Magnetic circular dichroism for surface and thin film magnetism: Measurement techniques and surface chemical applications
The technical development of the characterization of magnetic thin films is an urgent subject especially for further improvement of high-density and high-speed recording media. This article focuses attention on the fundamental methodology and recent exploitations of various magnetic circular dichroi...
Saved in:
Published in | International reviews in physical chemistry Vol. 27; no. 3; pp. 449 - 505 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.07.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-235X 1366-591X |
DOI | 10.1080/01442350802127608 |
Cover
Abstract | The technical development of the characterization of magnetic thin films is an urgent subject especially for further improvement of high-density and high-speed recording media. This article focuses attention on the fundamental methodology and recent exploitations of various magnetic circular dichroism (MCD) techniques. First, basic theories and experimental methods of the magneto-optical Kerr effect (MOKE) and X-ray magnetic circular dichroism (XMCD) are described. MOKE is a conventional but usually the most useful method to characterize macroscopic magnetization of metal thin films using visible lasers. Moreover, recent development of MOKE allows one to perform optical microscopic and ultrafast time resolved investigations. XMCD has now become a mature technique by virtue of the developments of soft and hard X-ray synchrotron radiation sources. Since XMCD is based on core absorption spectroscopy, the technique provides information on element specific magnetization. Using the so-called sum rules, one can determine the microscopic spin and orbital magnetic moments. The experimental method and an example using a superconducting magnet system combined with a liquid helium sample cryostat are described. Moreover, by combining XMCD with photoelectron emission microscopy (PEEM), one can perform spatiotemporal measurements, whose spatial resolution reaches several tens of nanometres. Magnetization induced second harmonic generation (MSHG) is also described. This is a unique technique for its inherently high sensitivity to surfaces and interfaces since MSHG is inhibited in the bulk of centrosymmetric crystals. The drastic polarization dependence of MSHG based on the selection rules is also discussed. As a last method addressed in this article, the threshold photoemission MCD technique is reviewed. The technique has recently been proposed and has demonstrated the possibility of an ultrafast spatiotemporal method by combining PEEM. Applications of these various MCD families to surface physical chemistry are described. Here, drastic spin reorientation transitions (SRT) of some metal thin films induced by adsorption of atoms and molecules are discussed from the macroscopic and microscopic points of view. Consequently, future aspects in the MCD techniques and surface and thin film magnetism are addressed. |
---|---|
AbstractList | The technical development of the characterization of magnetic thin films is an urgent subject especially for further improvement of high-density and high-speed recording media. This article focuses attention on the fundamental methodology and recent exploitations of various magnetic circular dichroism (MCD) techniques. First, basic theories and experimental methods of the magneto-optical Kerr effect (MOKE) and X-ray magnetic circular dichroism (XMCD) are described. MOKE is a conventional but usually the most useful method to characterize macroscopic magnetization of metal thin films using visible lasers. Moreover, recent development of MOKE allows one to perform optical microscopic and ultrafast time resolved investigations. XMCD has now become a mature technique by virtue of the developments of soft and hard X-ray synchrotron radiation sources. Since XMCD is based on core absorption spectroscopy, the technique provides information on element specific magnetization. Using the so-called sum rules, one can determine the microscopic spin and orbital magnetic moments. The experimental method and an example using a superconducting magnet system combined with a liquid helium sample cryostat are described. Moreover, by combining XMCD with photoelectron emission microscopy (PEEM), one can perform spatiotemporal measurements, whose spatial resolution reaches several tens of nanometres. Magnetization induced second harmonic generation (MSHG) is also described. This is a unique technique for its inherently high sensitivity to surfaces and interfaces since MSHG is inhibited in the bulk of centrosymmetric crystals. The drastic polarization dependence of MSHG based on the selection rules is also discussed. As a last method addressed in this article, the threshold photoemission MCD technique is reviewed. The technique has recently been proposed and has demonstrated the possibility of an ultrafast spatiotemporal method by combining PEEM. Applications of these various MCD families to surface physical chemistry are described. Here, drastic spin reorientation transitions (SRT) of some metal thin films induced by adsorption of atoms and molecules are discussed from the macroscopic and microscopic points of view. Consequently, future aspects in the MCD techniques and surface and thin film magnetism are addressed. |
Author | Yokoyama, Toshihiko Nakagawa, Takeshi Takagi, Yasumasa |
Author_xml | – sequence: 1 givenname: Toshihiko surname: Yokoyama fullname: Yokoyama, Toshihiko email: yokoyama@ims.ac.jp organization: Department of Materials Molecular Science, Institute for Molecular Science and Department of Structural Molecular Science , The Graduate University for Advanced Studies (Sokendai) – sequence: 2 givenname: Takeshi surname: Nakagawa fullname: Nakagawa, Takeshi organization: Department of Materials Molecular Science, Institute for Molecular Science and Department of Structural Molecular Science , The Graduate University for Advanced Studies (Sokendai) – sequence: 3 givenname: Yasumasa surname: Takagi fullname: Takagi, Yasumasa organization: Department of Materials Molecular Science, Institute for Molecular Science and Department of Structural Molecular Science , The Graduate University for Advanced Studies (Sokendai) |
BookMark | eNqFkEtLXEEQRpugkPHxA7Lrlbub9OM-xU0QNQElmwjuLjV1qzMd-jF29xDn3-eOYzaRmFUV1DlVxXfEDkIMxNgHKT5K0YtPQta10s3cKqm6VvTv2ELqtq2aQT4csMVuXs3Aw3t2lPNPIaRWcliw7R38CFQscrQJNw4SnyyuUrTZcxMTz5tkAIlDmHhZ2cCNdZ77vZX9Ob8jmBnyFAovhKtgHzeUn_k_Lq7IWwTHYb12c1NsDPmEHRpwmU5f6jG7v776fvmluv128_Xy822Fda1LNQlojJz6BgX2oCejzHIYJtnTsiM1TGqJsu5rQKMUdrol2YKQnR46JNUppY_Z2X7vOsXdZ2X0NiM5B4HiJo-6Vk3ftt0MdnsQU8w5kRnRludfSwLrRinGXdTjq6hnU_5lrpP1kLZvOi_XbJhj9vArJjeNBbYuJpMgoM2vrbE8ldm8-K-p_334N1pbqgo |
CitedBy_id | crossref_primary_10_1021_jp406906k crossref_primary_10_1103_PhysRevB_79_172404 crossref_primary_10_1103_PhysRevB_85_174415 crossref_primary_10_1103_PhysRevB_99_184420 crossref_primary_10_1103_PhysRevB_81_214442 crossref_primary_10_1039_C9ME00017H crossref_primary_10_1016_j_elspec_2010_04_009 crossref_primary_10_1103_PhysRevB_80_224426 crossref_primary_10_1103_PhysRevB_94_115412 crossref_primary_10_1063_1_4896290 crossref_primary_10_1063_5_0158119 crossref_primary_10_1088_1742_6596_430_1_012129 crossref_primary_10_7566_JPSJ_84_104703 crossref_primary_10_1021_jp503851k crossref_primary_10_1016_j_apsusc_2021_149215 crossref_primary_10_1021_jp112064y crossref_primary_10_1126_sciadv_adj4883 crossref_primary_10_1016_j_jmmm_2020_166701 crossref_primary_10_1016_j_elspec_2012_02_009 crossref_primary_10_1021_acs_nanolett_6b05010 crossref_primary_10_1021_jp512935v crossref_primary_10_1103_PhysRevLett_113_067203 crossref_primary_10_7567_JJAP_57_0902BD |
Cites_doi | 10.1103/PhysRevB.64.033411 10.1103/PhysRevLett.71.1931 10.1103/PhysRevB.61.2211 10.1103/PhysRevB.64.104429 10.1103/PhysRevLett.61.2472 10.1088/0953-8984/10/14/012 10.1038/nmat1932 10.1088/0034-4885/59/12/003 10.1103/PhysRevB.45.3636 10.1063/1.2437165 10.1103/PhysRevB.47.8748 10.1103/PhysRevB.53.11621 10.1103/PhysRevLett.98.066103 10.1103/PhysRevB.49.15084 10.1103/PhysRevLett.63.283 10.1016/S0039-6028(02)01209-8 10.1016/S0304-8853(00)00903-3 10.1038/nature02325 10.1021/jp051631o 10.1038/374788a0 10.1088/0034-4885/67/12/R01 10.1103/PhysRevB.74.134422 10.1103/PhysRevB.63.205111 10.1103/PhysRev.97.334 10.1016/0039-6028(87)90033-1 10.1016/S0304-8853(99)00407-2 10.1103/PhysRevB.56.6458 10.1088/0034-4885/64/2/201 10.1103/PhysRevB.39.865 10.1063/1.110498 10.1103/PhysRevB.42.7262 10.1143/JJAP.20.2403 10.1103/PhysRevB.50.16074 10.1103/PhysRevLett.92.147202 10.1103/PhysRevLett.96.237402 10.1103/PhysRevLett.84.5888 10.1103/PhysRevB.53.8001 10.1103/PhysRevLett.75.1602 10.1098/rstl.1846.0001 10.1002/9780470022184.hmm311 10.1103/PhysRevB.53.9204 10.1103/PhysRevLett.93.077203 10.1103/PhysRevB.49.10031 10.1103/PhysRevB.60.6277 10.1016/S0168-9002(02)00301-7 10.1103/PhysRevB.73.174423 10.1103/PhysRev.186.891 10.3379/jmsjmag.23.712 10.1088/0034-4885/65/12/202 10.1016/S0304-8853(03)00545-6 10.1038/416301a 10.1103/PhysRevLett.98.026802 10.1103/PhysRevLett.74.3692 10.1051/jphysrad:01954001504022500 10.1103/PhysRevLett.86.1347 10.1088/0034-4885/61/7/001 10.1016/0304-8853(93)91160-9 10.1103/PhysRevB.65.054423 10.1063/1.1143043 10.1016/S0038-1098(02)00090-X 10.1103/PhysRevLett.70.694 10.1002/9780470022184 10.1063/1.1564876 10.1063/1.354061 10.1103/PhysRevLett.81.208 10.1103/PhysRevLett.96.097204 10.1016/S0368-2048(98)00185-6 10.1143/JPSJ.12.570 10.1126/science.259.5095.658 10.1016/j.susc.2006.07.030 10.1103/PhysRevB.39.1229 10.1364/AO.31.004563 10.1063/1.372841 10.1103/PhysRevB.66.024402 10.1063/1.108198 10.1103/RevModPhys.72.621 10.1103/PhysRevB.58.11138 10.1016/S0304-8853(99)00622-8 10.1103/PhysRevLett.87.067201 10.1080/14786447708639245 10.1103/PhysRevB.63.214420 10.1103/PhysRevLett.93.247203 10.1103/PhysRevB.50.13467 10.1046/j.1365-2818.1999.00506.x 10.1103/PhysRevB.45.2868 10.1103/PhysRevB.52.R14400 10.1103/PhysRevLett.75.3748 10.1103/PhysRev.137.A448 10.1103/PhysRevB.67.214403 10.1103/PhysRevLett.68.839 10.1103/PhysRevB.9.4897 10.1103/PhysRevB.45.10924 10.1063/1.1804371 10.1063/1.1150496 10.1016/S0301-0104(02)00724-3 10.1103/PhysRevLett.68.1943 10.1021/j100468a001 10.1103/PhysRevB.39.4828 10.1063/1.360884 10.1103/PhysRevB.44.12066 10.1016/0304-8853(93)90679-V 10.1093/oso/9780198517764.001.0001 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2008 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1080/01442350802127608 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1366-591X |
EndPage | 505 |
ExternalDocumentID | 10_1080_01442350802127608 312926 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 30N 4.4 53G 5GY 5VS AAENE AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ABZMO ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADOGB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NW0 O9- P2P PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UQL UT5 UU3 ZGOLN ~S~ 07J 1TA AAAJW AAGDL AAHIA AAPPP AAYXX ABEFU ABKVM ACMLV ACYAP ADBHG ADYSH AEUXM AFOFI AFRVT AFWJF AGGGY AI. AIYEW AMPGV AOWVY AWFQP BDVFT BKMSO C5E CITATION CTOBV CXCUG C~V HJQDS LJTGL LZ8 NUSFT OCADI OEUFU TAV TCCYZ TFMCV UA2 VH1 7U5 8FD ADOOT L7M TASJS |
ID | FETCH-LOGICAL-c443t-d0a5f1d85c0c8a3df2fb99d18eb7e29d2bc1484acf22c736e16a017397ce27223 |
ISSN | 0144-235X |
IngestDate | Fri Sep 05 00:10:11 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Tue Jul 01 01:55:39 EDT 2025 Wed Dec 25 08:58:42 EST 2024 Mon May 13 12:08:32 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-d0a5f1d85c0c8a3df2fb99d18eb7e29d2bc1484acf22c736e16a017397ce27223 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34258667 |
PQPubID | 23500 |
PageCount | 57 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01442350802127608 proquest_miscellaneous_34258667 crossref_citationtrail_10_1080_01442350802127608 crossref_primary_10_1080_01442350802127608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 7/1/2008 2008-07-00 20080701 |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: 7/1/2008 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | International reviews in physical chemistry |
PublicationYear | 2008 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | CIT0071 CIT0075 CIT0077 Zak J (CIT0013) 1991; 43 Nakagawa T (CIT0032) Kerr J (CIT0008) 1876; 40 CIT0070 CIT0079 Ohresser P (CIT0078) 2001; 64 CIT0082 Hjortstam O (CIT0036) 1996; 53 CIT0084 CIT0087 CIT0086 CIT0001 Moore ID (CIT0062) 1978; 11 CIT0088 Matsumura D (CIT0074) 2006; 73 CIT0081 Oppeneer PM (CIT0060) 1992; 45 CIT0080 Schulz B (CIT0057) 1994; 50 Shen Y (CIT0018) 1964; 133 CIT0005 Sato K (CIT0014) 2001 CIT0004 CIT0006 Weber W (CIT0085) 1995; 52 Bruno P (CIT0029) 1989; 39 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0012 Binasch G (CIT0002) 1989; 39 CIT0011 CIT0099 Schneider CM (CIT0053) 1991; 44 Matsumura D (CIT0072) 2002; 66 CIT0090 Kuch W (CIT0042) 2003; 67 CIT0092 CIT0091 Parker TM (CIT0106) 1997; 56 Stöhr J (CIT0039) 1993; 259 CIT0016 CIT0015 Chen CT (CIT0022) 1990; 42 Blaha P (CIT0058) 2002 CIT0017 CIT0019 York SM (CIT0109) 2001; 64 Ramsperger U (CIT0035) 1996; 53 Wang CS (CIT0020) 1974; 9 CIT0021 CIT0023 Nakagawa T (CIT0052) 2006; 74 Kerr J (CIT0009) 1877; 3 CIT0025 CIT0024 CIT0027 CIT0026 CIT0028 Vollmer R (CIT0007) 1999; 60 CIT0030 CIT0031 CIT0034 Hosaka M (CIT0056) 2002; 483 CIT0033 Komori F (CIT0107) 2001; 63 Pentcheva R (CIT0037) 2000; 61 CIT0041 CIT0040 CIT0045 CIT0044 Chikazumi S (CIT0089) 1997 Kowalewski M (CIT0043) 1993; 47 CIT0049 CIT0048 Chen J (CIT0076) 1992; 45 CIT0050 CIT0051 CIT0055 Eriksson O (CIT0038) 1992; 45 Kuneš J (CIT0059) 2001; 63 Pustogowa U (CIT0047) 1994; 49 Kuch W (CIT0054) 1996; 53 Chuang DS (CIT0083) 1994; 49 Imura K (CIT0101) 2005; 109 Pan R-P (CIT0046) 1989; 39 CIT0061 CIT0063 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 Kronmüller H (CIT0003) 2007; 3 Robach O (CIT0073) 2002; 65 CIT0069 CIT0102 CIT0068 CIT0104 CIT0103 CIT0105 CIT0108 |
References_xml | – volume: 64 start-page: 033411 year: 2001 ident: CIT0109 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.64.033411 – ident: CIT0048 doi: 10.1103/PhysRevLett.71.1931 – volume: 61 start-page: 2211 year: 2000 ident: CIT0037 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.61.2211 – volume: 64 start-page: 104429 year: 2001 ident: CIT0078 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.64.104429 – ident: CIT0001 doi: 10.1103/PhysRevLett.61.2472 – ident: CIT0030 doi: 10.1088/0953-8984/10/14/012 – ident: CIT0105 doi: 10.1038/nmat1932 – ident: CIT0061 doi: 10.1088/0034-4885/59/12/003 – volume: 45 start-page: 3636 year: 1992 ident: CIT0076 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.45.3636 – ident: CIT0005 doi: 10.1063/1.2437165 – volume: 47 start-page: 8748 year: 1993 ident: CIT0043 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.47.8748 – volume: 53 start-page: 11621 year: 1996 ident: CIT0054 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.53.11621 – ident: CIT0108 doi: 10.1103/PhysRevLett.98.066103 – volume: 49 start-page: 15084 year: 1994 ident: CIT0083 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.49.15084 – ident: CIT0081 doi: 10.1103/PhysRevLett.63.283 – ident: CIT0079 doi: 10.1016/S0039-6028(02)01209-8 – ident: CIT0065 doi: 10.1016/S0304-8853(00)00903-3 – ident: CIT0104 doi: 10.1038/nature02325 – volume: 109 start-page: 13214 year: 2005 ident: CIT0101 publication-title: J. Phys. Chem. doi: 10.1021/jp051631o – ident: CIT0032 publication-title: Jpn. J. Appl. Phys – ident: CIT0084 doi: 10.1038/374788a0 – ident: CIT0024 doi: 10.1088/0034-4885/67/12/R01 – volume: 74 start-page: 134422 year: 2006 ident: CIT0052 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.74.134422 – volume: 63 start-page: 205111 year: 2001 ident: CIT0059 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.63.205111 – ident: CIT0016 doi: 10.1103/PhysRev.97.334 – ident: CIT0080 doi: 10.1016/0039-6028(87)90033-1 – ident: CIT0023 doi: 10.1016/S0304-8853(99)00407-2 – volume: 56 start-page: 6458 year: 1997 ident: CIT0106 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.56.6458 – ident: CIT0055 doi: 10.1088/0034-4885/64/2/201 – volume: 39 start-page: R865 year: 1989 ident: CIT0029 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.39.865 – ident: CIT0040 doi: 10.1063/1.110498 – volume: 42 start-page: 7262 year: 1990 ident: CIT0022 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.42.7262 – ident: CIT0012 doi: 10.1143/JJAP.20.2403 – ident: CIT0091 doi: 10.1103/PhysRevB.50.16074 – ident: CIT0067 doi: 10.1103/PhysRevLett.92.147202 – ident: CIT0004 doi: 10.1103/PhysRevLett.96.237402 – ident: CIT0006 doi: 10.1103/PhysRevLett.84.5888 – volume: 53 start-page: 8001 year: 1996 ident: CIT0035 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.53.8001 – volume: 11 start-page: 4615 year: 1978 ident: CIT0062 publication-title: J. Phys. – ident: CIT0034 doi: 10.1103/PhysRevLett.75.1602 – ident: CIT0010 doi: 10.1098/rstl.1846.0001 – ident: CIT0045 doi: 10.1002/9780470022184.hmm311 – volume: 40 year: 1876 ident: CIT0008 publication-title: Rep. Brit. Assoc. Adv. Sci. – volume: 53 start-page: 9204 year: 1996 ident: CIT0036 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.53.9204 – ident: CIT0094 doi: 10.1103/PhysRevLett.93.077203 – volume: 49 start-page: 10031 year: 1994 ident: CIT0047 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.49.10031 – volume: 60 start-page: 6277 year: 1999 ident: CIT0007 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.60.6277 – volume: 483 start-page: 146 year: 2002 ident: CIT0056 publication-title: Nucl. Instrum. Methods doi: 10.1016/S0168-9002(02)00301-7 – volume: 73 start-page: 174423 year: 2006 ident: CIT0074 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.73.174423 – ident: CIT0019 doi: 10.1103/PhysRev.186.891 – ident: CIT0098 doi: 10.3379/jmsjmag.23.712 – volume-title: Magneto-optics year: 2001 ident: CIT0014 – ident: CIT0064 doi: 10.1088/0034-4885/65/12/202 – ident: CIT0087 doi: 10.1016/S0304-8853(03)00545-6 – ident: CIT0093 doi: 10.1038/416301a – ident: CIT0102 doi: 10.1103/PhysRevLett.98.026802 – ident: CIT0049 doi: 10.1103/PhysRevLett.74.3692 – ident: CIT0088 doi: 10.1051/jphysrad:01954001504022500 – ident: CIT0071 doi: 10.1103/PhysRevLett.86.1347 – ident: CIT0066 doi: 10.1088/0034-4885/61/7/001 – ident: CIT0050 doi: 10.1016/0304-8853(93)91160-9 – volume: 65 start-page: 054423 year: 2002 ident: CIT0073 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.65.054423 – ident: CIT0031 doi: 10.1063/1.1143043 – ident: CIT0103 doi: 10.1016/S0038-1098(02)00090-X – ident: CIT0027 doi: 10.1103/PhysRevLett.70.694 – volume: 3 volume-title: Handbook of Magnetism and Advanced Magnetic Materials, Novel Techniques for Characterizing and Preparing Samples year: 2007 ident: CIT0003 doi: 10.1002/9780470022184 – ident: CIT0041 doi: 10.1063/1.1564876 – ident: CIT0075 doi: 10.1063/1.354061 – ident: CIT0095 doi: 10.1103/PhysRevLett.81.208 – ident: CIT0044 doi: 10.1103/PhysRevLett.96.097204 – ident: CIT0063 doi: 10.1016/S0368-2048(98)00185-6 – ident: CIT0017 doi: 10.1143/JPSJ.12.570 – volume: 133 start-page: A551 year: 1964 ident: CIT0018 publication-title: Phys. Rev. – volume: 259 start-page: 658 year: 1993 ident: CIT0039 publication-title: Science doi: 10.1126/science.259.5095.658 – ident: CIT0077 doi: 10.1016/j.susc.2006.07.030 – volume: 39 start-page: 1229 year: 1989 ident: CIT0046 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.39.1229 – ident: CIT0097 doi: 10.1364/AO.31.004563 – ident: CIT0051 doi: 10.1063/1.372841 – volume: 66 start-page: 024402 year: 2002 ident: CIT0072 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.66.024402 – ident: CIT0096 doi: 10.1063/1.108198 – ident: CIT0025 doi: 10.1103/RevModPhys.72.621 – ident: CIT0090 doi: 10.1103/PhysRevB.58.11138 – ident: CIT0068 doi: 10.1016/S0304-8853(99)00622-8 – ident: CIT0086 doi: 10.1103/PhysRevLett.87.067201 – volume: 3 start-page: 321 year: 1877 ident: CIT0009 publication-title: Phil. Mag. doi: 10.1080/14786447708639245 – volume: 63 start-page: 214420 year: 2001 ident: CIT0107 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.63.214420 – ident: CIT0069 doi: 10.1103/PhysRevLett.93.247203 – volume: 50 start-page: 13467 year: 1994 ident: CIT0057 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.50.13467 – ident: CIT0099 doi: 10.1046/j.1365-2818.1999.00506.x – volume: 45 start-page: 2868 year: 1992 ident: CIT0038 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.45.2868 – volume-title: Computer code WIEN2k year: 2002 ident: CIT0058 – volume: 52 start-page: R14400 year: 1995 ident: CIT0085 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.52.R14400 – ident: CIT0028 doi: 10.1103/PhysRevLett.75.3748 – ident: CIT0015 doi: 10.1103/PhysRev.137.A448 – volume: 67 start-page: 214403 year: 2003 ident: CIT0042 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.67.214403 – ident: CIT0082 doi: 10.1103/PhysRevLett.68.839 – volume: 9 start-page: 4897 year: 1974 ident: CIT0020 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.9.4897 – volume: 45 start-page: 10924 year: 1992 ident: CIT0060 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.45.10924 – ident: CIT0100 doi: 10.1063/1.1804371 – ident: CIT0021 doi: 10.1063/1.1150496 – ident: CIT0033 doi: 10.1016/S0301-0104(02)00724-3 – ident: CIT0026 doi: 10.1103/PhysRevLett.68.1943 – ident: CIT0011 doi: 10.1021/j100468a001 – volume: 39 start-page: 4828 year: 1989 ident: CIT0002 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.39.4828 – volume: 43 start-page: 6423 year: 1991 ident: CIT0013 publication-title: E. R. Moog, C. Liu, et al., Phys. Rev. – ident: CIT0092 doi: 10.1063/1.360884 – volume: 44 start-page: R12066 year: 1991 ident: CIT0053 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.44.12066 – ident: CIT0070 doi: 10.1016/0304-8853(93)90679-V – volume-title: Physics of Ferromagnetism year: 1997 ident: CIT0089 doi: 10.1093/oso/9780198517764.001.0001 |
SSID | ssj0013219 |
Score | 1.9497138 |
SecondaryResourceType | review_article |
Snippet | The technical development of the characterization of magnetic thin films is an urgent subject especially for further improvement of high-density and high-speed... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 449 |
SubjectTerms | magnetic anisotropy magnetic circular dichroism (MCD) magnetization induced second harmonic generation magneto-optical Kerr effect (MOKE) photoemission magnetic circular dichroism spin reorientation transition (SRT) X-ray magnetic circular dichroism (XMCD) |
Title | Magnetic circular dichroism for surface and thin film magnetism: Measurement techniques and surface chemical applications |
URI | https://www.tandfonline.com/doi/abs/10.1080/01442350802127608 https://www.proquest.com/docview/34258667 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiOUhytMHTlRBTWLHCbfVwqpCKqeuKFwix3G2UbcJalPB8pP4lYzj2HG3qIK9RFVsx1Hni2c8nvkGoTdScpKBJofvm8EGJc4TL5Ek90JKRBEQtSdRicLTz9Hkgnya0_lg8NuJWto22Tvx6695JbeRKtwDuaos2f-QrH0o3IDfIF-4goTh-k8ynvLLSiUhjkS51vGkeSkW61oVvlDhg5vtuuBdRkCzKCvFwrQarfQoHXEx7X2EI8vnqnmbzWhhOQWcw27XqN31Knb8pm14ugGBMGXl-kVmWV_zVWu5zurNolyUy9o6pvmSX_IfupEvJTT3DgZoagMQvsJ7r_iG77gtYhviqoE226sg4jjbjKuTeEFI51pT6eU5jCKPJv7cXb81t0CH09BZjIkmQ-30Om3Tu_dVRhdjCbPBZCrz2A9YNI57_WijFkOwjYLoDjoOGFMhAcenkw_fvjhnVm0ZGfve5gxdMbnffPqOFbTDkbtnE7SGzuwBut_tUPCphtsJGsjqIbp7ZiT4CF0b2GEDO2xhh2EK3AEHA4iwgh1WsMMWdu-xAzrcg67tb8Ya0GEXdI_RxfnH2dnE6yp4eIKQsPHyMaeFn8dUjEXMw7wIiixJcj-WGZNBkgeZgO044bAsBIKFkfQjDioCbGQhAwaW6xN0VNWVfIowDTnLeSKzjFOSSJYxAdY0B_0Y0yLz4yEam380FR29vaqycpX6hgX3phCG6K0d8l1zuxzqPHbFlDYtgAuN3f3uafOzGSJ6YEh4YKrXBgIpiFad4PFK1lsYAxo2jiL27JZPfo7u9d_iC3TUrLfyJRjVTfaqQ_MfjLXPaQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QHMaFN2I8c-CE1NFXmpYbQqAB205D2q3KEyq2Dq2dBPx6nD5gA7TD7nbSNI5jx_ZnhM6VYj6HmxzONwUHJZSRFSlfWh7xhXZ945OYQuFuL2g_-Q8DMqge3LIqrdL40LoEiih0tTnc5jG6Tom7NF6A6xFTJuq4NDC1vmsE7HYj4Z7dm4kiFI09DLkF9IM6qvnfEHP30hxq6R8tXVw9d5sorj-6zDh5bU1z3hKfv_Acl1_VFtqorFJ8XYrRNlpR6Q5q3NTN4HbRR5c9p6beEYtkUqSuYpmIl8k4yUYYFoGz6UQzoTBMj_OXJMU6GY7wqOTKRle4-_MYib-BY7OCvuYVFXgBno2q76Gnu9v-TduqujZYwve93JI2I9qRIRG2CJkntat5FEknVJwqN5IuF-CC-QxEwRXUC5QTMFALYBcJ5VKwVvbRajpO1QHCxGNUskhxzsCNVZRTARYUA50YEs2dsInses9iUUGam84aw9ipkU9__9MmuvhmeSvxPBYR27OCEOfFI4ouO578JY_z97yJyAIWb8FUZ7WQxbC1JmrDUjWeAg9o1TAI6OGSI5-hRrvf7cSd-97jEVov811MuvExWs0nU3UCRlXOT4uT8wXIoBa6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQkYALO6KsPnBCCmR3wg0VqrK04gBSb5FXiKBp1aQS8PWMs5S2oB56n7HlZDyesd-8QehMSuoyOMlhfxNIUAIRGqF0heF4Lle2q3MSXSjc7vitF_e-63VLbE5awip1Dq0KoojcV-vNPRCqQsRd6iTAdjxdJWrZxNelvss-hCYa0eeYnYlHhLyvhxY3QL5bPWr-N8TUsTRFWvrHSecnT3OjaK-a5oSFGnDyfjHK2AX_nqFzXHhRm2i9jEnxdWFEW2hJJttotVG1gttBX236muhqR8zjYQ5cxSLmb8N-nPYwrAGno6GiXGKYHWdvcYJV_NHDvUIr7V3h9u9VJB7Txqa5fKXLS-oCPPmmvotemrfPjZZR9mwwuOs6mSFM6ilLBB43eUAdoWzFwlBYgWRE2qGwGYcEzKVgCDYnji8tn4JTgKiIS5tArLKHakk_kfsIew4lgoaSMQpJrCSMcIifKHjEwFPMCurIrH5ZxEtCc91X4yOyKt7T2W9aR-djlUHB5jFP2Jy0gyjLr1BU0e_kr3iUfWZ15M1RceZMdVrZWAS_Vr_Z0ET2R6ADPjXwfXKw4MinaOXpphk93nUeDtFaAXbRWOMjVMuGI3kMEVXGTvJ98wNGXBVe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+circular+dichroism+for+surface+and+thin+film+magnetism%3A+Measurement+techniques+and+surface+chemical+applications&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Yokoyama%2C+Toshihiko&rft.au=Nakagawa%2C+Takeshi&rft.au=Takagi%2C+Yasumasa&rft.date=2008-07-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=27&rft.issue=3&rft.spage=449&rft.epage=505&rft_id=info:doi/10.1080%2F01442350802127608&rft.externalDocID=312926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon |