YP66odwqIu90acNxLA4MEZRzIwJU1j2p_AVNtzoU |
CitedBy_id | crossref_primary_10_1107_S1600576714010772 crossref_primary_10_1002_chem_202001261 crossref_primary_10_1002_anie_201509989 crossref_primary_10_1107_S2053230X17012171 crossref_primary_10_1016_j_abb_2015_11_033 crossref_primary_10_1074_jbc_RA117_001681 crossref_primary_10_1128_AAC_01636_16 crossref_primary_10_1126_science_1256754 crossref_primary_10_1039_c3cp51760h crossref_primary_10_1107_S2059798316002837 crossref_primary_10_1080_10448632_2015_996032 crossref_primary_10_1002_cplu_201500452 crossref_primary_10_1371_journal_pone_0203241 crossref_primary_10_3389_fmicb_2021_688509 crossref_primary_10_1111_febs_14315 crossref_primary_10_1002_pro_2889 crossref_primary_10_3390_e21111130 crossref_primary_10_1016_j_jcis_2018_09_022 crossref_primary_10_1002_2211_5463_12132 crossref_primary_10_1107_S2059798318017503 crossref_primary_10_1002_ange_201509989 crossref_primary_10_1021_acscatal_7b04114 crossref_primary_10_1073_pnas_1922203117 crossref_primary_10_1002_slct_201600631 crossref_primary_10_1107_S205979831800640X crossref_primary_10_1021_jacs_5b00749 crossref_primary_10_1071_CH14337 crossref_primary_10_1107_S1600576719008665 crossref_primary_10_1007_s10858_021_00375_9 crossref_primary_10_1107_S2059798319016334 crossref_primary_10_1107_S2059798320003599 crossref_primary_10_1021_acs_jmedchem_9b00728 crossref_primary_10_1042_ETLS20170083 crossref_primary_10_1039_c3cp53831a crossref_primary_10_5611_hamon_24_1_45 |
Cites_doi | 10.1016/S0924-8579(99)00165-X 10.1073/pnas.0711659105 10.1016/S0076-6879(97)76066-X 10.1080/08893110902965003 10.1016/j.jmb.2005.02.010 10.1093/nar/gkm216 10.1128/AAC.39.10.2269 10.1107/S0907444912012589 10.1107/S1744309109008240 10.1021/ja0259640 10.1107/S0907444994003112 10.1042/bj2720613 10.1016/S0022-2836(02)00400-X 10.1042/bj3300581 10.1016/j.bbapap.2009.10.023 10.1093/jac/35.1.7 10.1021/bi0502700 10.1107/S0907444902016657 10.1074/jbc.M313143200 10.1021/ja051592u 10.1021/bi972501b 10.1016/j.jmb.2009.12.036 10.1074/jbc.M207884200 10.1128/AAC.48.1.1-14.2004 10.1107/S0907444910005494 10.1021/ja042850a 10.1107/S0108767307043930 10.1016/j.febslet.2010.12.017 10.1021/bi00190a015 10.1080/10426509308034326 10.1006/jmbi.1998.2432 10.1007/978-1-59745-483-4_18 10.1042/bj2790213 10.1073/pnas.060024697 10.1007/BF00469464 10.1021/ja034434g 10.1016/j.jmb.2010.04.062 10.1021/ja0712064 10.1128/AAC.39.12.2593 10.1021/bi049418q 10.1042/bj2760269 10.1107/S0907444909011548 10.1021/bi992681k 10.1016/S0022-2836(03)00210-9 10.1038/359700a0 10.1021/bi0342822 10.1021/ja044210d 10.1039/a705983c |
ContentType | Journal Article |
Copyright | 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
Copyright_xml | – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M112.436238 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Proton Network of the Toho-1 β-Lactamase during Acylation |
EISSN | 1083-351X |
EndPage | 4722 |
ExternalDocumentID | PMC3576076 23255594 10_1074_jbc_M112_436238 S002192582046274X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c443t-d1a66d67b32f8cfbfdd9975d30d1d53d2fdacfb4bef537c68f6e2e77eb70f9333 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:07:35 EDT 2025 Fri Jul 11 07:03:55 EDT 2025 Wed Feb 19 02:30:09 EST 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 00:41:00 EDT 2025 Fri Feb 23 02:46:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Enzyme Mechanisms Crystal Structure X-ray Crystallography Neutron Scattering Neutron Diffraction Crystallography Class A Beta-Lactamase Transition State Analog |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-d1a66d67b32f8cfbfdd9975d30d1d53d2fdacfb4bef537c68f6e2e77eb70f9333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M112.436238 |
PMID | 23255594 |
PQID | 1288995417 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3576076 proquest_miscellaneous_1288995417 pubmed_primary_23255594 crossref_citationtrail_10_1074_jbc_M112_436238 crossref_primary_10_1074_jbc_M112_436238 elsevier_sciencedirect_doi_10_1074_jbc_M112_436238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-15 |
PublicationDateYYYYMMDD | 2013-02-15 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2013 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Wang, Minasov, Shoichet (bib25) 2002; 320 Lamotte-Brasseur, Dive, Dideberg, Charlier, Frère, Ghuysen (bib13) 1991; 279 Hermann, Hensen, Ridder, Mulholland, Höltje (bib49) 2005; 127 Escobar, Tan, Lewis, Fink (bib28) 1994; 33 Meroueh, Fisher, Schlegel, Mobashery (bib14) 2005; 127 Clark, Primak (bib33) 1993; 84 Shu, Ramakrishnan, Schoenborn (bib32) 2000; 97 Ibuka, Ishii, Galleni, Ishiguro, Yamaguchi, Frère, Matsuzawa, Sakai (bib8) 2003; 42 Sheldrick (bib45) 2008; 64 Du Bois, Marriott, Amyes (bib7) 1995; 35 Ibuka, Taguchi, Ishiguro, Fushinobu, Ishii, Kamitori, Okuyama, Yamaguchi, Konno, Matsuzawa (bib17) 1999; 285 Matagne, Lamotte-Brasseur, Frère (bib5) 1998; 330 Adams, Mustyakimov, Afonine, Langan (bib39) 2009; 65 Golemi-Kotra, Meroueh, Kim, Vakulenko, Bulychev, Stemmler, Stemmler, Mobashery (bib11) 2004; 279 Thomas, Golemi-Kotra, Kim, Vakulenko, Mobashery, Shoichet (bib50) 2005; 44 Shimamura, Nitanai, Uchiyama, Matsuzawa (bib23) 2009; 65 Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib41) 2002; 58 Ishii, Ohno, Taguchi, Imajo, Ishiguro, Matsuzawa (bib9) 1995; 39 Tomanicek, Wang, Weiss, Blakeley, Cooper, Chen, Coates (bib27) 2011; 585 Davis, Leaver-Fay, Chen, Block, Kapral, Wang, Murray, Arendall, Snoeyink, Richardson, Richardson (bib42) 2007; 35 Nitanai, Shimamura, Uchiyama, Ishii, Takehira, Yutani, Matsuzawa, Miyano (bib20) 2010; 1804 Strynadka, Adachi, Jensen, Johns, Sielecki, Betzel, Sutoh, James (bib24) 1992; 359 Chen, Shoichet, Bonnet (bib44) 2005; 127 Knox (bib4) 1995; 39 Hermann, Ridder, Mulholland, Höltje (bib12) 2003; 125 Chen, Delmas, Sirot, Shoichet, Bonnet (bib43) 2005; 348 Gardberg, Del Castillo, Weiss, Meilleur, Blakeley, Myles (bib31) 2010; 66 Chen, Bonnet, Shoichet (bib15) 2007; 129 Blakeley (bib29) 2009; 15 (bib38) 1994; 50 Afonine, Grosse-Kunstleve, Adams (bib40) 2005 Tomanicek, Blakeley, Cooper, Chen, Afonine, Coates (bib26) 2010; 396 Otwinowski, Minor (bib37) 1997; 276 Matagne, Dubus, Galleni, Frère (bib1) 1999; 16 Ambler, Coulson, Frère, Ghuysen, Joris, Forsman, Levesque, Tiraby, Waley (bib2) 1991; 276 Blakeley, Ruiz, Cachau, Hazemann, Meilleur, Mitschler, Ginell, Afonine, Ventura, Cousido-Siah, Haertlein, Joachimiak, Myles, Podjarny (bib30) 2008; 105 Fisher, Blakeley, Cianci, McSweeney, Helliwell (bib46) 2012; 68 Shimamura, Ibuka, Fushinobu, Wakagi, Ishiguro, Ishii, Matsuzawa (bib22) 2002; 277 Meilleur, Weiss, Myles (bib36) 2009; 544 Delmas, Leyssene, Dubois, Birck, Vazeille, Robin, Bonnet (bib16) 2010; 400 Atanasov, Mustafi, Makinen (bib48) 2000; 97 Hawthorne, Miller, Aulich (bib34) 1989; 334 Gibson, Christensen, Waley (bib10) 1990; 272 Nukaga, Mayama, Hujer, Bonomo, Knox (bib21) 2003; 328 Lietz, Truher, Kahn, Hokenson, Fink (bib47) 2000; 39 Meilleur, Contzen, Myles, Jung (bib35) 2004; 43 Bonnet (bib3) 2004; 48 Tzouvelekis, Tzelepi, Tassios, Legakis (bib6) 2000; 14 Minasov, Wang, Shoichet (bib19) 2002; 124 Maveyraud, Pratt, Samama (bib18) 1998; 37 Otwinowski (10.1074/jbc.M112.436238_bib37) 1997; 276 Matagne (10.1074/jbc.M112.436238_bib5) 1998; 330 Lamotte-Brasseur (10.1074/jbc.M112.436238_bib13) 1991; 279 Hermann (10.1074/jbc.M112.436238_bib12) 2003; 125 Wang (10.1074/jbc.M112.436238_bib25) 2002; 320 Delmas (10.1074/jbc.M112.436238_bib16) 2010; 400 Sheldrick (10.1074/jbc.M112.436238_bib45) 2008; 64 Knox (10.1074/jbc.M112.436238_bib4) 1995; 39 Afonine (10.1074/jbc.M112.436238_bib40) 2005 Clark (10.1074/jbc.M112.436238_bib33) 1993; 84 Blakeley (10.1074/jbc.M112.436238_bib30) 2008; 105 Blakeley (10.1074/jbc.M112.436238_bib29) 2009; 15 Ishii (10.1074/jbc.M112.436238_bib9) 1995; 39 Gardberg (10.1074/jbc.M112.436238_bib31) 2010; 66 Meilleur (10.1074/jbc.M112.436238_bib36) 2009; 544 Thomas (10.1074/jbc.M112.436238_bib50) 2005; 44 Atanasov (10.1074/jbc.M112.436238_bib48) 2000; 97 Tomanicek (10.1074/jbc.M112.436238_bib26) 2010; 396 Tzouvelekis (10.1074/jbc.M112.436238_bib6) 2000; 14 Davis (10.1074/jbc.M112.436238_bib42) 2007; 35 Matagne (10.1074/jbc.M112.436238_bib1) 1999; 16 Ibuka (10.1074/jbc.M112.436238_bib17) 1999; 285 Escobar (10.1074/jbc.M112.436238_bib28) 1994; 33 Shimamura (10.1074/jbc.M112.436238_bib22) 2002; 277 Shimamura (10.1074/jbc.M112.436238_bib23) 2009; 65 Chen (10.1074/jbc.M112.436238_bib43) 2005; 348 Minasov (10.1074/jbc.M112.436238_bib19) 2002; 124 Adams (10.1074/jbc.M112.436238_bib39) 2009; 65 Gibson (10.1074/jbc.M112.436238_bib10) 1990; 272 Du Bois (10.1074/jbc.M112.436238_bib7) 1995; 35 Shu (10.1074/jbc.M112.436238_bib32) 2000; 97 Chen (10.1074/jbc.M112.436238_bib15) 2007; 129 Fisher (10.1074/jbc.M112.436238_bib46) 2012; 68 Nukaga (10.1074/jbc.M112.436238_bib21) 2003; 328 Ambler (10.1074/jbc.M112.436238_bib2) 1991; 276 Hawthorne (10.1074/jbc.M112.436238_bib34) 1989; 334 Strynadka (10.1074/jbc.M112.436238_bib24) 1992; 359 Chen (10.1074/jbc.M112.436238_bib44) 2005; 127 Maveyraud (10.1074/jbc.M112.436238_bib18) 1998; 37 Golemi-Kotra (10.1074/jbc.M112.436238_bib11) 2004; 279 Meroueh (10.1074/jbc.M112.436238_bib14) 2005; 127 (10.1074/jbc.M112.436238_bib38) 1994; 50 Tomanicek (10.1074/jbc.M112.436238_bib27) 2011; 585 Hermann (10.1074/jbc.M112.436238_bib49) 2005; 127 Lietz (10.1074/jbc.M112.436238_bib47) 2000; 39 Meilleur (10.1074/jbc.M112.436238_bib35) 2004; 43 Bonnet (10.1074/jbc.M112.436238_bib3) 2004; 48 Ibuka (10.1074/jbc.M112.436238_bib8) 2003; 42 Nitanai (10.1074/jbc.M112.436238_bib20) 2010; 1804 Adams (10.1074/jbc.M112.436238_bib41) 2002; 58 |
References_xml | – volume: 320 start-page: 85 year: 2002 end-page: 95 ident: bib25 article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs publication-title: J. Mol. Biol. – volume: 400 start-page: 108 year: 2010 end-page: 120 ident: bib16 article-title: Structural insights into substrate recognition and product expulsion in CTX-M enzymes publication-title: J. Mol. Biol. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib37 article-title: Processing of x-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 35 start-page: W375 year: 2007 end-page: W383 ident: bib42 article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids publication-title: Nucleic Acids Res. – volume: 129 start-page: 5378 year: 2007 end-page: 5380 ident: bib15 article-title: The acylation mechanism of CTX-M β-lactamase at 0.88 Ä resolution publication-title: J. Am. Chem. Soc. – volume: 348 start-page: 349 year: 2005 end-page: 362 ident: bib43 article-title: Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability publication-title: J. Mol. Biol. – volume: 64 start-page: 112 year: 2008 end-page: 122 ident: bib45 article-title: A short history of SHELX publication-title: Acta Crystallogr. A – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: bib41 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 37 start-page: 2622 year: 1998 end-page: 2628 ident: bib18 article-title: Crystal structure of an acylation transition-state analog of the TEM-1 β-lactamase. Mechanistic implications for class A β-lactamases publication-title: Biochemistry – volume: 16 start-page: 1 year: 1999 end-page: 19 ident: bib1 article-title: The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity publication-title: Nat. Prod. Rep. – volume: 43 start-page: 8744 year: 2004 end-page: 8753 ident: bib35 article-title: Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101) publication-title: Biochemistry – volume: 39 start-page: 2269 year: 1995 end-page: 2275 ident: bib9 article-title: Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from publication-title: Antimicrob. Agents Chemother. – volume: 328 start-page: 289 year: 2003 end-page: 301 ident: bib21 article-title: Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme publication-title: J. Mol. Biol. – volume: 277 start-page: 46601 year: 2002 end-page: 46608 ident: bib22 article-title: Acyl-intermediate structures of the extended-spectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin publication-title: J. Biol. Chem. – volume: 15 start-page: 157 year: 2009 end-page: 218 ident: bib29 article-title: Neutron macromolecular crystallography publication-title: Crystallogr. Rev. – volume: 39 start-page: 2593 year: 1995 end-page: 2601 ident: bib4 article-title: Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure publication-title: Antimicrob. Agents Chemother. – volume: 127 start-page: 15397 year: 2005 end-page: 15407 ident: bib14 article-title: QM/MM study of class A β-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 7 year: 1995 end-page: 22 ident: bib7 article-title: TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure, and function publication-title: J. Antimicrob. Chemother. – volume: 285 start-page: 2079 year: 1999 end-page: 2087 ident: bib17 article-title: Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Ä resolution publication-title: J. Mol. Biol. – volume: 66 start-page: 558 year: 2010 end-page: 567 ident: bib31 article-title: Unambiguous determination of H-atom positions: Comparing results from neutron and high-resolution x-ray crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 330 start-page: 581 year: 1998 end-page: 598 ident: bib5 article-title: Catalytic properties of class A β-lactamases: efficiency and diversity publication-title: Biochem. J. – volume: 125 start-page: 9590 year: 2003 end-page: 9591 ident: bib12 article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-lactamases through QM/MM modeling publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1 year: 2004 end-page: 14 ident: bib3 article-title: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes publication-title: Antimicrob. Agents Chemother. – volume: 279 start-page: 213 year: 1991 end-page: 221 ident: bib13 article-title: Mechanism of acyl transfer by the class A serine β-lactamase of publication-title: Biochem. J. – volume: 84 start-page: 149 year: 1993 end-page: 157 ident: bib33 article-title: Studies on the deuteration of aromatic organosulfur compounds using aqueous transition metal species publication-title: Phosphorus Sulfur Silicon Relat. Elem. – volume: 359 start-page: 700 year: 1992 end-page: 705 ident: bib24 article-title: Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Ä resolution publication-title: Nature – year: 2005 ident: bib40 publication-title: CCP4 Newslettetter on Protein Crystallography – volume: 42 start-page: 10634 year: 2003 end-page: 10643 ident: bib8 article-title: Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion publication-title: Biochemistry – volume: 97 start-page: 3160 year: 2000 end-page: 3165 ident: bib48 article-title: Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 279 start-page: 34665 year: 2004 end-page: 34673 ident: bib11 article-title: The importance of a critical protonation state and the fate of the catalytic steps in class A β-lactamases and penicillin-binding proteins publication-title: J. Biol. Chem. – volume: 276 start-page: 269 year: 1991 end-page: 270 ident: bib2 article-title: A standard numbering scheme for the class A β-lactamases publication-title: Biochem. J. – volume: 272 start-page: 613 year: 1990 end-page: 619 ident: bib10 article-title: Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73 publication-title: Biochem. J. – volume: 44 start-page: 9330 year: 2005 end-page: 9338 ident: bib50 article-title: Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase publication-title: Biochemistry – volume: 105 start-page: 1844 year: 2008 end-page: 1848 ident: bib30 article-title: Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 39 start-page: 4971 year: 2000 end-page: 4981 ident: bib47 article-title: Lysine-73 is involved in the acylation and deacylation of β-lactamase publication-title: Biochemistry – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: bib38 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 14 start-page: 137 year: 2000 end-page: 142 ident: bib6 article-title: CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes publication-title: Int. J. Antimicrob. Agents – volume: 65 start-page: 379 year: 2009 end-page: 382 ident: bib23 article-title: Improvement of crystal quality by surface mutations of β-lactamase Toho-1 publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. – volume: 396 start-page: 1070 year: 2010 end-page: 1080 ident: bib26 article-title: Neutron diffraction studies of a class A β-lactamase Toho-1 E166A/R274N/R276N triple mutant publication-title: J. Mol. Biol. – volume: 585 start-page: 364 year: 2011 end-page: 368 ident: bib27 article-title: The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation publication-title: FEBS Lett. – volume: 33 start-page: 7619 year: 1994 end-page: 7626 ident: bib28 article-title: Site-directed mutagenesis of glutamate-166 in β-lactamase leads to a branched path mechanism publication-title: Biochemistry – volume: 68 start-page: 800 year: 2012 end-page: 809 ident: bib46 article-title: Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 1804 start-page: 684 year: 2010 end-page: 691 ident: bib20 article-title: The catalytic efficiency ( publication-title: Biochim. Biophys. Acta – volume: 544 start-page: 281 year: 2009 end-page: 292 ident: bib36 article-title: Deuterium labeling for neutron structure-function-dynamics analysis publication-title: Methods Mol. Biol. – volume: 65 start-page: 567 year: 2009 end-page: 573 ident: bib39 article-title: Generalized x-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 97 start-page: 3872 year: 2000 end-page: 3877 ident: bib32 article-title: Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 124 start-page: 5333 year: 2002 end-page: 5340 ident: bib19 article-title: An ultrahigh resolution structure of TEM-1 β-lactamase suggests a role for Glu166 as the general base in acylation publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 421 year: 1989 end-page: 426 ident: bib34 article-title: Preparation of deuterated aromatic hydrocarbons, heteroatom-containing aromatics, and polychlorinated biphenyls as internal standards for GC/MS analysis publication-title: Fresenius Z. Anal. Chem. – volume: 127 start-page: 5423 year: 2005 end-page: 5434 ident: bib44 article-title: Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 4454 year: 2005 end-page: 4465 ident: bib49 article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 3160 year: 2000 ident: 10.1074/jbc.M112.436238_bib48 article-title: Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2005 ident: 10.1074/jbc.M112.436238_bib40 – volume: 14 start-page: 137 year: 2000 ident: 10.1074/jbc.M112.436238_bib6 article-title: CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes publication-title: Int. J. Antimicrob. Agents doi: 10.1016/S0924-8579(99)00165-X – volume: 105 start-page: 1844 year: 2008 ident: 10.1074/jbc.M112.436238_bib30 article-title: Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711659105 – volume: 276 start-page: 307 year: 1997 ident: 10.1074/jbc.M112.436238_bib37 article-title: Processing of x-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 15 start-page: 157 year: 2009 ident: 10.1074/jbc.M112.436238_bib29 article-title: Neutron macromolecular crystallography publication-title: Crystallogr. Rev. doi: 10.1080/08893110902965003 – volume: 348 start-page: 349 year: 2005 ident: 10.1074/jbc.M112.436238_bib43 article-title: Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.02.010 – volume: 35 start-page: W375 year: 2007 ident: 10.1074/jbc.M112.436238_bib42 article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm216 – volume: 39 start-page: 2269 year: 1995 ident: 10.1074/jbc.M112.436238_bib9 article-title: Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.39.10.2269 – volume: 68 start-page: 800 year: 2012 ident: 10.1074/jbc.M112.436238_bib46 article-title: Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444912012589 – volume: 65 start-page: 379 year: 2009 ident: 10.1074/jbc.M112.436238_bib23 article-title: Improvement of crystal quality by surface mutations of β-lactamase Toho-1 publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S1744309109008240 – volume: 124 start-page: 5333 year: 2002 ident: 10.1074/jbc.M112.436238_bib19 article-title: An ultrahigh resolution structure of TEM-1 β-lactamase suggests a role for Glu166 as the general base in acylation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0259640 – volume: 50 start-page: 760 year: 1994 ident: 10.1074/jbc.M112.436238_bib38 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444994003112 – volume: 272 start-page: 613 year: 1990 ident: 10.1074/jbc.M112.436238_bib10 article-title: Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73 publication-title: Biochem. J. doi: 10.1042/bj2720613 – volume: 320 start-page: 85 year: 2002 ident: 10.1074/jbc.M112.436238_bib25 article-title: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00400-X – volume: 330 start-page: 581 year: 1998 ident: 10.1074/jbc.M112.436238_bib5 article-title: Catalytic properties of class A β-lactamases: efficiency and diversity publication-title: Biochem. J. doi: 10.1042/bj3300581 – volume: 1804 start-page: 684 year: 2010 ident: 10.1074/jbc.M112.436238_bib20 article-title: The catalytic efficiency (kcat/Km) of the class A β-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2009.10.023 – volume: 35 start-page: 7 year: 1995 ident: 10.1074/jbc.M112.436238_bib7 article-title: TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure, and function publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/35.1.7 – volume: 44 start-page: 9330 year: 2005 ident: 10.1074/jbc.M112.436238_bib50 article-title: Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase publication-title: Biochemistry doi: 10.1021/bi0502700 – volume: 58 start-page: 1948 year: 2002 ident: 10.1074/jbc.M112.436238_bib41 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902016657 – volume: 279 start-page: 34665 year: 2004 ident: 10.1074/jbc.M112.436238_bib11 article-title: The importance of a critical protonation state and the fate of the catalytic steps in class A β-lactamases and penicillin-binding proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313143200 – volume: 127 start-page: 15397 year: 2005 ident: 10.1074/jbc.M112.436238_bib14 article-title: Ab initio QM/MM study of class A β-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051592u – volume: 37 start-page: 2622 year: 1998 ident: 10.1074/jbc.M112.436238_bib18 article-title: Crystal structure of an acylation transition-state analog of the TEM-1 β-lactamase. Mechanistic implications for class A β-lactamases publication-title: Biochemistry doi: 10.1021/bi972501b – volume: 396 start-page: 1070 year: 2010 ident: 10.1074/jbc.M112.436238_bib26 article-title: Neutron diffraction studies of a class A β-lactamase Toho-1 E166A/R274N/R276N triple mutant publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.12.036 – volume: 277 start-page: 46601 year: 2002 ident: 10.1074/jbc.M112.436238_bib22 article-title: Acyl-intermediate structures of the extended-spectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207884200 – volume: 48 start-page: 1 year: 2004 ident: 10.1074/jbc.M112.436238_bib3 article-title: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.1.1-14.2004 – volume: 66 start-page: 558 year: 2010 ident: 10.1074/jbc.M112.436238_bib31 article-title: Unambiguous determination of H-atom positions: Comparing results from neutron and high-resolution x-ray crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910005494 – volume: 127 start-page: 5423 year: 2005 ident: 10.1074/jbc.M112.436238_bib44 article-title: Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042850a – volume: 64 start-page: 112 year: 2008 ident: 10.1074/jbc.M112.436238_bib45 article-title: A short history of SHELX publication-title: Acta Crystallogr. A doi: 10.1107/S0108767307043930 – volume: 585 start-page: 364 year: 2011 ident: 10.1074/jbc.M112.436238_bib27 article-title: The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.12.017 – volume: 33 start-page: 7619 year: 1994 ident: 10.1074/jbc.M112.436238_bib28 article-title: Site-directed mutagenesis of glutamate-166 in β-lactamase leads to a branched path mechanism publication-title: Biochemistry doi: 10.1021/bi00190a015 – volume: 84 start-page: 149 year: 1993 ident: 10.1074/jbc.M112.436238_bib33 article-title: Studies on the deuteration of aromatic organosulfur compounds using aqueous transition metal species publication-title: Phosphorus Sulfur Silicon Relat. Elem. doi: 10.1080/10426509308034326 – volume: 285 start-page: 2079 year: 1999 ident: 10.1074/jbc.M112.436238_bib17 article-title: Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Ä resolution publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2432 – volume: 544 start-page: 281 year: 2009 ident: 10.1074/jbc.M112.436238_bib36 article-title: Deuterium labeling for neutron structure-function-dynamics analysis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-483-4_18 – volume: 279 start-page: 213 year: 1991 ident: 10.1074/jbc.M112.436238_bib13 article-title: Mechanism of acyl transfer by the class A serine β-lactamase of Streptomyces albus G publication-title: Biochem. J. doi: 10.1042/bj2790213 – volume: 97 start-page: 3872 year: 2000 ident: 10.1074/jbc.M112.436238_bib32 article-title: Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.060024697 – volume: 334 start-page: 421 year: 1989 ident: 10.1074/jbc.M112.436238_bib34 article-title: Preparation of deuterated aromatic hydrocarbons, heteroatom-containing aromatics, and polychlorinated biphenyls as internal standards for GC/MS analysis publication-title: Fresenius Z. Anal. Chem. doi: 10.1007/BF00469464 – volume: 125 start-page: 9590 year: 2003 ident: 10.1074/jbc.M112.436238_bib12 article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-lactamases through QM/MM modeling publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034434g – volume: 400 start-page: 108 year: 2010 ident: 10.1074/jbc.M112.436238_bib16 article-title: Structural insights into substrate recognition and product expulsion in CTX-M enzymes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.04.062 – volume: 129 start-page: 5378 year: 2007 ident: 10.1074/jbc.M112.436238_bib15 article-title: The acylation mechanism of CTX-M β-lactamase at 0.88 Ä resolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0712064 – volume: 39 start-page: 2593 year: 1995 ident: 10.1074/jbc.M112.436238_bib4 article-title: Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.39.12.2593 – volume: 43 start-page: 8744 year: 2004 ident: 10.1074/jbc.M112.436238_bib35 article-title: Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101) publication-title: Biochemistry doi: 10.1021/bi049418q – volume: 276 start-page: 269 year: 1991 ident: 10.1074/jbc.M112.436238_bib2 article-title: A standard numbering scheme for the class A β-lactamases publication-title: Biochem. J. doi: 10.1042/bj2760269 – volume: 65 start-page: 567 year: 2009 ident: 10.1074/jbc.M112.436238_bib39 article-title: Generalized x-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909011548 – volume: 39 start-page: 4971 year: 2000 ident: 10.1074/jbc.M112.436238_bib47 article-title: Lysine-73 is involved in the acylation and deacylation of β-lactamase publication-title: Biochemistry doi: 10.1021/bi992681k – volume: 328 start-page: 289 year: 2003 ident: 10.1074/jbc.M112.436238_bib21 article-title: Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00210-9 – volume: 359 start-page: 700 year: 1992 ident: 10.1074/jbc.M112.436238_bib24 article-title: Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Ä resolution publication-title: Nature doi: 10.1038/359700a0 – volume: 42 start-page: 10634 year: 2003 ident: 10.1074/jbc.M112.436238_bib8 article-title: Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion publication-title: Biochemistry doi: 10.1021/bi0342822 – volume: 127 start-page: 4454 year: 2005 ident: 10.1074/jbc.M112.436238_bib49 article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044210d – volume: 16 start-page: 1 year: 1999 ident: 10.1074/jbc.M112.436238_bib1 article-title: The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity publication-title: Nat. Prod. Rep. doi: 10.1039/a705983c |
SSID | ssj0000491 |
Score | 2.2787528 |
Snippet | The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental... Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4715 |
SubjectTerms | Acylation beta-Lactamases - chemistry Catalysis Catalytic Domain Class A Beta-Lactamase Crystal Structure Crystallography Crystallography, X-Ray - methods Drug Resistance, Bacterial Enzyme Inhibitors - pharmacology Enzyme Mechanisms Escherichia coli - enzymology Escherichia coli Proteins - chemistry Hydrogen - chemistry Hydrogen Bonding Ligands Models, Chemical Molecular Conformation Neutron Diffraction Neutron Scattering Neutrons Nitrogen - chemistry Protein Structure and Folding Protons Thiophenes - chemistry Transition State Analog X-ray Crystallography |
Title | Neutron and X-ray Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network of the Toho-1 β-Lactamase for the Acylation Reaction |
URI | https://dx.doi.org/10.1074/jbc.M112.436238 https://www.ncbi.nlm.nih.gov/pubmed/23255594 https://www.proquest.com/docview/1288995417 https://pubmed.ncbi.nlm.nih.gov/PMC3576076 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKWcAGQctjeMlIFCGNMs3DjjPLMmpV9QWIVswuih9RC22CpjMS009iyYfwN-y5N06cTGkl6CYaxXmN7rF9bJ97TMhrYMWaczn0dKB8jxkWeIkKjaeV4QoIfB5LHCjuH8TbR2xnzMdLS787qqXZVA7UxZV5JTeJKpyDuGKW7H9E1j0UTsBviC8cIcJw_KcYH5gZzmRXCwBjb5JB9Z7MzzG98VNlCzubWEvZDIXu2swqB2VgmJvFxfwMRZPHJxJq9KRqFU7Nd1wpQKNhJKMjnNeZo53rh0mJ3hsHVjDeiAoOy-PSC_pro821d6G3l6lpdgY9opMtbqi5ldmhTl-58H9p0dnhwtYKypqVNDvQtfPfaNGhzNeOKK2_M3BTQ9VcSJ15ZHXi_S1X-tmc2F3hd4EAFP09V_D-vOqTisKpOrOFGRDcjSL0bA6onZZrUnMWlKNWexJaX_iBsa078E1MXRh3m_8wSTo4F53GHPpt3iEGaKt5ZacDLAw7HakG-8BeBww4QZS0_atTPeLCeICfFGJGsGDjW-R2CKMb3Hhj92Nrcg-DNrvRY_0PGkcqwdYvveQ6MvX3YOmy5rdDog7vk3t1xOmGhfIDsmSKFbK6UWTT8mxO39BKj1wt9KyQO6MGCavkR410CrGmFdJpjXTaIp2WOc3oAtKpRTp1SKc10qlFOgWkUod0apFOa6Tj87DcIp3--tminALKqzKHctqg_CE52to8HG179S4jnmIsmkIjlcWxjoWMwjxRucy1Hg4F15GvA80jHeY6g9NMmpxHQsVJHpvQCGGk8PNhFEWPyHJRFuYJoXkS-FrmQhoTMhNEcmi4ZEwHfiS1MX6PDJpwpaq24MedYE7TSgoiWArxTTG-qY1vj7x1N3yz7jPXXxo28U9r8mxJcQowvf6mVw1SUogorhVmhSln5ynQ1gStIgPRI48tctwXwCCMcz5kPSIWMOUuQMv6xZLi5Liyro-4iH0RP73Jxz4jd9va_5wsA7zMCxgRTOXLqv78AbWxFNg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutron+and+X-ray+Crystal+Structures+of+a+Perdeuterated+Enzyme+Inhibitor+Complex+Reveal+the+Catalytic+Proton+Network+of+the+Toho-1+%CE%B2-Lactamase+for+the+Acylation+Reaction&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Tomanicek%2C+Stephen+J.&rft.au=Standaert%2C+Robert+F.&rft.au=Weiss%2C+Kevin+L.&rft.au=Ostermann%2C+Andreas&rft.date=2013-02-15&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=288&rft.issue=7&rft.spage=4715&rft.epage=4722&rft_id=info:doi/10.1074%2Fjbc.M112.436238&rft.externalDocID=S002192582046274X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |