Disentangling the effects of selection and loss bias on gene dynamics

We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dyn...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 28; pp. E5616 - E5624
Main Authors Iranzo, Jaime, Cuesta, José A., Manrubia, Susanna, Katsnelson, Mikhail I., Koonin, Eugene V.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.07.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.
AbstractList Evolution of microbes is dominated by horizontal gene transfer and the incessant host–parasite arms race that promotes the evolution of diverse antiparasite defense systems. The evolutionary factors governing these processes are complex and difficult to disentangle, but rapidly growing genome databases provide ample material for testing evolutionary models. Rigorous mathematical modeling of evolutionary processes, combined with computer simulation and comparative genomics, allowed us to elucidate the evolutionary regimes of different classes of microbial genes. Only genes involved in key informational and metabolic pathways are subject to strong selection, whereas most of the others are effectively neutral or even burdensome. Mobile genetic elements and defense systems are costly, supporting the understanding that their evolution is governed by the same factors. We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.
We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication-transfer-loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin-antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication-transfer-loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin-antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.
We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.
Author Iranzo, Jaime
Koonin, Eugene V.
Manrubia, Susanna
Katsnelson, Mikhail I.
Cuesta, José A.
Author_xml – sequence: 1
  givenname: Jaime
  surname: Iranzo
  fullname: Iranzo, Jaime
  organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
– sequence: 2
  givenname: José A.
  surname: Cuesta
  fullname: Cuesta, José A.
  organization: Institute of Financial Big Data, Universidad Carlos III de Madrid-Banco de Santander, 28903 Getafe (Madrid), Spain
– sequence: 3
  givenname: Susanna
  surname: Manrubia
  fullname: Manrubia, Susanna
  organization: Grupo Interdisciplinar de Sistemas Complejos, National Biotechnology Centre, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
– sequence: 4
  givenname: Mikhail I.
  surname: Katsnelson
  fullname: Katsnelson, Mikhail I.
  organization: Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
– sequence: 5
  givenname: Eugene V.
  surname: Koonin
  fullname: Koonin, Eugene V.
  organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28652353$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLJDEUhcPgMLaP9ayUwGzclOb92Aji6DgguHHWIZW61aapTtpKteC_N03rOCO4SuB-53DuuXtoJ-UECH2n5JQSzc9WyZdTqomwTFIqvqAZJZY2Sliyg2aEMN0YwcQu2itlQQix0pBvaJcZJRmXfIaufsYCafJpPsQ0x9MDYOh7CFPBuccFhvqNOWGfOjzkUnAbfR0lPIcEuHtOfhlDOUBfez8UOHx999Gf66v7y5vm9u7X78uL2yYIwacmeONbRqmyRoMhminZge4VNYF1tG1lSzm0TFuhlDad7BjYlvhgGTdCKs_30fnWd7Vul9CFmnz0g1uNcenHZ5d9dP9PUnxw8_zkpKRCC1sNTl4Nxvy4hjK5ZSwBhsEnyOviqKWCWcIJr-iPD-gir8dU16uUUIIqwU2ljv9N9DfKW8MVkFsgjLW-EXoX4uQ3ndaAcXCUuM0l3eaS7v2SVXf2Qfdm_bniaKtYlCmP70mUqFmq4AW3FKmg
CitedBy_id crossref_primary_10_3103_S0095452721030099
crossref_primary_10_1038_s41559_023_02276_6
crossref_primary_10_1016_j_tree_2021_11_006
crossref_primary_10_1038_s41467_019_13429_2
crossref_primary_10_1038_s41576_019_0172_9
crossref_primary_10_1073_pnas_1807709115
crossref_primary_10_1098_rsob_180069
crossref_primary_10_3389_fmolb_2022_821197
crossref_primary_10_1099_mic_0_001209
crossref_primary_10_1016_j_tim_2021_01_005
crossref_primary_10_1016_j_stress_2024_100658
crossref_primary_10_3389_fmicb_2019_00051
crossref_primary_10_1016_j_cub_2020_08_028
crossref_primary_10_1126_science_abe5601
crossref_primary_10_1098_rstb_2021_0234
crossref_primary_10_1186_s13062_017_0202_5
crossref_primary_10_1128_mBio_02938_21
crossref_primary_10_1073_pnas_2120042119
crossref_primary_10_1016_j_biotechadv_2024_108481
crossref_primary_10_1128_mBio_00873_21
crossref_primary_10_1073_pnas_2120037119
crossref_primary_10_1186_s13059_023_03089_3
crossref_primary_10_1007_s11538_022_01062_y
crossref_primary_10_1016_j_chom_2024_05_017
crossref_primary_10_1093_femsre_fuab025
crossref_primary_10_1103_PhysRevX_9_031018
crossref_primary_10_1038_s41467_023_37789_y
crossref_primary_10_1073_pnas_1807890115
crossref_primary_10_1038_s41396_021_01178_4
crossref_primary_10_1016_j_coviro_2018_07_011
crossref_primary_10_1093_femsle_fnae005
crossref_primary_10_1016_j_tim_2020_12_004
crossref_primary_10_1038_s41586_021_04233_4
crossref_primary_10_1209_0295_5075_122_58001
crossref_primary_10_1128_MMBR_00061_19
Cites_doi 10.1186/gb-2007-8-6-r102
10.1038/nrmicro751
10.1093/nar/29.18.3742
10.1101/gr.1589103
10.1038/ismej.2016.47
10.1093/molbev/msm088
10.1093/nar/gkn668
10.1073/pnas.1514974112
10.1093/nar/gkw934
10.1016/j.mib.2008.09.006
10.1186/s12915-014-0066-4
10.1007/BF00160190
10.1128/JB.01237-08
10.1093/molbev/msm014
10.1093/gbe/evs081
10.1038/nrg2689
10.1016/S0378-1097(01)00504-3
10.1093/nar/gkn684
10.1016/j.tibs.2015.03.011
10.1093/gbe/evr096
10.1007/s00285-012-0504-2
10.1111/j.2517-6161.1971.tb00877.x
10.1073/pnas.1614083113
10.1007/978-3-662-05389-8
10.1146/annurev.micro.60.080805.142300
10.1371/journal.pgen.1001050
10.1371/journal.pgen.1002787
10.1111/nyas.12696
10.1038/nrmicro1235
10.1093/molbev/msv055
10.1080/00031305.1978.10479236
10.1038/nmicrobiol.2016.208
10.1093/bioinformatics/btq315
10.1146/annurev-micro-091213-112901
10.1038/srep02101
10.1007/BF00277395
10.1073/pnas.1216223109
10.1186/1471-2148-4-32
10.1093/molbev/msv119
10.1093/gbe/evw193
10.1534/g3.116.030890
10.1073/pnas.1210663109
10.1073/pnas.0503654102
10.1128/AEM.05090-11
10.3389/fcimb.2012.00119
10.1093/gbe/evp016
10.1038/nrg.2016.104
10.1093/bioinformatics/btq229
10.1016/j.tim.2006.03.001
10.1186/1745-6150-2-32
10.1101/gr.091785.109
10.1186/s12864-015-2244-3
10.1002/bies.201600186
10.1371/journal.pgen.1000437
10.1093/genetics/136.3.721
10.1128/IAI.01141-08
10.1128/mBio.00456-12
10.1128/MMBR.00031-06
10.1093/oxfordjournals.molbev.a025959
10.1534/genetics.115.176834
10.1016/j.gde.2004.09.003
10.1534/genetics.114.162883
10.1023/A:1017031008316
10.1093/gbe/evt002
10.1186/1471-2148-2-18
10.1093/molbev/msw224
10.1093/nar/gku1223
10.1098/rsbl.2013.0838
10.1016/j.resmic.2004.01.008
10.1186/1471-2164-9-36
10.1126/science.1089370
10.1186/s12862-015-0324-2
10.1016/j.mib.2010.10.006
10.1128/AEM.71.4.1822-1828.2005
10.1371/journal.pcbi.1003680
10.1093/bib/bbk006
10.1002/cfg.311
10.1042/BST0390051
10.1371/journal.pgen.1002651
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jul 11, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jul 11, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1704925114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


PubMed
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Selection in microbial genome evolution
EISSN 1091-6490
EndPage E5624
ExternalDocumentID PMC5514749
28652353
10_1073_pnas_1704925114
26486507
Genre Journal Article
Feature
GrantInformation_xml – fundername: US Department of Health and Human Services
  grantid: Intramural funds
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-ca8ab2116987e807265de7f618c2d1bb5b13eb27946678d5d2e9b0ac9238456a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:17:38 EDT 2025
Fri Jul 11 16:37:43 EDT 2025
Mon Jun 30 08:09:41 EDT 2025
Thu Apr 03 06:57:14 EDT 2025
Tue Jul 01 03:19:37 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Fri May 30 11:46:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords antiparasite defense
mobile genetic elements
gene loss
selection
horizontal gene transfer
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-ca8ab2116987e807265de7f618c2d1bb5b13eb27946678d5d2e9b0ac9238456a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: J.I. and E.V.K. designed research; J.I., J.A.C., S.M., and M.I.K. performed research; J.I. and E.V.K. analyzed data; and J.I. and E.V.K. wrote the paper.
Reviewers: S.M., University of Illinois at Urbana–Champaign; and D.V., Columbia University.
Contributed by Eugene V. Koonin, June 1, 2017 (sent for review March 24, 2017; reviewed by Sergei Maslov and Dennis Vitkup)
ORCID 0000-0003-3943-8299
0000-0001-9890-9367
OpenAccessLink https://www.pnas.org/content/pnas/114/28/E5616.full.pdf
PMID 28652353
PQID 1946416438
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5514749
proquest_miscellaneous_1914290303
proquest_journals_1946416438
pubmed_primary_28652353
crossref_citationtrail_10_1073_pnas_1704925114
crossref_primary_10_1073_pnas_1704925114
jstor_primary_26486507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-11
PublicationDateYYYYMMDD 2017-07-11
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
Lynch M (e_1_3_2_2_2) 2007
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
Furuta Y (e_1_3_2_61_2) 2011
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
Koonin EV (e_1_3_2_1_2) 2011
Hudson DJ (e_1_3_2_83_2) 1971; 33
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Csűrös M (e_1_3_2_81_2) 2006
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
McGill R (e_1_3_2_82_2) 1978; 32
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_72_2
van Kampen NG (e_1_3_2_31_2) 2001
e_1_3_2_70_2
16099836 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12112-6
25750180 - Mol Biol Evol. 2015 Jul;32(7):1672-83
19047403 - Infect Immun. 2009 Feb;77(2):642-56
17347521 - Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57
11557807 - Nucleic Acids Res. 2001 Sep 15;29(18):3742-56
24995872 - Annu Rev Microbiol. 2014;68:195-215
17251179 - Mol Biol Evol. 2007 Apr;24(4):969-81
17550600 - Genome Biol. 2007;8(6):R102
27317782 - G3 (Bethesda). 2016 Aug 09;6(8):2583-91
18218090 - BMC Genomics. 2008 Jan 24;9:36
23315380 - Genome Biol Evol. 2013;5(1):233-42
25971664 - Genetics. 2015 Jul;200(3):935-46
20333185 - Genome Biol Evol. 2009 Jun 27;1:145-52
23077252 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92
27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714
25881094 - BMC Evol Biol. 2015 Mar 13;15:43
27744412 - Mol Biol Evol. 2017 Jan;34(1):93-109
23129619 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44
19502381 - Genome Res. 2009 Aug;19(8):1450-4
11814653 - FEMS Microbiol Lett. 2002 Jan 10;206(2):131-41
16761366 - Brief Bioinform. 2006 Mar;7(1):70-85
27819663 - Nat Microbiol. 2016 Nov 07;2:16208
25976352 - Mol Biol Evol. 2015 Sep;32(9):2383-92
15357876 - BMC Evol Biol. 2004 Sep 09;4:32
24967627 - PLoS Comput Biol. 2014 Jun 26;10(6):e1003680
26732503 - BMC Genomics. 2016 Jan 05;17:27
15531157 - Curr Opin Genet Dev. 2004 Dec;14(6):627-33
22589730 - PLoS Genet. 2012;8(5):e1002651
25703428 - Ann N Y Acad Sci. 2015 Apr;1341:96-105
15035042 - Nat Rev Microbiol. 2003 Nov;1(2):127-36
22252506 - J Math Biol. 2013 Jan;66(1-2):95-114
20439257 - Bioinformatics. 2010 Jun 15;26(12):1481-7
27702904 - Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407
24307531 - Biol Lett. 2013 Dec 04;9(6):20130838
23221803 - MBio. 2012 Dec 04;3(6):e00456-12
21265746 - Biochem Soc Trans. 2011 Jan;39(1):51-7
27503291 - Genome Biol Evol. 2016 Sep 26;8(9):2856-2869
21940637 - Genome Biol Evol. 2011;3:1175-86
7911771 - Genetics. 1994 Mar;136(3):721-30
2842425 - J Math Biol. 1988;26(3):347-57
14631042 - Science. 2003 Nov 21;302(5649):1401-4
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
19086349 - Curr Opin Microbiol. 2008 Oct;11(5):472-7
9580988 - Mol Biol Evol. 1998 May;15(5):583-9
16138100 - Nat Rev Microbiol. 2005 Sep;3(9):722-32
25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
22761588 - PLoS Genet. 2012 Jun;8(6):e1002787
12379152 - BMC Evol Biol. 2002 Oct 14;2:18
18845571 - Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54
27896818 - Bioessays. 2017 Jan;39(1):1-9
15812007 - Appl Environ Microbiol. 2005 Apr;71(4):1822-8
23034216 - Genome Biol Evol. 2012;4(11):1176-87
1658178 - J Math Biol. 1991;29(8):743-61
23812535 - Sci Rep. 2013;3:2101
16824010 - Annu Rev Microbiol. 2006;60:327-49
21666019 - Appl Environ Microbiol. 2011 Aug;77(15):5458-66
18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719
20051986 - Nat Rev Genet. 2010 Feb;11(2):97-108
25141959 - BMC Biol. 2014 Aug 21;12:66
19325885 - PLoS Genet. 2009 Mar;5(3):e1000437
22993722 - Front Cell Infect Microbiol. 2012 Sep 13;2:119
24578351 - Genetics. 2014 May;197(1):291-9
20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2
20700439 - PLoS Genet. 2010 Aug 05;6(8):null
21041110 - Curr Opin Microbiol. 2010 Dec;13(6):781-5
15207871 - Res Microbiol. 2004 Jun;155(5):387-98
25937627 - Trends Biochem Sci. 2015 Jun;40(6):309-17
9720287 - Genetica. 1998;102-103(1-6):349-58
28053163 - Nucleic Acids Res. 2017 Jan 4;45(D1):D210-D218
18039386 - Biol Direct. 2007 Nov 26;2:32
18629076 - Comp Funct Genomics. 2003;4(4):432-41
16569502 - Trends Microbiol. 2006 May;14(5):200-6
26575626 - Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5
27015004 - ISME J. 2016 Nov;10 (11):2744-2754
18978059 - J Bacteriol. 2009 Jan;191(1):65-73
14525925 - Genome Res. 2003 Oct;13(10):2229-35
References_xml – ident: e_1_3_2_71_2
  doi: 10.1186/gb-2007-8-6-r102
– ident: e_1_3_2_6_2
  doi: 10.1038/nrmicro751
– ident: e_1_3_2_60_2
  doi: 10.1093/nar/29.18.3742
– ident: e_1_3_2_48_2
  doi: 10.1101/gr.1589103
– ident: e_1_3_2_78_2
  doi: 10.1038/ismej.2016.47
– ident: e_1_3_2_84_2
  doi: 10.1093/molbev/msm088
– volume-title: The Logic of Chance: The Nature and Origin of Biological Evolution
  year: 2011
  ident: e_1_3_2_1_2
– ident: e_1_3_2_9_2
  doi: 10.1093/nar/gkn668
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.1514974112
– ident: e_1_3_2_33_2
  doi: 10.1093/nar/gkw934
– ident: e_1_3_2_7_2
  doi: 10.1016/j.mib.2008.09.006
– ident: e_1_3_2_8_2
  doi: 10.1186/s12915-014-0066-4
– ident: e_1_3_2_27_2
  doi: 10.1007/BF00160190
– ident: e_1_3_2_15_2
  doi: 10.1128/JB.01237-08
– ident: e_1_3_2_77_2
  doi: 10.1093/molbev/msm014
– ident: e_1_3_2_36_2
  doi: 10.1093/gbe/evs081
– ident: e_1_3_2_53_2
  doi: 10.1038/nrg2689
– ident: e_1_3_2_57_2
  doi: 10.1016/S0378-1097(01)00504-3
– ident: e_1_3_2_32_2
  doi: 10.1093/nar/gkn684
– ident: e_1_3_2_51_2
  doi: 10.1016/j.tibs.2015.03.011
– ident: e_1_3_2_55_2
  doi: 10.1093/gbe/evr096
– ident: e_1_3_2_22_2
  doi: 10.1007/s00285-012-0504-2
– volume: 33
  start-page: 256
  year: 1971
  ident: e_1_3_2_83_2
  article-title: Interval estimation from likelihood function
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1971.tb00877.x
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.1614083113
– ident: e_1_3_2_30_2
  doi: 10.1007/978-3-662-05389-8
– ident: e_1_3_2_46_2
  doi: 10.1146/annurev.micro.60.080805.142300
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pgen.1001050
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.pgen.1002787
– ident: e_1_3_2_54_2
  doi: 10.1111/nyas.12696
– ident: e_1_3_2_11_2
  doi: 10.1038/nrmicro1235
– ident: e_1_3_2_42_2
  doi: 10.1093/molbev/msv055
– volume: 32
  start-page: 12
  year: 1978
  ident: e_1_3_2_82_2
  article-title: Variations of box plots
  publication-title: Am Stat
  doi: 10.1080/00031305.1978.10479236
– ident: e_1_3_2_10_2
  doi: 10.1038/nmicrobiol.2016.208
– ident: e_1_3_2_24_2
  doi: 10.1093/bioinformatics/btq315
– ident: e_1_3_2_4_2
  doi: 10.1146/annurev-micro-091213-112901
– ident: e_1_3_2_5_2
  doi: 10.1038/srep02101
– ident: e_1_3_2_50_2
  doi: 10.1007/BF00277395
– ident: e_1_3_2_43_2
  doi: 10.1073/pnas.1216223109
– ident: e_1_3_2_25_2
  doi: 10.1186/1471-2148-4-32
– ident: e_1_3_2_40_2
  doi: 10.1093/molbev/msv119
– ident: e_1_3_2_20_2
  doi: 10.1093/gbe/evw193
– ident: e_1_3_2_41_2
  doi: 10.1534/g3.116.030890
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1210663109
– ident: e_1_3_2_37_2
  doi: 10.1073/pnas.0503654102
– ident: e_1_3_2_56_2
  doi: 10.1128/AEM.05090-11
– volume-title: Bacterial Integrative Mobile Genetic Elements
  year: 2011
  ident: e_1_3_2_61_2
– ident: e_1_3_2_3_2
  doi: 10.3389/fcimb.2012.00119
– volume-title: Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science
  year: 2006
  ident: e_1_3_2_81_2
– ident: e_1_3_2_13_2
  doi: 10.1093/gbe/evp016
– ident: e_1_3_2_79_2
  doi: 10.1038/nrg.2016.104
– ident: e_1_3_2_80_2
  doi: 10.1093/bioinformatics/btq229
– ident: e_1_3_2_70_2
  doi: 10.1016/j.tim.2006.03.001
– ident: e_1_3_2_52_2
  doi: 10.1186/1745-6150-2-32
– ident: e_1_3_2_16_2
  doi: 10.1101/gr.091785.109
– ident: e_1_3_2_45_2
  doi: 10.1186/s12864-015-2244-3
– ident: e_1_3_2_63_2
  doi: 10.1002/bies.201600186
– ident: e_1_3_2_59_2
  doi: 10.1371/journal.pgen.1000437
– ident: e_1_3_2_67_2
  doi: 10.1093/genetics/136.3.721
– volume-title: Stochastic Processes in Physics and Chemistry
  year: 2001
  ident: e_1_3_2_31_2
– ident: e_1_3_2_68_2
  doi: 10.1128/IAI.01141-08
– volume-title: The Origins of Genome Architecture
  year: 2007
  ident: e_1_3_2_2_2
– ident: e_1_3_2_62_2
  doi: 10.1128/mBio.00456-12
– ident: e_1_3_2_73_2
  doi: 10.1128/MMBR.00031-06
– ident: e_1_3_2_28_2
  doi: 10.1093/oxfordjournals.molbev.a025959
– ident: e_1_3_2_38_2
  doi: 10.1534/genetics.115.176834
– ident: e_1_3_2_69_2
  doi: 10.1016/j.gde.2004.09.003
– ident: e_1_3_2_26_2
  doi: 10.1534/genetics.114.162883
– ident: e_1_3_2_74_2
  doi: 10.1023/A:1017031008316
– ident: e_1_3_2_12_2
  doi: 10.1093/gbe/evt002
– ident: e_1_3_2_29_2
  doi: 10.1186/1471-2148-2-18
– ident: e_1_3_2_39_2
  doi: 10.1093/molbev/msw224
– ident: e_1_3_2_34_2
  doi: 10.1093/nar/gku1223
– ident: e_1_3_2_65_2
  doi: 10.1098/rsbl.2013.0838
– ident: e_1_3_2_72_2
  doi: 10.1016/j.resmic.2004.01.008
– ident: e_1_3_2_76_2
  doi: 10.1186/1471-2164-9-36
– ident: e_1_3_2_47_2
  doi: 10.1126/science.1089370
– ident: e_1_3_2_64_2
  doi: 10.1186/s12862-015-0324-2
– ident: e_1_3_2_58_2
  doi: 10.1016/j.mib.2010.10.006
– ident: e_1_3_2_66_2
  doi: 10.1128/AEM.71.4.1822-1828.2005
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.pcbi.1003680
– ident: e_1_3_2_49_2
  doi: 10.1093/bib/bbk006
– ident: e_1_3_2_35_2
  doi: 10.1002/cfg.311
– ident: e_1_3_2_75_2
  doi: 10.1042/BST0390051
– ident: e_1_3_2_18_2
  doi: 10.1371/journal.pgen.1002651
– reference: 25703428 - Ann N Y Acad Sci. 2015 Apr;1341:96-105
– reference: 19502381 - Genome Res. 2009 Aug;19(8):1450-4
– reference: 27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714
– reference: 1658178 - J Math Biol. 1991;29(8):743-61
– reference: 21041110 - Curr Opin Microbiol. 2010 Dec;13(6):781-5
– reference: 25750180 - Mol Biol Evol. 2015 Jul;32(7):1672-83
– reference: 16099836 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12112-6
– reference: 27015004 - ISME J. 2016 Nov;10 (11):2744-2754
– reference: 16569502 - Trends Microbiol. 2006 May;14(5):200-6
– reference: 17251179 - Mol Biol Evol. 2007 Apr;24(4):969-81
– reference: 15812007 - Appl Environ Microbiol. 2005 Apr;71(4):1822-8
– reference: 23812535 - Sci Rep. 2013;3:2101
– reference: 21265746 - Biochem Soc Trans. 2011 Jan;39(1):51-7
– reference: 27819663 - Nat Microbiol. 2016 Nov 07;2:16208
– reference: 15035042 - Nat Rev Microbiol. 2003 Nov;1(2):127-36
– reference: 16138100 - Nat Rev Microbiol. 2005 Sep;3(9):722-32
– reference: 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
– reference: 23129619 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44
– reference: 25971664 - Genetics. 2015 Jul;200(3):935-46
– reference: 22589730 - PLoS Genet. 2012;8(5):e1002651
– reference: 20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2
– reference: 23315380 - Genome Biol Evol. 2013;5(1):233-42
– reference: 20051986 - Nat Rev Genet. 2010 Feb;11(2):97-108
– reference: 19325885 - PLoS Genet. 2009 Mar;5(3):e1000437
– reference: 11557807 - Nucleic Acids Res. 2001 Sep 15;29(18):3742-56
– reference: 11814653 - FEMS Microbiol Lett. 2002 Jan 10;206(2):131-41
– reference: 28053163 - Nucleic Acids Res. 2017 Jan 4;45(D1):D210-D218
– reference: 19047403 - Infect Immun. 2009 Feb;77(2):642-56
– reference: 24578351 - Genetics. 2014 May;197(1):291-9
– reference: 17550600 - Genome Biol. 2007;8(6):R102
– reference: 21940637 - Genome Biol Evol. 2011;3:1175-86
– reference: 25937627 - Trends Biochem Sci. 2015 Jun;40(6):309-17
– reference: 24307531 - Biol Lett. 2013 Dec 04;9(6):20130838
– reference: 23221803 - MBio. 2012 Dec 04;3(6):e00456-12
– reference: 15531157 - Curr Opin Genet Dev. 2004 Dec;14(6):627-33
– reference: 16761366 - Brief Bioinform. 2006 Mar;7(1):70-85
– reference: 19086349 - Curr Opin Microbiol. 2008 Oct;11(5):472-7
– reference: 16824010 - Annu Rev Microbiol. 2006;60:327-49
– reference: 24995872 - Annu Rev Microbiol. 2014;68:195-215
– reference: 27317782 - G3 (Bethesda). 2016 Aug 09;6(8):2583-91
– reference: 12379152 - BMC Evol Biol. 2002 Oct 14;2:18
– reference: 18845571 - Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54
– reference: 22761588 - PLoS Genet. 2012 Jun;8(6):e1002787
– reference: 25881094 - BMC Evol Biol. 2015 Mar 13;15:43
– reference: 26732503 - BMC Genomics. 2016 Jan 05;17:27
– reference: 25141959 - BMC Biol. 2014 Aug 21;12:66
– reference: 15357876 - BMC Evol Biol. 2004 Sep 09;4:32
– reference: 2842425 - J Math Biol. 1988;26(3):347-57
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 27896818 - Bioessays. 2017 Jan;39(1):1-9
– reference: 27503291 - Genome Biol Evol. 2016 Sep 26;8(9):2856-2869
– reference: 14631042 - Science. 2003 Nov 21;302(5649):1401-4
– reference: 23077252 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92
– reference: 22252506 - J Math Biol. 2013 Jan;66(1-2):95-114
– reference: 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719
– reference: 27744412 - Mol Biol Evol. 2017 Jan;34(1):93-109
– reference: 9720287 - Genetica. 1998;102-103(1-6):349-58
– reference: 21666019 - Appl Environ Microbiol. 2011 Aug;77(15):5458-66
– reference: 18978059 - J Bacteriol. 2009 Jan;191(1):65-73
– reference: 18629076 - Comp Funct Genomics. 2003;4(4):432-41
– reference: 9580988 - Mol Biol Evol. 1998 May;15(5):583-9
– reference: 23034216 - Genome Biol Evol. 2012;4(11):1176-87
– reference: 14525925 - Genome Res. 2003 Oct;13(10):2229-35
– reference: 27702904 - Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407
– reference: 7911771 - Genetics. 1994 Mar;136(3):721-30
– reference: 20700439 - PLoS Genet. 2010 Aug 05;6(8):null
– reference: 20439257 - Bioinformatics. 2010 Jun 15;26(12):1481-7
– reference: 18039386 - Biol Direct. 2007 Nov 26;2:32
– reference: 25976352 - Mol Biol Evol. 2015 Sep;32(9):2383-92
– reference: 17347521 - Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57
– reference: 24967627 - PLoS Comput Biol. 2014 Jun 26;10(6):e1003680
– reference: 26575626 - Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5
– reference: 18218090 - BMC Genomics. 2008 Jan 24;9:36
– reference: 15207871 - Res Microbiol. 2004 Jun;155(5):387-98
– reference: 20333185 - Genome Biol Evol. 2009 Jun 27;1:145-52
– reference: 22993722 - Front Cell Infect Microbiol. 2012 Sep 13;2:119
SSID ssj0009580
Score 2.4456542
Snippet We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and...
Evolution of microbes is dominated by horizontal gene transfer and the incessant host–parasite arms race that promotes the evolution of diverse antiparasite...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E5616
SubjectTerms Abundance
Antitoxins
Autoimmunity
Bias
Biological evolution
Biological Sciences
Comparative analysis
Copy number
Data processing
Effects
Evolution
Evolutionary genetics
Family size
Fitness
Gene transfer
Genes
Genetics
Genomes
Information processing
Mathematical models
Parasites
Plasmids
PNAS Plus
Population number
Prokaryotes
Prophages
Reproduction (copying)
Reproductive fitness
Toxins
Transposons
Title Disentangling the effects of selection and loss bias on gene dynamics
URI https://www.jstor.org/stable/26486507
https://www.ncbi.nlm.nih.gov/pubmed/28652353
https://www.proquest.com/docview/1946416438
https://www.proquest.com/docview/1914290303
https://pubmed.ncbi.nlm.nih.gov/PMC5514749
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgUBjISh6EqpXGcODlOo9OAtezQSr1FtuNoESVFS3vZX8Kfy3P8kXYqE3CJqsSxXL9f3pffB0LvsywumaRFwHgaB7QgRSCKkgYjUvCRyoSMpc53nkyTizn9sogXvd6vrailzVoM5e3evJL_oSrcA7rqLNl_oKyfFG7Ab6AvXIHCcP0rGn-q2tQhnYlrk562wjOatsONizZegjAciIq3pwMwoRoUphd9s62eXnlx1rjgganzFp52uSeWITSDYHA17ToZfwa5d2tOcnj1wyPmTEsebo8bzMF850Gd8PpmI0zEbhshVHs58ZWvm1q5apKT6vs1r5bWy2v9FGHrAA07P8V9q91m0ASEJjVp1UNleDKoNEFCTVdRz7RN6qlFp80vNzx4DCphslc6ADvTLY1r3gxDNtJlGd00O3W4p9_y8_nlZT4bL2YP0EMCBkjk_EC-nHNqkpvscl3RKBZ9vDP9jr5jQl73GTN3Y3K3lJzZE_TYWif41EDtEPVU_RQdug3EJ7ZI-YdnaLyDPQxIwRZ7eFVijz0M2MMae1hjD8MNjT3ssPcczc_Hs7OLwLbkCCSl0TqQPOWChGGSpUylI0aSuFCsTMJUkiIUIhZhpARpuxawtIgLAt_7iEswI1JQ1Xl0hA7qVa1eIhwpmSWsFCTRNQcZqP4c9i8hqaSkVBnvo6HbuFzaevW6bcoyb-MmWJTrnc67ne6jE__CT1Oq5c9Dj1pK-HE6zhNsFdZHx440uf3Q4T34N2C30Cjto3f-MbBhfbbGa7Xa6DEhaHYgMaM-emEo2U0OU5Mohidsh8Z-gC7xvvukrq7bUu_anmE0e3X_sl6jR90Xd4wO1jcb9QZ05bV428L2N51dv8o
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+the+effects+of+selection+and+loss+bias+on+gene+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Iranzo%2C+Jaime&rft.au=Cuesta%2C+Jos%C3%A9+A&rft.au=Manrubia%2C+Susanna&rft.au=Katsnelson%2C+Mikhail+I&rft.date=2017-07-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=28&rft.spage=E5616&rft_id=info:doi/10.1073%2Fpnas.1704925114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon