Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia

Immunotherapies targeting the PD-1/PD-L1 pathway have shown some success in cervical and vulvar squamous cell carcinomas, but little is known about the potential vulnerability of these tumors to other checkpoint inhibitors. TIM-3 is a checkpoint molecule that exerts immunosuppressive function via it...

Full description

Saved in:
Bibliographic Details
Published inModern pathology Vol. 33; no. 6; pp. 1182 - 1192
Main Authors Curley, Jacob, Conaway, Mark R., Chinn, Zachary, Duska, Linda, Stoler, Mark, Mills, Anne M.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunotherapies targeting the PD-1/PD-L1 pathway have shown some success in cervical and vulvar squamous cell carcinomas, but little is known about the potential vulnerability of these tumors to other checkpoint inhibitors. TIM-3 is a checkpoint molecule that exerts immunosuppressive function via its interaction with Gal-9. TIM-3 and Gal-9 have been identified on a variety of malignancies but have not been studied in cervical and vulvar cancers, nor has their relationship to PD-L1 been established. Sixty-three cervical and vulvar invasive ( n  = 34) and intraepithelial lesions ( n  = 29) were assessed for TIM-3, Gal-9, and PD-L1 in tumor/lesional cells and associated immune cells. Tumoral TIM-3 expression was identified in 85% of squamous cell carcinomas but only 21% of intraepithelial lesions ( p  < 0.0001). When immune cells were also accounted for, 97% of invasive and 41% of intraepithelial lesions had a TIM-3 combined positive score (CPS) ≥ 1 ( p  < 0.0001). Tumoral membranous expression of Gal-9 was seen in 82% of squamous cell carcinomas and 31% of intraepithelial lesions ( p  = 0.0001); nearly all cases had Gal-9-positive immune cells. Tumoral PD-L1 was seen in 71% of squamous cell carcinomas and 10% of intraepithelial lesions ( p  < 0.0001), while the PD-L1 CPS was ≥1 in 82 and 21%, respectively ( p  < 0.0001). There were no significant differences in TIM-3, GAL-9, or PD-L1 expression in cervical vs. vulvar neoplasms, nor was HPV status significantly associated with any of the three markers. Dual TIM-3/Gal-9 expression was present in the majority (86%) of PD-L1-positive cases including 100% of PD-L1-positive squamous cell carcinomas, suggesting a possible role for TIM-3 checkpoint inhibition in concert with anti-PD-1/PD-L1.
AbstractList Immunotherapies targeting the PD-1/PD-L1 pathway have shown some success in cervical and vulvar squamous cell carcinomas, but little is known about the potential vulnerability of these tumors to other checkpoint inhibitors. TIM-3 is a checkpoint molecule that exerts immunosuppressive function via its interaction with Gal-9. TIM-3 and Gal-9 have been identified on a variety of malignancies but have not been studied in cervical and vulvar cancers, nor has their relationship to PD-L1 been established. Sixty-three cervical and vulvar invasive (n = 34) and intraepithelial lesions (n = 29) were assessed for TIM-3, Gal-9, and PD-L1 in tumor/lesional cells and associated immune cells. Tumoral TIM-3 expression was identified in 85% of squamous cell carcinomas but only 21% of intraepithelial lesions (p < 0.0001). When immune cells were also accounted for, 97% of invasive and 41% of intraepithelial lesions had a TIM-3 combined positive score (CPS) ≥ 1 (p < 0.0001). Tumoral membranous expression of Gal-9 was seen in 82% of squamous cell carcinomas and 31% of intraepithelial lesions (p = 0.0001); nearly all cases had Gal-9-positive immune cells. Tumoral PD-L1 was seen in 71% of squamous cell carcinomas and 10% of intraepithelial lesions (p < 0.0001), while the PD-L1 CPS was ≥1 in 82 and 21%, respectively (p < 0.0001). There were no significant differences in TIM-3, GAL-9, or PD-L1 expression in cervical vs. vulvar neoplasms, nor was HPV status significantly associated with any of the three markers. Dual TIM-3/Gal-9 expression was present in the majority (86%) of PD-L1-positive cases including 100% of PD-L1-positive squamous cell carcinomas, suggesting a possible role for TIM-3 checkpoint inhibition in concert with anti-PD-1/PD-L1.
Immunotherapies targeting the PD-1/PD-L1 pathway have shown some success in cervical and vulvar squamous cell carcinomas, but little is known about the potential vulnerability of these tumors to other checkpoint inhibitors. TIM-3 is a checkpoint molecule that exerts immunosuppressive function via its interaction with Gal-9. TIM-3 and Gal-9 have been identified on a variety of malignancies but have not been studied in cervical and vulvar cancers, nor has their relationship to PD-L1 been established. Sixty-three cervical and vulvar invasive ( n  = 34) and intraepithelial lesions ( n  = 29) were assessed for TIM-3, Gal-9, and PD-L1 in tumor/lesional cells and associated immune cells. Tumoral TIM-3 expression was identified in 85% of squamous cell carcinomas but only 21% of intraepithelial lesions ( p  < 0.0001). When immune cells were also accounted for, 97% of invasive and 41% of intraepithelial lesions had a TIM-3 combined positive score (CPS) ≥ 1 ( p  < 0.0001). Tumoral membranous expression of Gal-9 was seen in 82% of squamous cell carcinomas and 31% of intraepithelial lesions ( p  = 0.0001); nearly all cases had Gal-9-positive immune cells. Tumoral PD-L1 was seen in 71% of squamous cell carcinomas and 10% of intraepithelial lesions ( p  < 0.0001), while the PD-L1 CPS was ≥1 in 82 and 21%, respectively ( p  < 0.0001). There were no significant differences in TIM-3, GAL-9, or PD-L1 expression in cervical vs. vulvar neoplasms, nor was HPV status significantly associated with any of the three markers. Dual TIM-3/Gal-9 expression was present in the majority (86%) of PD-L1-positive cases including 100% of PD-L1-positive squamous cell carcinomas, suggesting a possible role for TIM-3 checkpoint inhibition in concert with anti-PD-1/PD-L1.
Author Curley, Jacob
Conaway, Mark R.
Stoler, Mark
Chinn, Zachary
Duska, Linda
Mills, Anne M.
Author_xml – sequence: 1
  givenname: Jacob
  surname: Curley
  fullname: Curley, Jacob
  organization: Department of Pathology, University of Virginia
– sequence: 2
  givenname: Mark R.
  surname: Conaway
  fullname: Conaway, Mark R.
  organization: Department of Public Health Sciences, Division of Translational Research and Applied Statistics, University of Virginia
– sequence: 3
  givenname: Zachary
  surname: Chinn
  fullname: Chinn, Zachary
  organization: Department of Pathology, University of Virginia
– sequence: 4
  givenname: Linda
  surname: Duska
  fullname: Duska, Linda
  organization: Departments of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Virginia
– sequence: 5
  givenname: Mark
  surname: Stoler
  fullname: Stoler, Mark
  organization: Department of Pathology, University of Virginia
– sequence: 6
  givenname: Anne M.
  orcidid: 0000-0002-2686-4857
  surname: Mills
  fullname: Mills, Anne M.
  email: AnneMills1@gmail.com
  organization: Department of Pathology, University of Virginia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32139873$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD8AFWeLCxWB7nMThhsq_SlvBoZwtrzNZ3CZ2aicrOPDd8XZLKyHBwbLl-b3nGb8TchRiQEKeC_5acNBvshLQtIyLshQAg0dkJSrgjEtdHZEV1225bCt5TE5yvuJcqErLJ-QYpIBWN7Aiv9YxXvuwpZPNM_36nq3FW4o_poQ5-xho7KkfxyUgdd_RXU_Rh5lenl8woDZ01M-ZDn67P27tgG72gbXUB-ow7byzwy21W4adTTTfLHaMS6YB4zTY7O1T8ri3Q8Znd_sp-fbxw-XZZ7b-8un87N2aOaVgZg5qUG1v665Xqu55J3StkWtEvdEcRSdrW0noJMeu0QiNgmqDjWyc7LUsc56SVwffKcWbBfNsRp8dDoMtrSzZyL0EyudUBX35F3oVlxRKd0aqRrWtUKr5PyV4XWuoRaHEgXIp5pywN1Pyo00_jeBmn6A5JGhKgmafoIGieXHnvGxG7O4VfyIrgDwAuZTCFtPD0_92_Q0CbaYc
CitedBy_id crossref_primary_10_1007_s12026_024_09483_8
crossref_primary_10_1002_cjp2_345
crossref_primary_10_1016_j_tranon_2023_101794
crossref_primary_10_1136_jitc_2021_003671
crossref_primary_10_1038_s41379_021_00882_y
crossref_primary_10_1097_PAS_0000000000001506
crossref_primary_10_1210_clinem_dgaa701
crossref_primary_10_2147_DDDT_S374672
crossref_primary_10_1097_PGP_0000000000001003
crossref_primary_10_12677_ACM_2021_118496
crossref_primary_10_1053_j_semdp_2021_10_006
crossref_primary_10_20517_2394_4722_2024_15
crossref_primary_10_1053_j_semdp_2020_09_010
crossref_primary_10_1097_HEP_0000000000000028
crossref_primary_10_3390_biomedicines10092081
crossref_primary_10_12677_ACM_2023_133702
crossref_primary_10_1080_16078454_2023_2288481
crossref_primary_10_3389_fimmu_2022_851622
crossref_primary_10_1002_smll_202301749
crossref_primary_10_3389_fimmu_2024_1357601
crossref_primary_10_3390_cancers13246365
crossref_primary_10_18632_aging_202841
crossref_primary_10_3389_fendo_2022_859013
crossref_primary_10_1016_j_jprot_2021_104454
crossref_primary_10_1166_jbt_2022_2884
crossref_primary_10_1177_15330338231208846
crossref_primary_10_3389_fcell_2023_1332205
Cites_doi 10.21873/anticanres.12042
10.1001/jamaoncol.2017.0013
10.1158/1078-0432.CCR-04-0861
10.1080/2162402X.2016.1273309
10.1371/journal.pone.0053834
10.1186/s12885-018-4510-7
10.1371/journal.pone.0175755
10.1111/1471-0528.15124
10.1084/jem.20100637
10.1038/s41379-019-0251-7
10.1158/0008-5472.CAN-13-2908
10.1056/NEJMoa1200690
10.3390/ijms18030645
10.1097/MD.0000000000005749
10.1111/imr.12520
10.1007/s00428-018-2364-7
10.1002/ijc.10436
10.3389/fphys.2018.00452
10.7314/APJCP.2012.13.6.2503
10.5152/tjg.2017.16346
10.1158/1078-0432.CCR-13-3271
10.1371/journal.pone.0081799
10.1038/s41598-017-17034-5
10.5858/arpa.2018-0043-OA
10.1200/JCO.2016.34.15_suppl.5515
10.1038/ni987
10.1016/j.prp.2018.08.009
10.1038/ni1271
10.1007/s00432-008-0352-z
10.1038/s41379-018-0039-1
10.1186/s13148-018-0512-1
10.1016/j.ejca.2017.01.001
10.1097/IGC.0000000000000122
10.1093/annonc/mdu450
10.3109/0284186X.2015.1071918
10.1007/s00262-014-1537-8
10.1159/000491090
10.1007/s00432-019-02915-1
10.1200/JCO.18.01265
10.1093/glycob/cwn062
10.1200/JCO.2017.74.5471
10.1097/AOG.0b013e31825bc6e8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2020
The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2020
– notice: The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2020.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7RV
7TK
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1038/s41379-019-0433-3
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
ProQuest Nursing and Allied Health Journals
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Central Student
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0285
EndPage 1192
ExternalDocumentID 10_1038_s41379_019_0433_3
32139873
Genre Journal Article
GroupedDBID ---
-Q-
.GJ
0R~
0SF
123
29M
2WC
36B
39C
3V.
4.4
53G
5RE
70F
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AALRI
AANZL
AAQQT
AASDW
AAWBL
AAWTL
AAXUO
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
ADVLN
AEJRE
AENEX
AEXYK
AFJKZ
AFKRA
AFOSN
AFSHS
AGAYW
AGEZK
AGHAI
AHMBA
AHSBF
AILAN
AITUG
AJRNO
AKRWK
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYLF
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DU5
E3Z
EBS
EE.
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HZ~
IWAJR
JSO
KQ8
LK8
M0L
M1P
M7P
NAO
NAPCQ
NQJWS
O9-
OK1
OWW
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
WOW
YFH
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c443t-c36349fa6df446f0d1868e08ee8b80e1d26a523d20ed78e37435be727c2f82873
IEDL.DBID BENPR
ISSN 0893-3952
IngestDate Fri Oct 25 06:12:11 EDT 2024
Thu Oct 10 20:49:36 EDT 2024
Thu Oct 10 20:47:16 EDT 2024
Thu Sep 26 16:09:45 EDT 2024
Sat Sep 28 08:22:18 EDT 2024
Fri Oct 11 20:47:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-c36349fa6df446f0d1868e08ee8b80e1d26a523d20ed78e37435be727c2f82873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2686-4857
OpenAccessLink https://www.nature.com/articles/s41379-019-0433-3.pdf
PMID 32139873
PQID 2410668361
PQPubID 33743
PageCount 11
ParticipantIDs proquest_miscellaneous_2374334585
proquest_journals_2474991447
proquest_journals_2410668361
crossref_primary_10_1038_s41379_019_0433_3
pubmed_primary_32139873
springer_journals_10_1038_s41379_019_0433_3
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Kidlington
PublicationSubtitle Publishing innovative clinical and translational research in the pathology of human disease
PublicationTitle Modern pathology
PublicationTitleAbbrev Mod Pathol
PublicationTitleAlternate Mod Pathol
PublicationYear 2020
Publisher Nature Publishing Group US
Elsevier Limited
Publisher_xml – name: Nature Publishing Group US
– name: Elsevier Limited
References Rimm DL, Han G, Taube JM,  Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–8.
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.
Grimm C, Polterauer S, Natter C, Rahhal J, Hefler L, Tempfer CB, et al. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet Gynecol. 2012;120:152–9.
Nobumoto A, Nagahara K, Oomizu S, Katoh S, Nishi N, Takeshita K, et al. Galectin-9 suppresses tumor metastasis by blocking adhesion to endothelium and extracellular matrices. Glycobiology. 2008;18:735–44.
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.
Frenel JS, Le Tourneau C, O’Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 Trial. J Clin Oncol. 2017;35:4035–41.
Mills AM, Zadeh S, Sloan EA, Chinn Z, Modesitt SC, Ring KL, et al. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas. Mod Pathol. 2018;31:1282–90.
Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur J Cancer. 2017;74:55–72.
Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: Recommendations by an International TILS Working Group 2014. Ann Oncol. 2015;26:259–71.
Davar D, Boasberg PD, Eroglu Z, et al. A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immunother Cancer. 2018;6 Suppl 1:115.
Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, et al. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncoimmunology. 2017;6:e1273309.
Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janjic B, et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res. 2014;74:1045–55.
Choschzick M, Gut A, Fink D. PD-L1 receptor expression in vulvar carcinomas is HPV-independent. Virchows Arch. 2018;473:513–6.
Moore M, Ring KL, Mills AM. TIM-3 in endometrial carcinomas: an immunotherapeutic target expressed by mismatch repair-deficient and intact cancers. Mod Pathol. 2019;32:1168–79.
Zhu D, Jiang XH, Jiang YH, Ding WC, Zhang CL, Shen H, et al. Amplification and overexpression of TP63 and MYC as biomarkers for transition of cervical intraepithelial neoplasia to cervical cancer. Int J Gynecol Cancer. 2014;24:643–8.
Vanderstraeten A, Luyten C, Verbist G, Tuyaerts S, Amant F. Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol Immunother. 2014;63:545–57.
Thangarajah F, Morgenstern B, Pahmeyer C, Schiffmann LM, Puppe J, Mallmann P, et al. Clinical impact of PD-L1 and PD-1 expression in squamous cell cancer of the vulva. J Cancer Res Clin Oncol. 2019;145:1651–60.
Hurt CN, Jones SEF, Madden TA, Fiander A, Nordin AJ, Naik R, et al. Recurrence of vulval intraepithelial neoplasia following treatment with cidofovir or imiquimod: results from a multicentre, randomised, phase II trial (RT3VIN). BJOG Int J Obstet Gynaecol. 2018;125:1171.
Xu H, Lin G, Huang C, Zhu W, Miao Q, Fan X, et al. Assessment of concordance between 22C3 and SP142 immunohistochemistry assays regarding PD-L1 expression in non-small cell lung cancer. Sci Rep. 2017;7:16956.
Liang M, Ueno M, Oomizu S, Arikawa T, Shinonaga R, Zhang S, et al. Galectin-9 expression links to malignant potential of cervical squamous cell carcinoma. J Cancer Res Clin Oncol. 2008;134:899–907.
Irie A, Yamauchi A, Kontani K, Kihara M, Liu D, Shirato Y, et al. Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer. Clin Cancer Res. 2005;11:2962–8.
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.
Jiang J, Jin M-S, Kong F, Cao D, Ma HX, Jia Z, et al. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS ONE. 2013;8:e81799.
Zhou X, Sun L, Jing D, Xu G, Zhang J, Lin L, et al. Galectin-9 expression predicts favorable clinical outcome in solid tumors: a systematic review and meta-analysis. Front Physiol. 2018;9:452.
Gadducci A, Guerrieri ME. Immune checkpoint inhibitors in gynecological cancers: update of literature and perspectives of clinical research. Anticancer Res. 2017;37:5955–65.
Shields LBE, Gordinier ME. Pembrolizumab in recurrent squamous cell carcinoma of the vulva: case report and review of the literature. Gynecol Obstet Invest. 2019;84:94–8.
Yoon HK, Kim TH, Park S, Jung H, Quan X, Park SJ, et al. Effect of anthracycline and taxane on the expression of programmed cell death ligand-1 and galectin-9 in triple-negative breast cancer. Pathol—Res Pract. 2018;214:1626–31.
Frenel JS, Le Tourneau C, O'Neil BH, Ott PA, Piha-Paul SA, Gomez-Roca CA, et al. Pembrolizumab in patients with advanced cervical squamous cell cancer: preliminary results from the phase Ib KEYNOTE-028 study. J Clin Oncol. 2016;34.
Sánchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. Tim-3 inhibits T helper type 1–mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.
Choi SIl, Seo Kwoo, Kook MC, Kim CG, Kim YW, Cho SJ, et al. Prognostic value of tumoral expression of galectin-9 in gastric cancer. Turkish J Gastroenterol. 2017;28:166–70.
Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37:1470–8.
Li X, Hu W, Zheng X,  Zhang C, Du P, Zheng Z, et al. Emerging immune checkpoints for cancer therapy. Acta Oncol. 2015;54:1706–13.
Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi Net, al. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. Int J Cancer. 2002;99:809–16.
Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 2018;143:330–7.
Du W, Yang M, Turner A,  Xu C, Ferris RL, Huang J, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18:10.
Zhang Z-Y, Dong J-H, Chen Y-W, Wang XQ, Li CH, Wang J, et al. Galectin-9 acts as a prognostic factor with antimetastatic potential in hepatocellular carcinoma. Asian Pac J Cancer Prev. 2012;13:2503–9.
Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.
van de Sande AJM, Koeneman MM, Gerestein CG, Kruse AJ, van Kemenade FJ, van Beekhuizen HJ. TOPical Imiquimod treatment of high-grade Cervical intraepithelial neoplasia (TOPIC trial): study protocol for a randomized controlled trial. BMC Cancer. 2018;18:655.
Li Z, Li N, Li F, Zhou Z, Sang J, Chen Y, et al. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Med (Baltim). 2016;95:e5749.
Cao Y, Zhou X, Huang X, Li Q, Gao L, Jiang L, et al. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS ONE. 2013;8:e53834.
Sasidharan Nair V, El Salhat H, Taha RZ, John A, Ali BR, Elkord Eet. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics. 2018;10:78.
Linedale R, Schmidt C, King BT, Ganko AG, Simpson F, Panizza BJ, et al. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS ONE. 2017;12:e0175755.
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276:97–111.
10.1038/s41379-019-0433-3_bib9
10.1038/s41379-019-0433-3_bib8
10.1038/s41379-019-0433-3_bib7
10.1038/s41379-019-0433-3_bib2
10.1038/s41379-019-0433-3_bib27
10.1038/s41379-019-0433-3_bib1
10.1038/s41379-019-0433-3_bib28
10.1038/s41379-019-0433-3_bib29
10.1038/s41379-019-0433-3_bib6
10.1038/s41379-019-0433-3_bib23
10.1038/s41379-019-0433-3_bib5
10.1038/s41379-019-0433-3_bib24
10.1038/s41379-019-0433-3_bib4
10.1038/s41379-019-0433-3_bib25
10.1038/s41379-019-0433-3_bib3
10.1038/s41379-019-0433-3_bib26
10.1038/s41379-019-0433-3_bib41
10.1038/s41379-019-0433-3_bib20
10.1038/s41379-019-0433-3_bib42
10.1038/s41379-019-0433-3_bib21
10.1038/s41379-019-0433-3_bib43
10.1038/s41379-019-0433-3_bib22
10.1038/s41379-019-0433-3_bib40
10.1038/s41379-019-0433-3_bib16
10.1038/s41379-019-0433-3_bib38
10.1038/s41379-019-0433-3_bib17
10.1038/s41379-019-0433-3_bib39
10.1038/s41379-019-0433-3_bib18
10.1038/s41379-019-0433-3_bib19
10.1038/s41379-019-0433-3_bib12
10.1038/s41379-019-0433-3_bib34
10.1038/s41379-019-0433-3_bib13
10.1038/s41379-019-0433-3_bib35
10.1038/s41379-019-0433-3_bib14
10.1038/s41379-019-0433-3_bib36
10.1038/s41379-019-0433-3_bib15
10.1038/s41379-019-0433-3_bib37
10.1038/s41379-019-0433-3_bib30
10.1038/s41379-019-0433-3_bib31
10.1038/s41379-019-0433-3_bib10
10.1038/s41379-019-0433-3_bib32
10.1038/s41379-019-0433-3_bib11
10.1038/s41379-019-0433-3_bib33
References_xml – ident: 10.1038/s41379-019-0433-3_bib2
  doi: 10.21873/anticanres.12042
– ident: 10.1038/s41379-019-0433-3_bib23
  doi: 10.1001/jamaoncol.2017.0013
– ident: 10.1038/s41379-019-0433-3_bib33
  doi: 10.1158/1078-0432.CCR-04-0861
– ident: 10.1038/s41379-019-0433-3_bib35
  doi: 10.1080/2162402X.2016.1273309
– ident: 10.1038/s41379-019-0433-3_bib13
  doi: 10.1371/journal.pone.0053834
– ident: 10.1038/s41379-019-0433-3_bib41
  doi: 10.1186/s12885-018-4510-7
– ident: 10.1038/s41379-019-0433-3_bib38
  doi: 10.1371/journal.pone.0175755
– ident: 10.1038/s41379-019-0433-3_bib43
  doi: 10.1111/1471-0528.15124
– ident: 10.1038/s41379-019-0433-3_bib30
  doi: 10.1084/jem.20100637
– ident: 10.1038/s41379-019-0433-3_bib16
  doi: 10.1038/s41379-019-0251-7
– ident: 10.1038/s41379-019-0433-3_bib29
– ident: 10.1038/s41379-019-0433-3_bib31
  doi: 10.1158/0008-5472.CAN-13-2908
– ident: 10.1038/s41379-019-0433-3_bib1
  doi: 10.1056/NEJMoa1200690
– ident: 10.1038/s41379-019-0433-3_bib28
  doi: 10.3390/ijms18030645
– ident: 10.1038/s41379-019-0433-3_bib37
  doi: 10.1097/MD.0000000000005749
– ident: 10.1038/s41379-019-0433-3_bib12
  doi: 10.1111/imr.12520
– ident: 10.1038/s41379-019-0433-3_bib40
  doi: 10.1007/s00428-018-2364-7
– ident: 10.1038/s41379-019-0433-3_bib34
  doi: 10.1002/ijc.10436
– ident: 10.1038/s41379-019-0433-3_bib17
  doi: 10.3389/fphys.2018.00452
– ident: 10.1038/s41379-019-0433-3_bib19
  doi: 10.7314/APJCP.2012.13.6.2503
– ident: 10.1038/s41379-019-0433-3_bib18
  doi: 10.5152/tjg.2017.16346
– ident: 10.1038/s41379-019-0433-3_bib3
  doi: 10.1158/1078-0432.CCR-13-3271
– ident: 10.1038/s41379-019-0433-3_bib15
  doi: 10.1371/journal.pone.0081799
– ident: 10.1038/s41379-019-0433-3_bib22
  doi: 10.1038/s41598-017-17034-5
– ident: 10.1038/s41379-019-0433-3_bib24
  doi: 10.5858/arpa.2018-0043-OA
– ident: 10.1038/s41379-019-0433-3_bib7
  doi: 10.1200/JCO.2016.34.15_suppl.5515
– ident: 10.1038/s41379-019-0433-3_bib11
  doi: 10.1038/ni987
– ident: 10.1038/s41379-019-0433-3_bib20
  doi: 10.1016/j.prp.2018.08.009
– ident: 10.1038/s41379-019-0433-3_bib10
  doi: 10.1038/ni1271
– ident: 10.1038/s41379-019-0433-3_bib32
  doi: 10.1007/s00432-008-0352-z
– ident: 10.1038/s41379-019-0433-3_bib26
  doi: 10.1038/s41379-018-0039-1
– ident: 10.1038/s41379-019-0433-3_bib36
  doi: 10.1186/s13148-018-0512-1
– ident: 10.1038/s41379-019-0433-3_bib8
  doi: 10.1016/j.ejca.2017.01.001
– ident: 10.1038/s41379-019-0433-3_bib14
  doi: 10.1097/IGC.0000000000000122
– ident: 10.1038/s41379-019-0433-3_bib25
  doi: 10.1093/annonc/mdu450
– ident: 10.1038/s41379-019-0433-3_bib27
  doi: 10.3109/0284186X.2015.1071918
– ident: 10.1038/s41379-019-0433-3_bib9
  doi: 10.1007/s00262-014-1537-8
– ident: 10.1038/s41379-019-0433-3_bib6
  doi: 10.1159/000491090
– ident: 10.1038/s41379-019-0433-3_bib39
  doi: 10.1007/s00432-019-02915-1
– ident: 10.1038/s41379-019-0433-3_bib5
  doi: 10.1200/JCO.18.01265
– ident: 10.1038/s41379-019-0433-3_bib21
  doi: 10.1093/glycob/cwn062
– ident: 10.1038/s41379-019-0433-3_bib4
  doi: 10.1200/JCO.2017.74.5471
– ident: 10.1038/s41379-019-0433-3_bib42
  doi: 10.1097/AOG.0b013e31825bc6e8
SSID ssj0014582
Score 2.4885628
Snippet Immunotherapies targeting the PD-1/PD-L1 pathway have shown some success in cervical and vulvar squamous cell carcinomas, but little is known about the...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1182
SubjectTerms 13/51
692/699/67/1517/1371
692/699/67/1857
Adult
B7-H1 Antigen - metabolism
Biomarkers, Tumor - metabolism
Carcinoma, Squamous Cell - metabolism
Carcinoma, Squamous Cell - pathology
Cervical cancer
Cervix
Female
Galectin-9
Galectins - metabolism
Genital cancers
Hepatitis A Virus Cellular Receptor 2 - metabolism
Human papillomavirus
Humans
Immune checkpoint
Immunotherapy
Laboratory Medicine
Lesions
Lymphocytes, Tumor-Infiltrating - metabolism
Lymphocytes, Tumor-Infiltrating - pathology
Medicine
Medicine & Public Health
Pathology
PD-1 protein
PD-L1 protein
Squamous cell carcinoma
Tumors
Uterine Cervical Neoplasms - metabolism
Uterine Cervical Neoplasms - pathology
Vulvar Neoplasms - metabolism
Vulvar Neoplasms - pathology
Title Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia
URI https://link.springer.com/article/10.1038/s41379-019-0433-3
https://www.ncbi.nlm.nih.gov/pubmed/32139873
https://www.proquest.com/docview/2410668361
https://www.proquest.com/docview/2474991447
https://search.proquest.com/docview/2374334585
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrUBcKiivlFIZiRPIamI7icMFAW3VQreqUCvtLXJiu4qostsmW8GB_85MHluhqtwSTRSNPfa8vrEH4F2hnLDCeC68i7nyOuRaoSPntdWqSFLlu_Zt05Pk8Fx9m8WzIeHWDGWVo07sFLWdl5Qj30VLg9ZRyyT6tLji1DWK0NWhhcYarAuMFMQE1r_sn5z-WOEIhAp1fmQmucxiMeKaUu82qL5TqhUicEAi-V_LdMfdvAOVdhbo4AlsDK4j-9zL-ik8cPUmPOybSf7ehEfTASZ_Bn-OKStbX7CFaVp2usePo4_M_RpqXms296yicyGOocjKn4t5Vbfs7GjKJTO1ZVXbsMvqgh7JfqBGrHnGqpqVnWJBHoh0s7y8MdesuVoaSh-wmmrR6Uzmczg_2D_7esiHPgu8VEq2vJSJVJk3ifUYHPrQ0hX6LtTO6UKHLrIiMRivWhE6m2on0emIC4eOTyk83ZcvX8CkntfuFbDMmaiMC22FjZQrrDE6TW2ibWwyp0sbwPtxjvNFf51G3sHgUue9QHIUSE4CyWUA26MU8mFnNfntOriHnGIMh1FiGsDbFRm3DOEgBmdiid_QCCQujTiAl71wV8xIgS4xDimAD6O0b39-L6db_-f0NTwWFKZ3yZttmLTXS_cGfZm22IG1dJbuDMsW3_aOvv8FeeLw_Q
link.rule.ids 315,783,787,12070,21402,27938,27939,31733,31734,33758,33759,43324,43819,74081,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEY8LgvIKFDASJ5DVxHYShwtCQLWF3YrDVtpb5MR2FVF5t022ggP_nZlsshWqyi3SRNE4Y8_rG88AvK2UE1YYz4V3KVdex1wrdOS8tlpVWa58P75tdpRNjtW3RboYEm7tUFY56sReUdtlTTnyfbQ0aB21zJKPqzNOU6MIXR1GaNyEW9SHi3rn54ttwJUQJtR7kYXkskjFiGpKvd-i8s6pUoigAYnkf-3SFWfzClDa25-DB3B_cBzZp42kH8INF3bh9maU5O9duDMbQPJH8GdKOdlwwlam7diPL3yafGDu11DxGtjSs4ZuhTiGAqt_rpZN6Nj8cMYlM8GypmvZaXNCj2Q9UB8GXrAmsLpXK8gDkS7WpxfmnLVna0PJAxaoEp1uZD6G44Ov888TPkxZ4LVSsuO1zKQqvMmsx9DQx5Ya6LtYO6crHbvEisxgtGpF7GyunUSXI60cuj218NQtXz6BnbAM7hmwwpmkTitthU2Uq6wxOs9tpm1qCqdrG8G78R-Xq00zjbIHwaUuNwIpUSAlCaSUEeyNUiiHc9WWl7vgGnKOERzGiHkEb7ZkPDCEghj8E2t8h1YgcWukETzdCHfLjBToEOOSIng_Svvy49dy-vz_nL6Gu5P5bFpOD4--v4B7ggL2Po2zBzvd-dq9RK-mq171W_cvjXLwqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagiIpLBeWVUsBInEDWJraTOFwQoqxa2K16aKW9RU5sVxGVd9tkKzjw35lJnK1QVW6RJorG-cbztoeQ95W03HDtGHc2ZdKpmCkJjpxTRskqy6Xrx7fNj7PDM_l9kS5C_1Mb2ipHndgrarOsMUc-AUsD1lGJLJm40BZxcjD9vLpkOEEKK61hnMZ98iCXYOhAtvPFJvhKsD7Ue5SFYKJI-VjhFGrSgiLPsWsIywQCyP_aqFuO562iaW-Lpo_JTnAi6ZcB9SfknvW75OEwVvL3Ltmeh4L5U_JnhvlZf05Xuu3oyQGbJZ-o_RW6Xz1dOtrgCRFLAbz652rZ-I6eHs2ZoNob2nQtvWjO8REtCehGzwraeFr3KgZ4QNL1-uJaX9H2cq0xkUA9dqXj6cxn5Gz67fTrIQsTF1gtpehYLTIhC6cz4yBMdLHBy_RtrKxVlYptYnimIXI1PLYmV1aA-5FWFlygmju8OV88J1t-6e1LQgurkzqtlOEmkbYyWqs8N5kyqS6sqk1EPoz_uFwNF2uUfUFcqHIApARASgSkFBHZH1Eowx5ryxuJuIOcQzQH8WIekXcbMmwerIho-BNreAdXIEA00oi8GMDdMCM4OMewpIh8HNG--fidnO79n9O3ZBuktpwdHf94RR5xjN37jM4-2equ1vY1ODhd9aaX3L8LRPTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Looking+past+PD-L1%3A+expression+of+immune+checkpoint+TIM-3+and+its+ligand+galectin-9+in+cervical+and+vulvar+squamous+neoplasia&rft.jtitle=Modern+pathology&rft.au=Curley%2C+Jacob&rft.au=Conaway%2C+Mark+R&rft.au=Chinn%2C+Zachary&rft.au=Duska%2C+Linda&rft.date=2020-06-01&rft.eissn=1530-0285&rft.volume=33&rft.issue=6&rft.spage=1182&rft.epage=1192&rft_id=info:doi/10.1038%2Fs41379-019-0433-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon