Disentangling the effects of selection and loss bias on gene dynamics
We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dyn...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 28; pp. E5616 - E5624 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.07.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes. |
---|---|
AbstractList | Evolution of microbes is dominated by horizontal gene transfer and the incessant host–parasite arms race that promotes the evolution of diverse antiparasite defense systems. The evolutionary factors governing these processes are complex and difficult to disentangle, but rapidly growing genome databases provide ample material for testing evolutionary models. Rigorous mathematical modeling of evolutionary processes, combined with computer simulation and comparative genomics, allowed us to elucidate the evolutionary regimes of different classes of microbial genes. Only genes involved in key informational and metabolic pathways are subject to strong selection, whereas most of the others are effectively neutral or even burdensome. Mobile genetic elements and defense systems are costly, supporting the understanding that their evolution is governed by the same factors.
We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes. We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication-transfer-loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin-antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes.We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication-transfer-loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin-antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes. We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and intrinsic loss bias to the evolution of different functional classes of genes and mobile genetic elements (MGE). An exact solution for the dynamics of gene family size was obtained under a linear duplication–transfer–loss model with selection. With the exception of genes involved in information processing, particularly translation, which are maintained by strong selection, the average selection coefficient for most nonparasitic genes is low albeit positive, compatible with observed positive correlation between genome size and effective population size. Free-living microbes evolve under stronger selection for gene retention than parasites. Different classes of MGE show a broad range of fitness effects, from the nearly neutral transposons to prophages, which are actively eliminated by selection. Genes involved in antiparasite defense, on average, incur a fitness cost to the host that is at least as high as the cost of plasmids. This cost is probably due to the adverse effects of autoimmunity and curtailment of horizontal gene transfer caused by the defense systems and selfish behavior of some of these systems, such as toxin–antitoxin and restriction modification modules. Transposons follow a biphasic dynamics, with bursts of gene proliferation followed by decay in the copy number that is quantitatively captured by the model. The horizontal gene transfer to loss ratio, but not duplication to loss ratio, correlates with genome size, potentially explaining increased abundance of neutral and costly elements in larger genomes. |
Author | Iranzo, Jaime Koonin, Eugene V. Manrubia, Susanna Katsnelson, Mikhail I. Cuesta, José A. |
Author_xml | – sequence: 1 givenname: Jaime surname: Iranzo fullname: Iranzo, Jaime organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 – sequence: 2 givenname: José A. surname: Cuesta fullname: Cuesta, José A. organization: Institute of Financial Big Data, Universidad Carlos III de Madrid-Banco de Santander, 28903 Getafe (Madrid), Spain – sequence: 3 givenname: Susanna surname: Manrubia fullname: Manrubia, Susanna organization: Grupo Interdisciplinar de Sistemas Complejos, National Biotechnology Centre, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain – sequence: 4 givenname: Mikhail I. surname: Katsnelson fullname: Katsnelson, Mikhail I. organization: Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands – sequence: 5 givenname: Eugene V. surname: Koonin fullname: Koonin, Eugene V. organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28652353$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLJDEUhcPgMLaP9ayUwGzclOb92Aji6DgguHHWIZW61aapTtpKteC_N03rOCO4SuB-53DuuXtoJ-UECH2n5JQSzc9WyZdTqomwTFIqvqAZJZY2Sliyg2aEMN0YwcQu2itlQQix0pBvaJcZJRmXfIaufsYCafJpPsQ0x9MDYOh7CFPBuccFhvqNOWGfOjzkUnAbfR0lPIcEuHtOfhlDOUBfez8UOHx999Gf66v7y5vm9u7X78uL2yYIwacmeONbRqmyRoMhminZge4VNYF1tG1lSzm0TFuhlDad7BjYlvhgGTdCKs_30fnWd7Vul9CFmnz0g1uNcenHZ5d9dP9PUnxw8_zkpKRCC1sNTl4Nxvy4hjK5ZSwBhsEnyOviqKWCWcIJr-iPD-gir8dU16uUUIIqwU2ljv9N9DfKW8MVkFsgjLW-EXoX4uQ3ndaAcXCUuM0l3eaS7v2SVXf2Qfdm_bniaKtYlCmP70mUqFmq4AW3FKmg |
CitedBy_id | crossref_primary_10_3103_S0095452721030099 crossref_primary_10_1038_s41559_023_02276_6 crossref_primary_10_1016_j_tree_2021_11_006 crossref_primary_10_1038_s41467_019_13429_2 crossref_primary_10_1038_s41576_019_0172_9 crossref_primary_10_1073_pnas_1807709115 crossref_primary_10_1098_rsob_180069 crossref_primary_10_3389_fmolb_2022_821197 crossref_primary_10_1099_mic_0_001209 crossref_primary_10_1016_j_tim_2021_01_005 crossref_primary_10_1016_j_stress_2024_100658 crossref_primary_10_3389_fmicb_2019_00051 crossref_primary_10_1016_j_cub_2020_08_028 crossref_primary_10_1126_science_abe5601 crossref_primary_10_1098_rstb_2021_0234 crossref_primary_10_1186_s13062_017_0202_5 crossref_primary_10_1128_mBio_02938_21 crossref_primary_10_1073_pnas_2120042119 crossref_primary_10_1016_j_biotechadv_2024_108481 crossref_primary_10_1128_mBio_00873_21 crossref_primary_10_1073_pnas_2120037119 crossref_primary_10_1186_s13059_023_03089_3 crossref_primary_10_1007_s11538_022_01062_y crossref_primary_10_1016_j_chom_2024_05_017 crossref_primary_10_1093_femsre_fuab025 crossref_primary_10_1103_PhysRevX_9_031018 crossref_primary_10_1038_s41467_023_37789_y crossref_primary_10_1073_pnas_1807890115 crossref_primary_10_1038_s41396_021_01178_4 crossref_primary_10_1016_j_coviro_2018_07_011 crossref_primary_10_1093_femsle_fnae005 crossref_primary_10_1016_j_tim_2020_12_004 crossref_primary_10_1038_s41586_021_04233_4 crossref_primary_10_1209_0295_5075_122_58001 crossref_primary_10_1128_MMBR_00061_19 |
Cites_doi | 10.1186/gb-2007-8-6-r102 10.1038/nrmicro751 10.1093/nar/29.18.3742 10.1101/gr.1589103 10.1038/ismej.2016.47 10.1093/molbev/msm088 10.1093/nar/gkn668 10.1073/pnas.1514974112 10.1093/nar/gkw934 10.1016/j.mib.2008.09.006 10.1186/s12915-014-0066-4 10.1007/BF00160190 10.1128/JB.01237-08 10.1093/molbev/msm014 10.1093/gbe/evs081 10.1038/nrg2689 10.1016/S0378-1097(01)00504-3 10.1093/nar/gkn684 10.1016/j.tibs.2015.03.011 10.1093/gbe/evr096 10.1007/s00285-012-0504-2 10.1111/j.2517-6161.1971.tb00877.x 10.1073/pnas.1614083113 10.1007/978-3-662-05389-8 10.1146/annurev.micro.60.080805.142300 10.1371/journal.pgen.1001050 10.1371/journal.pgen.1002787 10.1111/nyas.12696 10.1038/nrmicro1235 10.1093/molbev/msv055 10.1080/00031305.1978.10479236 10.1038/nmicrobiol.2016.208 10.1093/bioinformatics/btq315 10.1146/annurev-micro-091213-112901 10.1038/srep02101 10.1007/BF00277395 10.1073/pnas.1216223109 10.1186/1471-2148-4-32 10.1093/molbev/msv119 10.1093/gbe/evw193 10.1534/g3.116.030890 10.1073/pnas.1210663109 10.1073/pnas.0503654102 10.1128/AEM.05090-11 10.3389/fcimb.2012.00119 10.1093/gbe/evp016 10.1038/nrg.2016.104 10.1093/bioinformatics/btq229 10.1016/j.tim.2006.03.001 10.1186/1745-6150-2-32 10.1101/gr.091785.109 10.1186/s12864-015-2244-3 10.1002/bies.201600186 10.1371/journal.pgen.1000437 10.1093/genetics/136.3.721 10.1128/IAI.01141-08 10.1128/mBio.00456-12 10.1128/MMBR.00031-06 10.1093/oxfordjournals.molbev.a025959 10.1534/genetics.115.176834 10.1016/j.gde.2004.09.003 10.1534/genetics.114.162883 10.1023/A:1017031008316 10.1093/gbe/evt002 10.1186/1471-2148-2-18 10.1093/molbev/msw224 10.1093/nar/gku1223 10.1098/rsbl.2013.0838 10.1016/j.resmic.2004.01.008 10.1186/1471-2164-9-36 10.1126/science.1089370 10.1186/s12862-015-0324-2 10.1016/j.mib.2010.10.006 10.1128/AEM.71.4.1822-1828.2005 10.1371/journal.pcbi.1003680 10.1093/bib/bbk006 10.1002/cfg.311 10.1042/BST0390051 10.1371/journal.pgen.1002651 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jul 11, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jul 11, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1704925114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Selection in microbial genome evolution |
EISSN | 1091-6490 |
EndPage | E5624 |
ExternalDocumentID | PMC5514749 28652353 10_1073_pnas_1704925114 26486507 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: US Department of Health and Human Services grantid: Intramural funds |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-ca8ab2116987e807265de7f618c2d1bb5b13eb27946678d5d2e9b0ac9238456a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:17:38 EDT 2025 Fri Jul 11 16:37:43 EDT 2025 Mon Jun 30 08:09:41 EDT 2025 Thu Apr 03 06:57:14 EDT 2025 Tue Jul 01 03:19:37 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Fri May 30 11:46:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | antiparasite defense mobile genetic elements gene loss selection horizontal gene transfer |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-ca8ab2116987e807265de7f618c2d1bb5b13eb27946678d5d2e9b0ac9238456a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: J.I. and E.V.K. designed research; J.I., J.A.C., S.M., and M.I.K. performed research; J.I. and E.V.K. analyzed data; and J.I. and E.V.K. wrote the paper. Reviewers: S.M., University of Illinois at Urbana–Champaign; and D.V., Columbia University. Contributed by Eugene V. Koonin, June 1, 2017 (sent for review March 24, 2017; reviewed by Sergei Maslov and Dennis Vitkup) |
ORCID | 0000-0003-3943-8299 0000-0001-9890-9367 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/28/E5616.full.pdf |
PMID | 28652353 |
PQID | 1946416438 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5514749 proquest_miscellaneous_1914290303 proquest_journals_1946416438 pubmed_primary_28652353 crossref_citationtrail_10_1073_pnas_1704925114 crossref_primary_10_1073_pnas_1704925114 jstor_primary_26486507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-11 |
PublicationDateYYYYMMDD | 2017-07-11 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 Lynch M (e_1_3_2_2_2) 2007 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 Furuta Y (e_1_3_2_61_2) 2011 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 Koonin EV (e_1_3_2_1_2) 2011 Hudson DJ (e_1_3_2_83_2) 1971; 33 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Csűrös M (e_1_3_2_81_2) 2006 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 McGill R (e_1_3_2_82_2) 1978; 32 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_72_2 van Kampen NG (e_1_3_2_31_2) 2001 e_1_3_2_70_2 16099836 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12112-6 25750180 - Mol Biol Evol. 2015 Jul;32(7):1672-83 19047403 - Infect Immun. 2009 Feb;77(2):642-56 17347521 - Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57 11557807 - Nucleic Acids Res. 2001 Sep 15;29(18):3742-56 24995872 - Annu Rev Microbiol. 2014;68:195-215 17251179 - Mol Biol Evol. 2007 Apr;24(4):969-81 17550600 - Genome Biol. 2007;8(6):R102 27317782 - G3 (Bethesda). 2016 Aug 09;6(8):2583-91 18218090 - BMC Genomics. 2008 Jan 24;9:36 23315380 - Genome Biol Evol. 2013;5(1):233-42 25971664 - Genetics. 2015 Jul;200(3):935-46 20333185 - Genome Biol Evol. 2009 Jun 27;1:145-52 23077252 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92 27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714 25881094 - BMC Evol Biol. 2015 Mar 13;15:43 27744412 - Mol Biol Evol. 2017 Jan;34(1):93-109 23129619 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44 19502381 - Genome Res. 2009 Aug;19(8):1450-4 11814653 - FEMS Microbiol Lett. 2002 Jan 10;206(2):131-41 16761366 - Brief Bioinform. 2006 Mar;7(1):70-85 27819663 - Nat Microbiol. 2016 Nov 07;2:16208 25976352 - Mol Biol Evol. 2015 Sep;32(9):2383-92 15357876 - BMC Evol Biol. 2004 Sep 09;4:32 24967627 - PLoS Comput Biol. 2014 Jun 26;10(6):e1003680 26732503 - BMC Genomics. 2016 Jan 05;17:27 15531157 - Curr Opin Genet Dev. 2004 Dec;14(6):627-33 22589730 - PLoS Genet. 2012;8(5):e1002651 25703428 - Ann N Y Acad Sci. 2015 Apr;1341:96-105 15035042 - Nat Rev Microbiol. 2003 Nov;1(2):127-36 22252506 - J Math Biol. 2013 Jan;66(1-2):95-114 20439257 - Bioinformatics. 2010 Jun 15;26(12):1481-7 27702904 - Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407 24307531 - Biol Lett. 2013 Dec 04;9(6):20130838 23221803 - MBio. 2012 Dec 04;3(6):e00456-12 21265746 - Biochem Soc Trans. 2011 Jan;39(1):51-7 27503291 - Genome Biol Evol. 2016 Sep 26;8(9):2856-2869 21940637 - Genome Biol Evol. 2011;3:1175-86 7911771 - Genetics. 1994 Mar;136(3):721-30 2842425 - J Math Biol. 1988;26(3):347-57 14631042 - Science. 2003 Nov 21;302(5649):1401-4 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 19086349 - Curr Opin Microbiol. 2008 Oct;11(5):472-7 9580988 - Mol Biol Evol. 1998 May;15(5):583-9 16138100 - Nat Rev Microbiol. 2005 Sep;3(9):722-32 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 22761588 - PLoS Genet. 2012 Jun;8(6):e1002787 12379152 - BMC Evol Biol. 2002 Oct 14;2:18 18845571 - Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54 27896818 - Bioessays. 2017 Jan;39(1):1-9 15812007 - Appl Environ Microbiol. 2005 Apr;71(4):1822-8 23034216 - Genome Biol Evol. 2012;4(11):1176-87 1658178 - J Math Biol. 1991;29(8):743-61 23812535 - Sci Rep. 2013;3:2101 16824010 - Annu Rev Microbiol. 2006;60:327-49 21666019 - Appl Environ Microbiol. 2011 Aug;77(15):5458-66 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719 20051986 - Nat Rev Genet. 2010 Feb;11(2):97-108 25141959 - BMC Biol. 2014 Aug 21;12:66 19325885 - PLoS Genet. 2009 Mar;5(3):e1000437 22993722 - Front Cell Infect Microbiol. 2012 Sep 13;2:119 24578351 - Genetics. 2014 May;197(1):291-9 20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2 20700439 - PLoS Genet. 2010 Aug 05;6(8):null 21041110 - Curr Opin Microbiol. 2010 Dec;13(6):781-5 15207871 - Res Microbiol. 2004 Jun;155(5):387-98 25937627 - Trends Biochem Sci. 2015 Jun;40(6):309-17 9720287 - Genetica. 1998;102-103(1-6):349-58 28053163 - Nucleic Acids Res. 2017 Jan 4;45(D1):D210-D218 18039386 - Biol Direct. 2007 Nov 26;2:32 18629076 - Comp Funct Genomics. 2003;4(4):432-41 16569502 - Trends Microbiol. 2006 May;14(5):200-6 26575626 - Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5 27015004 - ISME J. 2016 Nov;10 (11):2744-2754 18978059 - J Bacteriol. 2009 Jan;191(1):65-73 14525925 - Genome Res. 2003 Oct;13(10):2229-35 |
References_xml | – ident: e_1_3_2_71_2 doi: 10.1186/gb-2007-8-6-r102 – ident: e_1_3_2_6_2 doi: 10.1038/nrmicro751 – ident: e_1_3_2_60_2 doi: 10.1093/nar/29.18.3742 – ident: e_1_3_2_48_2 doi: 10.1101/gr.1589103 – ident: e_1_3_2_78_2 doi: 10.1038/ismej.2016.47 – ident: e_1_3_2_84_2 doi: 10.1093/molbev/msm088 – volume-title: The Logic of Chance: The Nature and Origin of Biological Evolution year: 2011 ident: e_1_3_2_1_2 – ident: e_1_3_2_9_2 doi: 10.1093/nar/gkn668 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.1514974112 – ident: e_1_3_2_33_2 doi: 10.1093/nar/gkw934 – ident: e_1_3_2_7_2 doi: 10.1016/j.mib.2008.09.006 – ident: e_1_3_2_8_2 doi: 10.1186/s12915-014-0066-4 – ident: e_1_3_2_27_2 doi: 10.1007/BF00160190 – ident: e_1_3_2_15_2 doi: 10.1128/JB.01237-08 – ident: e_1_3_2_77_2 doi: 10.1093/molbev/msm014 – ident: e_1_3_2_36_2 doi: 10.1093/gbe/evs081 – ident: e_1_3_2_53_2 doi: 10.1038/nrg2689 – ident: e_1_3_2_57_2 doi: 10.1016/S0378-1097(01)00504-3 – ident: e_1_3_2_32_2 doi: 10.1093/nar/gkn684 – ident: e_1_3_2_51_2 doi: 10.1016/j.tibs.2015.03.011 – ident: e_1_3_2_55_2 doi: 10.1093/gbe/evr096 – ident: e_1_3_2_22_2 doi: 10.1007/s00285-012-0504-2 – volume: 33 start-page: 256 year: 1971 ident: e_1_3_2_83_2 article-title: Interval estimation from likelihood function publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1971.tb00877.x – ident: e_1_3_2_14_2 doi: 10.1073/pnas.1614083113 – ident: e_1_3_2_30_2 doi: 10.1007/978-3-662-05389-8 – ident: e_1_3_2_46_2 doi: 10.1146/annurev.micro.60.080805.142300 – ident: e_1_3_2_17_2 doi: 10.1371/journal.pgen.1001050 – ident: e_1_3_2_19_2 doi: 10.1371/journal.pgen.1002787 – ident: e_1_3_2_54_2 doi: 10.1111/nyas.12696 – ident: e_1_3_2_11_2 doi: 10.1038/nrmicro1235 – ident: e_1_3_2_42_2 doi: 10.1093/molbev/msv055 – volume: 32 start-page: 12 year: 1978 ident: e_1_3_2_82_2 article-title: Variations of box plots publication-title: Am Stat doi: 10.1080/00031305.1978.10479236 – ident: e_1_3_2_10_2 doi: 10.1038/nmicrobiol.2016.208 – ident: e_1_3_2_24_2 doi: 10.1093/bioinformatics/btq315 – ident: e_1_3_2_4_2 doi: 10.1146/annurev-micro-091213-112901 – ident: e_1_3_2_5_2 doi: 10.1038/srep02101 – ident: e_1_3_2_50_2 doi: 10.1007/BF00277395 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.1216223109 – ident: e_1_3_2_25_2 doi: 10.1186/1471-2148-4-32 – ident: e_1_3_2_40_2 doi: 10.1093/molbev/msv119 – ident: e_1_3_2_20_2 doi: 10.1093/gbe/evw193 – ident: e_1_3_2_41_2 doi: 10.1534/g3.116.030890 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.1210663109 – ident: e_1_3_2_37_2 doi: 10.1073/pnas.0503654102 – ident: e_1_3_2_56_2 doi: 10.1128/AEM.05090-11 – volume-title: Bacterial Integrative Mobile Genetic Elements year: 2011 ident: e_1_3_2_61_2 – ident: e_1_3_2_3_2 doi: 10.3389/fcimb.2012.00119 – volume-title: Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science year: 2006 ident: e_1_3_2_81_2 – ident: e_1_3_2_13_2 doi: 10.1093/gbe/evp016 – ident: e_1_3_2_79_2 doi: 10.1038/nrg.2016.104 – ident: e_1_3_2_80_2 doi: 10.1093/bioinformatics/btq229 – ident: e_1_3_2_70_2 doi: 10.1016/j.tim.2006.03.001 – ident: e_1_3_2_52_2 doi: 10.1186/1745-6150-2-32 – ident: e_1_3_2_16_2 doi: 10.1101/gr.091785.109 – ident: e_1_3_2_45_2 doi: 10.1186/s12864-015-2244-3 – ident: e_1_3_2_63_2 doi: 10.1002/bies.201600186 – ident: e_1_3_2_59_2 doi: 10.1371/journal.pgen.1000437 – ident: e_1_3_2_67_2 doi: 10.1093/genetics/136.3.721 – volume-title: Stochastic Processes in Physics and Chemistry year: 2001 ident: e_1_3_2_31_2 – ident: e_1_3_2_68_2 doi: 10.1128/IAI.01141-08 – volume-title: The Origins of Genome Architecture year: 2007 ident: e_1_3_2_2_2 – ident: e_1_3_2_62_2 doi: 10.1128/mBio.00456-12 – ident: e_1_3_2_73_2 doi: 10.1128/MMBR.00031-06 – ident: e_1_3_2_28_2 doi: 10.1093/oxfordjournals.molbev.a025959 – ident: e_1_3_2_38_2 doi: 10.1534/genetics.115.176834 – ident: e_1_3_2_69_2 doi: 10.1016/j.gde.2004.09.003 – ident: e_1_3_2_26_2 doi: 10.1534/genetics.114.162883 – ident: e_1_3_2_74_2 doi: 10.1023/A:1017031008316 – ident: e_1_3_2_12_2 doi: 10.1093/gbe/evt002 – ident: e_1_3_2_29_2 doi: 10.1186/1471-2148-2-18 – ident: e_1_3_2_39_2 doi: 10.1093/molbev/msw224 – ident: e_1_3_2_34_2 doi: 10.1093/nar/gku1223 – ident: e_1_3_2_65_2 doi: 10.1098/rsbl.2013.0838 – ident: e_1_3_2_72_2 doi: 10.1016/j.resmic.2004.01.008 – ident: e_1_3_2_76_2 doi: 10.1186/1471-2164-9-36 – ident: e_1_3_2_47_2 doi: 10.1126/science.1089370 – ident: e_1_3_2_64_2 doi: 10.1186/s12862-015-0324-2 – ident: e_1_3_2_58_2 doi: 10.1016/j.mib.2010.10.006 – ident: e_1_3_2_66_2 doi: 10.1128/AEM.71.4.1822-1828.2005 – ident: e_1_3_2_23_2 doi: 10.1371/journal.pcbi.1003680 – ident: e_1_3_2_49_2 doi: 10.1093/bib/bbk006 – ident: e_1_3_2_35_2 doi: 10.1002/cfg.311 – ident: e_1_3_2_75_2 doi: 10.1042/BST0390051 – ident: e_1_3_2_18_2 doi: 10.1371/journal.pgen.1002651 – reference: 25703428 - Ann N Y Acad Sci. 2015 Apr;1341:96-105 – reference: 19502381 - Genome Res. 2009 Aug;19(8):1450-4 – reference: 27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714 – reference: 1658178 - J Math Biol. 1991;29(8):743-61 – reference: 21041110 - Curr Opin Microbiol. 2010 Dec;13(6):781-5 – reference: 25750180 - Mol Biol Evol. 2015 Jul;32(7):1672-83 – reference: 16099836 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12112-6 – reference: 27015004 - ISME J. 2016 Nov;10 (11):2744-2754 – reference: 16569502 - Trends Microbiol. 2006 May;14(5):200-6 – reference: 17251179 - Mol Biol Evol. 2007 Apr;24(4):969-81 – reference: 15812007 - Appl Environ Microbiol. 2005 Apr;71(4):1822-8 – reference: 23812535 - Sci Rep. 2013;3:2101 – reference: 21265746 - Biochem Soc Trans. 2011 Jan;39(1):51-7 – reference: 27819663 - Nat Microbiol. 2016 Nov 07;2:16208 – reference: 15035042 - Nat Rev Microbiol. 2003 Nov;1(2):127-36 – reference: 16138100 - Nat Rev Microbiol. 2005 Sep;3(9):722-32 – reference: 25428365 - Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 – reference: 23129619 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44 – reference: 25971664 - Genetics. 2015 Jul;200(3):935-46 – reference: 22589730 - PLoS Genet. 2012;8(5):e1002651 – reference: 20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2 – reference: 23315380 - Genome Biol Evol. 2013;5(1):233-42 – reference: 20051986 - Nat Rev Genet. 2010 Feb;11(2):97-108 – reference: 19325885 - PLoS Genet. 2009 Mar;5(3):e1000437 – reference: 11557807 - Nucleic Acids Res. 2001 Sep 15;29(18):3742-56 – reference: 11814653 - FEMS Microbiol Lett. 2002 Jan 10;206(2):131-41 – reference: 28053163 - Nucleic Acids Res. 2017 Jan 4;45(D1):D210-D218 – reference: 19047403 - Infect Immun. 2009 Feb;77(2):642-56 – reference: 24578351 - Genetics. 2014 May;197(1):291-9 – reference: 17550600 - Genome Biol. 2007;8(6):R102 – reference: 21940637 - Genome Biol Evol. 2011;3:1175-86 – reference: 25937627 - Trends Biochem Sci. 2015 Jun;40(6):309-17 – reference: 24307531 - Biol Lett. 2013 Dec 04;9(6):20130838 – reference: 23221803 - MBio. 2012 Dec 04;3(6):e00456-12 – reference: 15531157 - Curr Opin Genet Dev. 2004 Dec;14(6):627-33 – reference: 16761366 - Brief Bioinform. 2006 Mar;7(1):70-85 – reference: 19086349 - Curr Opin Microbiol. 2008 Oct;11(5):472-7 – reference: 16824010 - Annu Rev Microbiol. 2006;60:327-49 – reference: 24995872 - Annu Rev Microbiol. 2014;68:195-215 – reference: 27317782 - G3 (Bethesda). 2016 Aug 09;6(8):2583-91 – reference: 12379152 - BMC Evol Biol. 2002 Oct 14;2:18 – reference: 18845571 - Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54 – reference: 22761588 - PLoS Genet. 2012 Jun;8(6):e1002787 – reference: 25881094 - BMC Evol Biol. 2015 Mar 13;15:43 – reference: 26732503 - BMC Genomics. 2016 Jan 05;17:27 – reference: 25141959 - BMC Biol. 2014 Aug 21;12:66 – reference: 15357876 - BMC Evol Biol. 2004 Sep 09;4:32 – reference: 2842425 - J Math Biol. 1988;26(3):347-57 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 27896818 - Bioessays. 2017 Jan;39(1):1-9 – reference: 27503291 - Genome Biol Evol. 2016 Sep 26;8(9):2856-2869 – reference: 14631042 - Science. 2003 Nov 21;302(5649):1401-4 – reference: 23077252 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92 – reference: 22252506 - J Math Biol. 2013 Jan;66(1-2):95-114 – reference: 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719 – reference: 27744412 - Mol Biol Evol. 2017 Jan;34(1):93-109 – reference: 9720287 - Genetica. 1998;102-103(1-6):349-58 – reference: 21666019 - Appl Environ Microbiol. 2011 Aug;77(15):5458-66 – reference: 18978059 - J Bacteriol. 2009 Jan;191(1):65-73 – reference: 18629076 - Comp Funct Genomics. 2003;4(4):432-41 – reference: 9580988 - Mol Biol Evol. 1998 May;15(5):583-9 – reference: 23034216 - Genome Biol Evol. 2012;4(11):1176-87 – reference: 14525925 - Genome Res. 2003 Oct;13(10):2229-35 – reference: 27702904 - Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407 – reference: 7911771 - Genetics. 1994 Mar;136(3):721-30 – reference: 20700439 - PLoS Genet. 2010 Aug 05;6(8):null – reference: 20439257 - Bioinformatics. 2010 Jun 15;26(12):1481-7 – reference: 18039386 - Biol Direct. 2007 Nov 26;2:32 – reference: 25976352 - Mol Biol Evol. 2015 Sep;32(9):2383-92 – reference: 17347521 - Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57 – reference: 24967627 - PLoS Comput Biol. 2014 Jun 26;10(6):e1003680 – reference: 26575626 - Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5 – reference: 18218090 - BMC Genomics. 2008 Jan 24;9:36 – reference: 15207871 - Res Microbiol. 2004 Jun;155(5):387-98 – reference: 20333185 - Genome Biol Evol. 2009 Jun 27;1:145-52 – reference: 22993722 - Front Cell Infect Microbiol. 2012 Sep 13;2:119 |
SSID | ssj0009580 |
Score | 2.4456542 |
Snippet | We combine mathematical modeling of genome evolution with comparative analysis of prokaryotic genomes to estimate the relative contributions of selection and... Evolution of microbes is dominated by horizontal gene transfer and the incessant host–parasite arms race that promotes the evolution of diverse antiparasite... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E5616 |
SubjectTerms | Abundance Antitoxins Autoimmunity Bias Biological evolution Biological Sciences Comparative analysis Copy number Data processing Effects Evolution Evolutionary genetics Family size Fitness Gene transfer Genes Genetics Genomes Information processing Mathematical models Parasites Plasmids PNAS Plus Population number Prokaryotes Prophages Reproduction (copying) Reproductive fitness Toxins Transposons |
Title | Disentangling the effects of selection and loss bias on gene dynamics |
URI | https://www.jstor.org/stable/26486507 https://www.ncbi.nlm.nih.gov/pubmed/28652353 https://www.proquest.com/docview/1946416438 https://www.proquest.com/docview/1914290303 https://pubmed.ncbi.nlm.nih.gov/PMC5514749 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgUBjISh6EqpXGcODlOo9OAtezQSr1FtuNoESVFS3vZX8Kfy3P8kXYqE3CJqsSxXL9f3pffB0LvsywumaRFwHgaB7QgRSCKkgYjUvCRyoSMpc53nkyTizn9sogXvd6vrailzVoM5e3evJL_oSrcA7rqLNl_oKyfFG7Ab6AvXIHCcP0rGn-q2tQhnYlrk562wjOatsONizZegjAciIq3pwMwoRoUphd9s62eXnlx1rjgganzFp52uSeWITSDYHA17ToZfwa5d2tOcnj1wyPmTEsebo8bzMF850Gd8PpmI0zEbhshVHs58ZWvm1q5apKT6vs1r5bWy2v9FGHrAA07P8V9q91m0ASEJjVp1UNleDKoNEFCTVdRz7RN6qlFp80vNzx4DCphslc6ADvTLY1r3gxDNtJlGd00O3W4p9_y8_nlZT4bL2YP0EMCBkjk_EC-nHNqkpvscl3RKBZ9vDP9jr5jQl73GTN3Y3K3lJzZE_TYWif41EDtEPVU_RQdug3EJ7ZI-YdnaLyDPQxIwRZ7eFVijz0M2MMae1hjD8MNjT3ssPcczc_Hs7OLwLbkCCSl0TqQPOWChGGSpUylI0aSuFCsTMJUkiIUIhZhpARpuxawtIgLAt_7iEswI1JQ1Xl0hA7qVa1eIhwpmSWsFCTRNQcZqP4c9i8hqaSkVBnvo6HbuFzaevW6bcoyb-MmWJTrnc67ne6jE__CT1Oq5c9Dj1pK-HE6zhNsFdZHx440uf3Q4T34N2C30Cjto3f-MbBhfbbGa7Xa6DEhaHYgMaM-emEo2U0OU5Mohidsh8Z-gC7xvvukrq7bUu_anmE0e3X_sl6jR90Xd4wO1jcb9QZ05bV428L2N51dv8o |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+the+effects+of+selection+and+loss+bias+on+gene+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Iranzo%2C+Jaime&rft.au=Cuesta%2C+Jos%C3%A9+A&rft.au=Manrubia%2C+Susanna&rft.au=Katsnelson%2C+Mikhail+I&rft.date=2017-07-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=28&rft.spage=E5616&rft_id=info:doi/10.1073%2Fpnas.1704925114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |