VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection
Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant...
Saved in:
Published in | Plants (Basel) Vol. 14; no. 3; p. 468 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.02.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network’s capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet. |
---|---|
AbstractList | Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet. Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet.Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet. |
Audience | Academic |
Author | Lin, Xueying Su, Wen-Hao Xiang, Zhaowei Wang, Yujin |
AuthorAffiliation | 2 College of Engineering, China Agricultural University, Haidian, Beijing 100083, China 1 School of Mechanical Engineering, Chongqing University of Technology, Banan, Chongqing 400054, China; wangyujin@cqut.edu.cn (Y.W.); lxueying0524@163.com (X.L.); xiangzhaowei@cqut.edu.cn (Z.X.) |
AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering, Chongqing University of Technology, Banan, Chongqing 400054, China; wangyujin@cqut.edu.cn (Y.W.); lxueying0524@163.com (X.L.); xiangzhaowei@cqut.edu.cn (Z.X.) – name: 2 College of Engineering, China Agricultural University, Haidian, Beijing 100083, China |
Author_xml | – sequence: 1 givenname: Yujin orcidid: 0000-0001-5982-4088 surname: Wang fullname: Wang, Yujin – sequence: 2 givenname: Xueying orcidid: 0009-0007-5104-5646 surname: Lin fullname: Lin, Xueying – sequence: 3 givenname: Zhaowei surname: Xiang fullname: Xiang, Zhaowei – sequence: 4 givenname: Wen-Hao orcidid: 0000-0003-1745-4722 surname: Su fullname: Su, Wen-Hao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39943029$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkt9vFCEQxzemxtbaVx_NJr7ow1Z-LQt9MU21esk1l1ht4hOZZeHKZXc5gfXsfy_n1doTCJDhw3eYYZ4XB6MfTVG8xOiUUonerXsYU8QMUcS4eFIcEUJo1TSsOXi0PyxOYlyh3EQemD8rDqmUjCIij4qzm6vq-2K-OCu3c7lx6ba8uYKhhdL6UF6nAJvWhHBXXvZ-Y0IsP5hkdHJ-fFE8tdBHc3K_HhffLj9-vfhczRefZhfn80ozRlPV2vw83XQt1Bhz3WmujSRcIkCiqTsLxHRMA2EWkEaIMsuoAIxbzozEVtLjYrbT7Tys1Dq4AcKd8uDUH4MPSwUhOd0bVdeCMsa6GnjOiEVCkwa67NxKAlrXWev9Tms9tYPptBlzgP2e6P7J6G7V0v9UGAuCCSdZ4c29QvA_JhOTGlzUps9fYfwUFcWcE95wKTL6-j905acw5lxtqVqwhgmeqdMdtYQcgRutz4517p0ZnM4fbl22nwtKOGpqtM3H270LmUnmV1rCFKOaXX_ZZ189jvch0L8F8M-7Dj7GYOwDgpHaFpnaLzL6G_9SwYA |
Cites_doi | 10.1109/LRA.2018.2849498 10.3389/fpls.2024.1416940 10.1109/CVPR.2018.00913 10.1016/j.compind.2018.03.010 10.1007/s11042-023-16034-0 10.1016/j.biosystemseng.2021.11.011 10.1109/WACV56688.2023.00372 10.1016/j.measurement.2019.01.041 10.1007/s40747-023-01261-7 10.3390/agriculture14010036 10.1109/CVPRW50498.2020.00203 10.1016/j.compag.2023.108605 10.1016/j.compag.2020.105796 10.1016/j.compag.2021.106586 10.1016/j.biosystemseng.2024.09.023 10.3390/app14135683 10.1007/s11042-023-17679-7 10.1016/j.compag.2024.109387 10.3390/plants13172388 10.1016/j.biosystemseng.2023.11.008 10.1109/ACCESS.2023.3286545 10.1016/j.engappai.2024.107886 10.3390/horticulturae8100904 10.32604/csse.2023.027647 10.1007/s11119-019-09673-7 10.3389/fpls.2024.1381694 10.1016/j.compag.2022.107179 10.1016/j.compag.2022.106727 10.1016/j.atech.2022.100151 10.3390/s21196565 10.1007/s11042-023-16733-8 10.1016/j.compag.2024.108674 10.1016/j.compag.2024.109404 10.1016/j.biosystemseng.2018.05.009 10.1007/s11119-013-9341-6 10.1016/j.compag.2020.105742 10.1038/s41598-024-73035-1 10.1016/j.biosystemseng.2020.03.008 10.1016/j.cviu.2023.103787 10.34133/2020/3521852 10.1016/j.measurement.2020.107703 10.1142/S0218001413540074 10.1016/j.indcrop.2011.04.002 10.1016/j.biosystemseng.2023.06.007 10.1016/j.compag.2021.106641 10.1016/j.compag.2015.10.009 10.1007/s00500-023-08186-w |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.3390/plants14030468 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_5583444d5a6046f08c27adc7df92acc5 PMC11821262 A832607509 39943029 10_3390_plants14030468 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the science and technology research program of Chongqing Municipal Education Commission of China grantid: No. KJQN202101131 & No. KJQN202401120 – fundername: the Chongqing Science and Technology Commission of China grantid: No. cstc2020jcyj-msxmX0242 – fundername: the cooperative project between universities in Chongqing and affiliated institutes of Chinese Academy of Sciences grantid: No. HZ2021011 – fundername: National Natural Science Foundation of China grantid: No. 32371991 & No. 52275007 – fundername: National Natural Science Foundation of China grantid: 32371991; 52275007 – fundername: Cooperative Project Between Universities in Chongqing; Affiliated Institutes of Chinese Academy of Sciences grantid: HZ2021011 – fundername: Chongqing Municipal Education Commission of China grantid: KJQN202101131; KJQN202401120 – fundername: Chongqing Science and Technology Commission of China grantid: cstc2020jcyj-msxmX0242 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM PMFND 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c443t-bf030c7dba5116cdc6ce92690a0875dfa2ed4ca24fa0c0034f438a11b64e91f93 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 18:28:59 EDT 2025 Thu Jul 10 17:12:49 EDT 2025 Fri Jul 25 12:01:09 EDT 2025 Tue Jun 10 20:59:33 EDT 2025 Fri Jun 27 05:13:04 EDT 2025 Thu Apr 03 07:05:19 EDT 2025 Tue Jul 01 02:37:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | object detection state space model strawberry flower YOLOv8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-bf030c7dba5116cdc6ce92690a0875dfa2ed4ca24fa0c0034f438a11b64e91f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5982-4088 0009-0007-5104-5646 0000-0003-1745-4722 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants14030468 |
PMID | 39943029 |
PQID | 3165847486 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5583444d5a6046f08c27adc7df92acc5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11821262 proquest_miscellaneous_3166267698 proquest_journals_3165847486 gale_infotracacademiconefile_A832607509 gale_incontextgauss_ISR_A832607509 pubmed_primary_39943029 crossref_primary_10_3390_plants14030468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250205 |
PublicationDateYYYYMMDD | 2025-02-05 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250205 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_38) 2024; 248 Yang (ref_34) 2023; 235 Mu (ref_21) 2023; 4 Lin (ref_1) 2020; 21 Stopar (ref_10) 2014; 15 Wu (ref_19) 2020; 178 Dias (ref_23) 2018; 3 Mithra (ref_7) 2023; 27 Li (ref_47) 2024; 217 ref_18 McCarthy (ref_12) 2022; 194 Ergen (ref_16) 2020; 158 Punithavathi (ref_29) 2023; 44 Chen (ref_46) 2024; 132 ref_25 Zhang (ref_26) 2022; 192 ref_20 ref_28 Li (ref_3) 2022; 193 Yu (ref_24) 2024; 10 Lawal (ref_36) 2024; 83 Liu (ref_48) 2024; 218 Tian (ref_15) 2020; 193 Liu (ref_5) 2018; 172 ref_31 ref_30 Li (ref_32) 2024; 83 David (ref_42) 2020; 2020 Shuai (ref_41) 2023; 231 ref_39 Xu (ref_22) 2023; 11 Qi (ref_45) 2024; 226 Hu (ref_37) 2024; 226 Aquino (ref_4) 2015; 119 Palacios (ref_2) 2020; 178 Peng (ref_35) 2022; 199 Thorp (ref_9) 2011; 34 ref_44 Li (ref_40) 2021; 212 ref_43 Budak (ref_17) 2019; 137 Dias (ref_13) 2018; 99 Diwedi (ref_27) 2024; 83 ref_49 ref_8 Kong (ref_33) 2024; 21 Dorj (ref_11) 2013; 27 Bai (ref_14) 2024; 237 ref_6 |
References_xml | – volume: 3 start-page: 3003 year: 2018 ident: ref_23 article-title: Multispecies fruit flower detection using a refined semantic segmentation network publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2849498 – ident: ref_28 doi: 10.3389/fpls.2024.1416940 – ident: ref_49 doi: 10.1109/CVPR.2018.00913 – volume: 99 start-page: 17 year: 2018 ident: ref_13 article-title: Apple flower detection using deep convolutional networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.03.010 – volume: 83 start-page: 8281 year: 2024 ident: ref_36 article-title: Study on strawberry fruit detection using lightweight algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16034-0 – volume: 212 start-page: 347 year: 2021 ident: ref_40 article-title: A real-time table grape detection method based on improved YOLOv4-tiny network in complex background publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.11.011 – ident: ref_43 doi: 10.1109/WACV56688.2023.00372 – volume: 137 start-page: 7 year: 2019 ident: ref_17 article-title: Efficient deep features selections and classification for flower species recognition publication-title: Measurement doi: 10.1016/j.measurement.2019.01.041 – volume: 10 start-page: 2047 year: 2024 ident: ref_24 article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning publication-title: Complex Intell. Syst. doi: 10.1007/s40747-023-01261-7 – ident: ref_25 doi: 10.3390/agriculture14010036 – ident: ref_39 doi: 10.1109/CVPRW50498.2020.00203 – volume: 217 start-page: 108605 year: 2024 ident: ref_47 article-title: An efficient detection method for litchi fruits in a natural environment based on improved YOLOv7-Litchi publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108605 – volume: 178 start-page: 105796 year: 2020 ident: ref_2 article-title: Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105796 – volume: 192 start-page: 106586 year: 2022 ident: ref_26 article-title: Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106586 – volume: 248 start-page: 97 year: 2024 ident: ref_38 article-title: LSANNet: A lightweight convolutional neural network for maize leaf disease identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2024.09.023 – ident: ref_31 doi: 10.3390/app14135683 – volume: 83 start-page: 55751 year: 2024 ident: ref_32 article-title: DENS-YOLOv6: A small object detection model for garbage detection on water surface publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17679-7 – volume: 226 start-page: 109387 year: 2024 ident: ref_45 article-title: A novel method for tomato stem diameter measurement based on improved YOLOv8-seg and RGB-D data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109387 – ident: ref_6 doi: 10.3390/plants13172388 – volume: 237 start-page: 1 year: 2024 ident: ref_14 article-title: An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.11.008 – volume: 11 start-page: 64358 year: 2023 ident: ref_22 article-title: Cucumber flower detection based on YOLOv5s-SE7 within greenhouse environments publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3286545 – volume: 132 start-page: 107886 year: 2024 ident: ref_46 article-title: CSPNeXt: A new efficient token hybrid backbone publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.107886 – ident: ref_20 doi: 10.3390/horticulturae8100904 – volume: 44 start-page: 2759 year: 2023 ident: ref_29 article-title: Computer vision and deep learning-enabled weed detection model for precision agriculture publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.027647 – volume: 21 start-page: 387 year: 2020 ident: ref_1 article-title: A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field publication-title: Precis. Agric. doi: 10.1007/s11119-019-09673-7 – ident: ref_30 doi: 10.3389/fpls.2024.1381694 – volume: 199 start-page: 107179 year: 2022 ident: ref_35 article-title: Weed detection in paddy field using an improved RetinaNet network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107179 – volume: 194 start-page: 106727 year: 2022 ident: ref_12 article-title: Automated variety trial plot growth and flowering detection for maize and soybean using machine vision publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106727 – volume: 4 start-page: 100151 year: 2023 ident: ref_21 article-title: Mask R-CNN based apple flower detection and king flower identification for precision pollination publication-title: Smart Agric. Technol. doi: 10.1016/j.atech.2022.100151 – ident: ref_44 doi: 10.3390/s21196565 – volume: 83 start-page: 33823 year: 2024 ident: ref_27 article-title: CNN-based medicinal plant identification and classification using optimized SVM publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16733-8 – volume: 218 start-page: 108674 year: 2024 ident: ref_48 article-title: Upgrading swin-B transformer-based model for accurately identifying ripe strawberries by coupling task-aligned one-stage object detection mechanism publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108674 – ident: ref_18 – volume: 226 start-page: 109404 year: 2024 ident: ref_37 article-title: Real-time lettuce-weed localization and weed severity classification based on lightweight YOLO convolutional neural networks for intelligent intra-row weed control publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109404 – volume: 172 start-page: 110 year: 2018 ident: ref_5 article-title: A robust automated flower estimation system for grape vines publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.05.009 – volume: 15 start-page: 466 year: 2014 ident: ref_10 article-title: Flowering estimation in apple orchards by image analysis publication-title: Precis. Agric. doi: 10.1007/s11119-013-9341-6 – volume: 178 start-page: 105742 year: 2020 ident: ref_19 article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105742 – ident: ref_8 doi: 10.1038/s41598-024-73035-1 – volume: 193 start-page: 264 year: 2020 ident: ref_15 article-title: Instance segmentation of apple flowers using the improved mask R–CNN model publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.008 – volume: 235 start-page: 103787 year: 2023 ident: ref_34 article-title: 3DF-FCOS: Small object detection with 3D features based on FCOS publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2023.103787 – volume: 2020 start-page: 3521852 year: 2020 ident: ref_42 article-title: Global Wheat Head Detection (GWHD) Dataset: A large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods publication-title: Plant Phenomics doi: 10.34133/2020/3521852 – volume: 158 start-page: 107703 year: 2020 ident: ref_16 article-title: Classification of flower species by using features extracted from the intersection of feature selection methods in convolutional neural network models publication-title: Measurement doi: 10.1016/j.measurement.2020.107703 – volume: 27 start-page: 1354007 year: 2013 ident: ref_11 article-title: A novel technique for tangerine yield prediction using flower detection algorithm publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001413540074 – volume: 34 start-page: 1150 year: 2011 ident: ref_9 article-title: Color image segmentation approach to monitor flowering in lesquerella publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2011.04.002 – volume: 21 start-page: 200325 year: 2024 ident: ref_33 article-title: Detection model based on improved faster-RCNN in apple orchard environment publication-title: Intell. Syst. Appl. – volume: 231 start-page: 117 year: 2023 ident: ref_41 article-title: An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.06.007 – volume: 193 start-page: 106641 year: 2022 ident: ref_3 article-title: Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106641 – volume: 119 start-page: 92 year: 2015 ident: ref_4 article-title: Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.10.009 – volume: 27 start-page: 8345 year: 2023 ident: ref_7 article-title: Cucurbitaceous family flower inferencing using deep transfer learning approaches: CuCuFlower UAV imagery data publication-title: Soft Comput. doi: 10.1007/s00500-023-08186-w |
SSID | ssj0000800816 |
Score | 2.2893257 |
Snippet | Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 468 |
SubjectTerms | Ablation Accuracy Agricultural equipment Agricultural technology Algorithms Artificial neural networks Computer vision Crop damage Damage detection Datasets Digital agriculture Equipment and supplies Experiments Flowers Image processing Machine learning Machine vision Modules Neural networks object detection Object recognition Performance evaluation Plant reproduction Sensitivity analysis state space model State space models Strawberries strawberry flower YOLOv8 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKGXqoVCl5cMqsQpIrEdJ-HGawWoWyReoifLT2gFWbQPVfx7Zpyw2ohDL73k4FhW5ps4800y-YaQ79blZfAyTXTmWCIKmyYGwn4irC5sqLxzUbtz8FOe3ojzu_xurtUX1oQ18sANcHt5jp0ghMu1hFQupKVlhXa2cKFi2tqoXgoxby6Z-tPyoDKTjUojh7x-7_kR60pQnQ6WKTtRKIr1v38kz8Wkbr3kXADqfyafWuZID5or_kI--HqJLB4Ogd29LJP920Hy6-LHxT7FI8XXq_R2oJ-MpkBLKYrQ_jV-NHqh_cfYGI0e-0ksw6q_kpv-yfXRadL2RUisEHySmABGAAJGA1uS1llpfcUgzdUoT--CZt4B1kwEnVoUoAmClzrLjBS-ykLFV8hCPaz9N0I90C_ruTFV5oUwzBheBEy6NIxwWfTI7htO6rmRv1CQNiCiqotojxwijLNZKFsdB8CZqnWm-pcze2QHnaBQmKLGypd7PR2P1dnVpTqAR4-M_AauqZ0UhgCe1e2PBGARall1Zm68OVO1W3OseIakqxCl7JHt2WnYVPilRNd-OI1zINErZAVmrTa-nxkGjE7wlMHiZeeu6FjePVP_fojC3ZjMZUyytf-B1Tr5yLAXMVaQ5xtkYTKa-k0gSBOzFffCK_P2DYg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAFUZ4LLQoIiZPVxHacpBfUha5axLao0KqcLD8LUkmWfQj13zPj9S6NkHrJIXYiz9ie-caZfEPIW-vKOniZU104RkVlc2rA7VNhdWVD452L3J3jY3l4Jj5dlBfpwG2W0ipXNjEaatdZPCPf5QX6ykrU8v3kN8WqUfh1NZXQuEs2wQTXEHxtDg-Ov5yuT1kQD9WFXLI1cojvdydXmF-CLHUQGdY9bxRJ-_83zTd8Uz9v8oYjGj0kDxKCzPaXU75F7vj2Ebk37ADlXT8me-dj-v3k88lehtcMj1mz87H-ZXQG8DRDMto_xk-n19noKhZIyz76eUzHap-Qs9HBtw-HNNVHoFYIPqcmgBC2ckYDapLWWWl9wyDc1UhT74Jm3oHOmQg6t0hEEwSvdVEYKXxThIY_JRtt1_rnJPMAw6znxjSFF8IwY3gVMPjScIfLakDerfSkJksaDAXhA2pU9TU6IENU47oX0lfHG930UqXdoMoSy3sIV2oJz4S8tqzSDkQJDdPWlgPyBidBIUFFixkwl3oxm6mjr6dqH0yQjDgHxpQ6hQ6UZ3X6oQAkQk6rXs_t1WSqtEVn6t-CGpDX62bYXPjFRLe-W8Q-EPBVsgGxni3nfi0YIDvBcwYvr3uroid5v6X9-SMSeGNQVzDJXtw-rpfkPsNqw5gjXm6Tjfl04XcAAs3Nq7TO_wLO7QZj priority: 102 providerName: ProQuest |
Title | VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39943029 https://www.proquest.com/docview/3165847486 https://www.proquest.com/docview/3166267698 https://pubmed.ncbi.nlm.nih.gov/PMC11821262 https://doaj.org/article/5583444d5a6046f08c27adc7df92acc5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1By4ELonwGSmQQEieDvV7v2pUQatpGBZEWFVKV02o_CyjYxUkE-fed2TihFj1w8cFeW57ZHc979vgNIS-NzQvveBKr1NKYCZPEGtJ-zIwSxpfO2qDdOTrih2P24Sw_-1v_1Dpwei21w35S42by-s-vxTsI-LfIOIGyv7mYYMkICs8B2Stukk3ISgKDdNRC_R8tMipCJ1TMiAAqmVhqOF5ziU6OClL-_z6wr2SsbjXllfQ0vEvutLgy2l0uhC1yw1X3yK1BDdhvcZ_snI7ir8cfj3ci3Eb48jU6HamfWkUAWiOUqP2tXdMsouEktE2L9t0sFGlVD8h4ePBl7zBuuybEhrFsFmsPRhhhtQIsxY013LiSAglWKF5vvaLOwkxQ5lViUJ7Gs6xQaao5c2Xqy-wh2ajqyj0mkQNwZlymdZk6xjTVOhMeKZmCPRkXPfJq5Sd5sRTHkEAq0KOy69EeGaAb16NQ1DrsqJtz2caIzHNs-sFsrjic45PCUKEsmOJLqozJe-QFToJE2YoK62LO1Xw6le8_n8hdeDDxgH7gntpBvgbnGdX-ZgAWodJVZ-T2ajLlat3JLEVIJljBe-T5-jCEHH5HUZWr52EM0EDBSzDr0XLu14YB3mNZQuHiRWdVdCzvHqm-fwuy3kj1Usrpk__26lNym2I7Yiwiz7fJxqyZu2eAkWa6TzYHB0efTvrhHUM_hMIl3PEQdg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEG8CBQwCcbJqr9druxJCDW2U0CRFpa3a07LPglTskIeq_Cl-IzN-hFpI3HrJwV5HO7OzM9-sx98Q8labOHWWB74MDfVZogNfQdj3mZaJdpk1puTuHE_44IR9PovPNsjv5lsYLKtsfGLpqE2h8Yx8OwoxViYs5R-nv3zsGoVvV5sWGpVZHNjVFaRs8w_DPVjfd5T2948_Dfy6q4CvGYsWvnJg1zoxSgLW4Nporm1GIUmUSO5unKTWwEwpczLQSN_iWJTKMFSc2Sx0SL4ELn-TRZDKdMhmb3_y5Wh9qoP4Kw15xQ4ZRVmwPb3EehZkxYNMNG1Fv7JJwL-h4FosbNdpXgt8_Xvkbo1Yvd3KxO6TDZs_ILd6BaDK1UOyczr2zw9Hhzse_np4rOudjuVPJT2Awx6S314pO5utvP5l2ZDN27OLsvwrf0RObkRzj0knL3L7lHgWYJ-2kVJZaBlTVKkocZjsSbgS8aRL3jd6EtOKdkNAuoIaFW2NdkkP1bgehXTZ5YVidiHq3SfiGNuJMBNLDs-4INU0kQZEcRmVWsdd8gYXQSAhRo4VNxdyOZ-L4dcjsQsuj5e4CuZUD3IFKE_L-gMGkAg5tFojt5rFFLVLmIu_Btwlr9e3YTPjGxqZ22JZjoEEM-EZiPWkWvu1YIAkWRRQ-PO0ZRUtydt38h_fS8JwTCJDyumz_8_rFbk9OB6PxGg4OXhO7lDsdIz16fEW6SxmS_sC4NdCvaxt3iPfbnqb_QE7R0Po |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKUJcEG8CBQwCcbJir9druxJCDWnU0CatCq3a07LPglTskIeq_DV-HTN-hFpI3HrJwV5HO7OzM9-sx98Q8labOHWWB74MDfVZogNfQdj3mZaJdpk1puTuHE_43gn7fBafbZDfzbcwWFbZ-MTSUZtC4xl5LwoxViYs5T1Xl0UcDYYfp7987CCFb1qbdhqViezb1RWkb_MPowGs9TtKh7tfP-35dYcBXzMWLXzlwMZ1YpQE3MG10VzbjELCKJHo3ThJrYFZU-ZkoJHKxbEolWGoOLNZ6JCICdz_ZgJZUdAhm_3dydHx-oQHsVga8oopMoqyoDe9xNoWZMiDrDRtRcKyYcC_YeFaXGzXbF4LgsN75G6NXr2dytzukw2bPyC3-gUgzNVDsn069s8PDw63Pfz18IjXOx3Ln0p6AI09JMK9UnY2W3nDy7I5mzewi7IULH9ETm5Ec49JJy9y-5R4FiCgtpFSWWgZU1SpKHGY-Em4EvGkS943ehLTioJDQOqCGhVtjXZJH9W4HoXU2eWFYnYh6p0o4hhbizATSw7PuCDVNJEGRHEZlVrHXfIGF0EgOUaOZnYhl_O5GH05Fjvg_niJsWBO9SBXgPK0rD9mAImQT6s1cqtZTFG7h7n4a8xd8np9GzY2vq2RuS2W5RhINhOegVhPqrVfCwaokkUBhT9PW1bRkrx9J__xvSQPx4QypJw--_-8XpHbsL3EwWiy_5zcodj0GEvV4y3SWcyW9gUgsYV6WZu8R77d9C77Azc5SB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VM-YOLO%3A+YOLO+with+VMamba+for+Strawberry+Flowers+Detection&rft.jtitle=Plants+%28Basel%29&rft.au=Wang%2C+Yujin&rft.au=Lin%2C+Xueying&rft.au=Xiang%2C+Zhaowei&rft.au=Su%2C+Wen-Hao&rft.date=2025-02-05&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=14&rft.issue=3&rft.spage=468&rft_id=info:doi/10.3390%2Fplants14030468&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants14030468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |