Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron

Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend...

Full description

Saved in:
Bibliographic Details
Published inComputational and mathematical methods in medicine Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Lorencin, Ivan, Anđelić, Nikola, Baressi Šegota, Sandi, Car, Zlatan, Mrzljak, Vedran
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Subjects
Online AccessGet full text
ISSN1748-670X
1748-6718
1748-6718
DOI10.1155/2020/5714714

Cover

Loading…
Abstract Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
AbstractList Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination ( R 2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R 2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination ( R 2 ). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R 2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group-deceased, recovered, and infected), and each model is evaluated using the coefficient of determination ( 2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with 2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group-deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group-deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
Author Lorencin, Ivan
Anđelić, Nikola
Mrzljak, Vedran
Car, Zlatan
Baressi Šegota, Sandi
AuthorAffiliation Faculty of Engineering Rijeka, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
AuthorAffiliation_xml – name: Faculty of Engineering Rijeka, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
Author_xml – sequence: 1
  fullname: Lorencin, Ivan
– sequence: 2
  fullname: Anđelić, Nikola
– sequence: 3
  fullname: Baressi Šegota, Sandi
– sequence: 4
  fullname: Car, Zlatan
– sequence: 5
  fullname: Mrzljak, Vedran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32565882$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1LHDEUxYNY_KpvfS7zWLBTc5Pc-XgpyNbqgmKhKr6FbOaOmzKbrMlsxf--s911tYVSCCRwf_ecm3v22bYPnhh7B_wTAOKx4IIfYwlqOFtsD0pV5UUJ1fbmze922X5KPzhHKBF22K4UWGBViT12dhka6py_z_opZd_nkUyThTYbXd2Ov-RQZ2Pfku1d8NlNWmImu1x0vevME8XsG0VL8z4G_5a9aU2X6HB9H7Cbr6fXo_P84upsPDq5yK1Sss_tBItmghJkwyUXleS2NiUqklXNrUAUYAlU1SJhAWSL4YtEFmxbq5IQ5QH7vNKdLyYzaiz5PppOz6Obmfikg3H6z4p3U30ffupSFLwQahD4sBaI4WFBqdczlyx1nfEUFkkLBVhJVf9G37_22pg8b28APq4AG0NKkdoNAlwvw9HLcPQ6nAEXf-HW9Wa522FS1_2r6WjVNHW-MY_ufxbrkWlgqDUvNMha1Vz-Aq5hpls
CitedBy_id crossref_primary_10_1002_tee_23656
crossref_primary_10_1016_j_chaos_2021_111399
crossref_primary_10_1016_j_conbuildmat_2021_126114
crossref_primary_10_3389_frai_2023_1266560
crossref_primary_10_1186_s12938_023_01140_9
crossref_primary_10_1016_j_psep_2021_07_034
crossref_primary_10_1016_j_heliyon_2021_e08143
crossref_primary_10_3233_THC_220563
crossref_primary_10_1177_1460458220976728
crossref_primary_10_3390_en16227562
crossref_primary_10_3390_jpm11010028
crossref_primary_10_1515_em_2020_0013
crossref_primary_10_3390_agriculture12121971
crossref_primary_10_32604_cmc_2021_014387
crossref_primary_10_3390_covid2100098
crossref_primary_10_1093_comjnl_bxac068
crossref_primary_10_3390_s23063213
crossref_primary_10_5808_gi_22025
crossref_primary_10_1016_j_concog_2022_103280
crossref_primary_10_1007_s41060_024_00525_w
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_3390_jmse9060612
crossref_primary_10_3390_vaccines10040496
crossref_primary_10_1016_j_eswa_2024_123560
crossref_primary_10_1016_j_eswa_2023_121490
crossref_primary_10_1007_s11227_023_05560_1
crossref_primary_10_1002_slct_202101898
crossref_primary_10_1016_j_renene_2024_122322
crossref_primary_10_1155_2021_5558918
crossref_primary_10_1093_comjnl_bxac154
crossref_primary_10_37394_232028_2023_3_7
crossref_primary_10_1007_s11517_024_03029_8
crossref_primary_10_1016_j_surfcoat_2021_127571
crossref_primary_10_35234_fumbd_1125609
crossref_primary_10_1155_2021_6927985
crossref_primary_10_3390_computers12010001
crossref_primary_10_3390_biomedicines11020284
crossref_primary_10_3390_fractalfract5040175
crossref_primary_10_1007_s10796_021_10131_x
crossref_primary_10_1016_j_heliyon_2024_e28720
crossref_primary_10_1007_s11804_021_00191_5
crossref_primary_10_1080_2374068X_2021_1946751
crossref_primary_10_18048_2020_59_08
crossref_primary_10_3390_jmse8110884
crossref_primary_10_1155_2020_7056285
crossref_primary_10_1134_S0361768824700671
crossref_primary_10_1109_JBHI_2021_3093897
crossref_primary_10_1080_25765299_2022_2148439
crossref_primary_10_1115_1_4052771
crossref_primary_10_18048_2020_59_01
crossref_primary_10_1051_e3sconf_202130901218
crossref_primary_10_1007_s10639_022_11120_6
crossref_primary_10_1016_j_scs_2022_103840
crossref_primary_10_18048_2021_60_02
crossref_primary_10_29130_dubited_930096
crossref_primary_10_1155_2020_9391251
crossref_primary_10_1038_s41598_024_51610_w
crossref_primary_10_3390_app13031816
crossref_primary_10_3390_s21165486
crossref_primary_10_1186_s12913_024_11081_1
crossref_primary_10_1007_s40840_023_01539_6
crossref_primary_10_47836_mjmhs_18_s6_14
crossref_primary_10_1155_2020_9017157
crossref_primary_10_3390_ijerph18084287
crossref_primary_10_1016_j_artmed_2024_102824
crossref_primary_10_52675_jhesp_1335249
crossref_primary_10_52866_ijcsm_2019_01_01_001
crossref_primary_10_7717_peerj_cs_712
crossref_primary_10_1007_s40031_021_00623_4
crossref_primary_10_3389_fimmu_2022_977443
crossref_primary_10_1155_2020_1846926
crossref_primary_10_1371_journal_pdig_0000541
crossref_primary_10_3390_app10228252
crossref_primary_10_3389_fdata_2022_770585
crossref_primary_10_3390_math10162925
crossref_primary_10_3390_w15183171
crossref_primary_10_1177_1729881420925283
crossref_primary_10_3390_ijerph21040497
crossref_primary_10_1186_s42269_023_01079_w
crossref_primary_10_1080_23744235_2024_2425712
crossref_primary_10_3390_ai3020028
crossref_primary_10_1016_j_artmed_2022_102286
crossref_primary_10_3390_math11102392
crossref_primary_10_3390_app11199023
crossref_primary_10_2196_63476
crossref_primary_10_1007_s11071_021_06323_4
crossref_primary_10_1109_JSEN_2021_3064707
crossref_primary_10_1007_s11042_023_16609_x
crossref_primary_10_3390_brainsci13060893
crossref_primary_10_1155_2021_8785636
crossref_primary_10_3390_app13148493
crossref_primary_10_1002_widm_1462
crossref_primary_10_1016_j_rinp_2021_103817
crossref_primary_10_3934_mbe_2022285
crossref_primary_10_1016_j_ijheh_2021_113833
crossref_primary_10_3390_ijerph18030959
crossref_primary_10_3390_e23050512
crossref_primary_10_2196_23811
crossref_primary_10_1080_21681163_2023_2219767
Cites_doi 10.1111/j.1467-985X.2012.01056.x
10.1016/j.ijid.2020.01.009
10.1007/978-0-387-84858-7
10.1038/s41564-020-0688-y
10.1093/biomet/78.3.691
10.1093/jtm/taaa021
10.2139/ssrn.3537085
10.1038/s41586-020-2012-7
10.3390/en12224352
10.1111/tmi.13383
10.1007/s11222-009-9153-8
10.1016/j.idh.2018.10.002
10.9781/ijimai.2020.02.002
10.1016/j.artmed.2019.101746
ContentType Journal Article
Copyright Copyright © 2020 Zlatan Car et al.
Copyright © 2020 Zlatan Car et al. 2020
Copyright_xml – notice: Copyright © 2020 Zlatan Car et al.
– notice: Copyright © 2020 Zlatan Car et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1155/2020/5714714
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Makarov, Valeri
Editor_xml – sequence: 1
  givenname: Valeri
  surname: Makarov
  fullname: Makarov, Valeri
EndPage 10
ExternalDocumentID PMC7260624
32565882
10_1155_2020_5714714
1139490
Genre Journal Article
GrantInformation_xml – fundername: project CEKOM
  grantid: KK.01.2.2.03.0004
– fundername: University of Rijeka
  grantid: uniri-tehnic-18-275-1447
– fundername: CEEPUS network CIII-HR-0108, European Regional Development Fund
  grantid: KK.01.1.1.01.0009
GroupedDBID ---
24P
29F
2DF
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FG
8FI
8FJ
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACGFO
ACIPV
ACIWK
ADBBV
ADJCN
ADRAZ
AENEX
AFKRA
AFKVX
AHFXO
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AWYRJ
BAWUL
BCNDV
BENPR
BGLVJ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMK
EMOBN
EPL
EST
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HF~
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IPNFZ
J.P
J9A
KQ8
L6V
M1P
M48
M4Z
M7S
ML~
O5R
O5S
OK1
P2P
PGMZT
PQQKQ
PROAC
PSQYO
PTHSS
REM
RHX
RIG
RNS
RPM
SV3
TFW
TUS
TWF
UKHRP
3YN
ITC
RHU
RHW
0R~
AAYXX
ACCMX
ACUHS
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c443t-cb56db5313d0302830c9a754e3890c25521ce148f5e561ec6115eec1cf947e553
IEDL.DBID M48
ISSN 1748-670X
1748-6718
IngestDate Thu Aug 21 14:08:39 EDT 2025
Fri Jul 11 04:29:09 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Tue Jul 01 00:36:58 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Sun Jun 02 18:51:15 EDT 2024
Tue Nov 26 16:45:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Zlatan Car et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-cb56db5313d0302830c9a754e3890c25521ce148f5e561ec6115eec1cf947e553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Valeri Makarov
ORCID 0000-0002-3015-1024
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/5714714
PMID 32565882
PQID 2415834924
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260624
proquest_miscellaneous_2415834924
pubmed_primary_32565882
crossref_primary_10_1155_2020_5714714
crossref_citationtrail_10_1155_2020_5714714
hindawi_primary_10_1155_2020_5714714
emarefa_primary_1139490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
References 11
33
(3) 2020
14
15
26
16
27
17
(25) 1999
(12) 2010
1
4
5
6
(22) 2016
7
(13) 2013
(32) 2012; 13
(28) 2011; 12
20
(34) 2020
(23) 2006
References_xml – ident: 16
  doi: 10.1111/j.1467-985X.2012.01056.x
– volume: 12
  start-page: 2825
  year: 2011
  ident: 28
  publication-title: Journal of Machine Learning Research
– ident: 11
  doi: 10.1016/j.ijid.2020.01.009
– ident: 15
  doi: 10.1007/978-0-387-84858-7
– year: 2010
  ident: 12
– ident: 7
  doi: 10.1038/s41564-020-0688-y
– volume: 13
  start-page: 281
  year: 2012
  ident: 32
  publication-title: Journal of Machine Learning Research
– ident: 33
  doi: 10.1093/biomet/78.3.691
– ident: 1
  doi: 10.1093/jtm/taaa021
– ident: 4
  doi: 10.2139/ssrn.3537085
– ident: 5
  doi: 10.1038/s41586-020-2012-7
– year: 2013
  ident: 13
– year: 1999
  ident: 25
– ident: 26
  doi: 10.3390/en12224352
– ident: 6
  doi: 10.1111/tmi.13383
– ident: 27
  doi: 10.1007/s11222-009-9153-8
– year: 2020
  ident: 3
– ident: 14
  doi: 10.1016/j.idh.2018.10.002
– year: 2020
  ident: 34
– ident: 20
  doi: 10.9781/ijimai.2020.02.002
– year: 2016
  ident: 22
– ident: 17
  doi: 10.1016/j.artmed.2019.101746
– year: 2006
  ident: 23
SSID ssj0051751
Score 2.5438788
Snippet Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Computational Biology
Coronavirus Infections - epidemiology
Coronavirus Infections - transmission
COVID-19
Databases, Factual
Humans
Mathematical Concepts
Models, Biological
Neural Networks, Computer
Pandemics - statistics & numerical data
Pneumonia, Viral - epidemiology
Pneumonia, Viral - transmission
Regression Analysis
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uMPFFvDtvRJhPEljXpJdHmc4pTAWd7K2kScoGsx274N_3nDabbir61tLTC_mSnO9rzjkhpMalVoHxApbEWjDOQ8MCLQ3DbPB6wyRSepjg3Hnw2l1-3xM9WyRp8n0JH7wdynPU7Q5Mo7xEStDBUJS3e_MJV4AHdIq8x4B5fr03j29fuXfJ81TMm4QDcEeVPorf98FPFHM1UvKL62ltkU3LGelVAfI2WTPpDlnv2FXxXXKLG5phWjkFNkefR8ADNc0S2nx8vbtmTkjvbMRVSvMIASppnnc7lMC36VMR2jLO0j3Sbd28NNvMbpDAFOfulKlYeDqGUeRqGKtYykuF0hfcAAupKxALDUcZ0DuJMECTjPKgTYxRjkpC7hsh3H1STrPUHBKqUblo0EJ-HHOEiAOAIhSBz7UPlKdKLueNFylbPRw3sRhGuYoQIsKmjmxTV8nFwnpUVM34xe7A4vBpBpSUh_UqqVlc_njA-Ry0CMYFLnbI1GSzSYTMJMDSi_iSAsTFk1zgeQKkRZX4S_AuDLDm9vKVdNDPa2_7oP-8Bj_63-cdkw08LX7ZnJDydDwzp0BipvFZ3oU_AMJh5kE
  priority: 102
  providerName: Hindawi Publishing
Title Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron
URI https://search.emarefa.net/detail/BIM-1139490
https://dx.doi.org/10.1155/2020/5714714
https://www.ncbi.nlm.nih.gov/pubmed/32565882
https://www.proquest.com/docview/2415834924
https://pubmed.ncbi.nlm.nih.gov/PMC7260624
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6tm4Z4QWzAlm1UnjSekFHT2nHyMKFpbG2RCggoylvk2I46qaRb1wn477lL3LJWncZLlChOotz5ct8X3w-AE6GtiV0U8yK3kguROB5b7Thlg7fartA6ogTnwaeoNxQfU5luwLzbqBfg7VpqR_2khtPxu983f96jwZ9WBi8l8Xci9iF-Z0UDttAnKWriMBCL9QSJTjKsUyNjHqlWOg-BX7l6yTltu58ad9BjbY-IH_-6WodCV4Mp73mny-fwzMNKdlbPgx3YcOUuPBn4hfMX0KWeZ5R5zhDwsW_XCBUtmxTs_POP_gceJqzvg7JKVgURMM2q1NyxRkjOvtTRL9NJ-RKGlxffz3vc91DgRojOjJtcRjZHQ-tYNGeq9mUSraRwCFRaBvlEOzQOKVEhHSIpZyKUiXMmNEUilJOy8wo2y0np9oFZIjcW6ZLKc0FaFKhjmchYCasQFQXwdi68zPgC49TnYpxVREPKjESdeVEH8GYx-rourPHAuD2vh3_DELWKpBXAidfLIzc4nistQ9Oh9RBdusndbUbgJabqjPSQWomLO3UQCkpkHwGoJfUuBlBZ7uUz5dWoKs-tkCJGbXHwny94CE_psP6tcwSbs-mde41AZ5Y3odFNw2Y1k3H7tZf-BaHA9j4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Spread+of+COVID-19+Infection+Using+a+Multilayer+Perceptron&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Car%2C+Zlatan&rft.au=Baressi+%C5%A0egota%2C+Sandi&rft.au=An%C4%91eli%C4%87%2C+Nikola&rft.au=Lorencin%2C+Ivan&rft.date=2020&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2020&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2020%2F5714714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2020_5714714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon