VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection

Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 14; no. 3; p. 468
Main Authors Wang, Yujin, Lin, Xueying, Xiang, Zhaowei, Su, Wen-Hao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.02.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network’s capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet.
AbstractList Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet.
Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet.Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops. Nevertheless, the deployment of computer vision algorithms on agricultural machinery with limited computing resources represents a significant challenge. Algorithm optimization with the aim of achieving an equilibrium between accuracy and computational power represents a pivotal research topic and is the core focus of our work. In this paper, we put forward a lightweight hybrid network, named VM-YOLO, for the purpose of detecting strawberry flowers. Firstly, a multi-branch architecture-based fast convolutional sampling module, designated as Light C2f, is proposed to replace the C2f module in the backbone of YOLOv8, in order to enhance the network's capacity to perceive multi-scale features. Secondly, a state space model-based lightweight neck with a global sensitivity field, designated as VMambaNeck, is proposed to replace the original neck of YOLOv8. After the training and testing of the improved algorithm on a self-constructed strawberry flower dataset, a series of experiments is conducted to evaluate the performance of the model, including ablation experiments, multi-dataset comparative experiments, and comparative experiments against state-of-the-art algorithms. The results show that the VM-YOLO network exhibits superior performance in object detection tasks across diverse datasets compared to the baseline. Furthermore, the results also demonstrate that VM-YOLO has better performances in the mAP, inference speed, and the number of parameters compared to the YOLOv6, Faster R-CNN, FCOS, and RetinaNet.
Audience Academic
Author Lin, Xueying
Su, Wen-Hao
Xiang, Zhaowei
Wang, Yujin
AuthorAffiliation 2 College of Engineering, China Agricultural University, Haidian, Beijing 100083, China
1 School of Mechanical Engineering, Chongqing University of Technology, Banan, Chongqing 400054, China; wangyujin@cqut.edu.cn (Y.W.); lxueying0524@163.com (X.L.); xiangzhaowei@cqut.edu.cn (Z.X.)
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering, Chongqing University of Technology, Banan, Chongqing 400054, China; wangyujin@cqut.edu.cn (Y.W.); lxueying0524@163.com (X.L.); xiangzhaowei@cqut.edu.cn (Z.X.)
– name: 2 College of Engineering, China Agricultural University, Haidian, Beijing 100083, China
Author_xml – sequence: 1
  givenname: Yujin
  orcidid: 0000-0001-5982-4088
  surname: Wang
  fullname: Wang, Yujin
– sequence: 2
  givenname: Xueying
  orcidid: 0009-0007-5104-5646
  surname: Lin
  fullname: Lin, Xueying
– sequence: 3
  givenname: Zhaowei
  surname: Xiang
  fullname: Xiang, Zhaowei
– sequence: 4
  givenname: Wen-Hao
  orcidid: 0000-0003-1745-4722
  surname: Su
  fullname: Su, Wen-Hao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39943029$$D View this record in MEDLINE/PubMed
BookMark eNpdkt9vFCEQxzemxtbaVx_NJr7ow1Z-LQt9MU21esk1l1ht4hOZZeHKZXc5gfXsfy_n1doTCJDhw3eYYZ4XB6MfTVG8xOiUUonerXsYU8QMUcS4eFIcEUJo1TSsOXi0PyxOYlyh3EQemD8rDqmUjCIij4qzm6vq-2K-OCu3c7lx6ba8uYKhhdL6UF6nAJvWhHBXXvZ-Y0IsP5hkdHJ-fFE8tdBHc3K_HhffLj9-vfhczRefZhfn80ozRlPV2vw83XQt1Bhz3WmujSRcIkCiqTsLxHRMA2EWkEaIMsuoAIxbzozEVtLjYrbT7Tys1Dq4AcKd8uDUH4MPSwUhOd0bVdeCMsa6GnjOiEVCkwa67NxKAlrXWev9Tms9tYPptBlzgP2e6P7J6G7V0v9UGAuCCSdZ4c29QvA_JhOTGlzUps9fYfwUFcWcE95wKTL6-j905acw5lxtqVqwhgmeqdMdtYQcgRutz4517p0ZnM4fbl22nwtKOGpqtM3H270LmUnmV1rCFKOaXX_ZZ189jvch0L8F8M-7Dj7GYOwDgpHaFpnaLzL6G_9SwYA
Cites_doi 10.1109/LRA.2018.2849498
10.3389/fpls.2024.1416940
10.1109/CVPR.2018.00913
10.1016/j.compind.2018.03.010
10.1007/s11042-023-16034-0
10.1016/j.biosystemseng.2021.11.011
10.1109/WACV56688.2023.00372
10.1016/j.measurement.2019.01.041
10.1007/s40747-023-01261-7
10.3390/agriculture14010036
10.1109/CVPRW50498.2020.00203
10.1016/j.compag.2023.108605
10.1016/j.compag.2020.105796
10.1016/j.compag.2021.106586
10.1016/j.biosystemseng.2024.09.023
10.3390/app14135683
10.1007/s11042-023-17679-7
10.1016/j.compag.2024.109387
10.3390/plants13172388
10.1016/j.biosystemseng.2023.11.008
10.1109/ACCESS.2023.3286545
10.1016/j.engappai.2024.107886
10.3390/horticulturae8100904
10.32604/csse.2023.027647
10.1007/s11119-019-09673-7
10.3389/fpls.2024.1381694
10.1016/j.compag.2022.107179
10.1016/j.compag.2022.106727
10.1016/j.atech.2022.100151
10.3390/s21196565
10.1007/s11042-023-16733-8
10.1016/j.compag.2024.108674
10.1016/j.compag.2024.109404
10.1016/j.biosystemseng.2018.05.009
10.1007/s11119-013-9341-6
10.1016/j.compag.2020.105742
10.1038/s41598-024-73035-1
10.1016/j.biosystemseng.2020.03.008
10.1016/j.cviu.2023.103787
10.34133/2020/3521852
10.1016/j.measurement.2020.107703
10.1142/S0218001413540074
10.1016/j.indcrop.2011.04.002
10.1016/j.biosystemseng.2023.06.007
10.1016/j.compag.2021.106641
10.1016/j.compag.2015.10.009
10.1007/s00500-023-08186-w
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants14030468
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_5583444d5a6046f08c27adc7df92acc5
PMC11821262
A832607509
39943029
10_3390_plants14030468
Genre Journal Article
GrantInformation_xml – fundername: the science and technology research program of Chongqing Municipal Education Commission of China
  grantid: No. KJQN202101131 & No. KJQN202401120
– fundername: the Chongqing Science and Technology Commission of China
  grantid: No. cstc2020jcyj-msxmX0242
– fundername: the cooperative project between universities in Chongqing and affiliated institutes of Chinese Academy of Sciences
  grantid: No. HZ2021011
– fundername: National Natural Science Foundation of China
  grantid: No. 32371991 & No. 52275007
– fundername: National Natural Science Foundation of China
  grantid: 32371991; 52275007
– fundername: Cooperative Project Between Universities in Chongqing; Affiliated Institutes of Chinese Academy of Sciences
  grantid: HZ2021011
– fundername: Chongqing Municipal Education Commission of China
  grantid: KJQN202101131; KJQN202401120
– fundername: Chongqing Science and Technology Commission of China
  grantid: cstc2020jcyj-msxmX0242
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
NPM
PMFND
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c443t-bf030c7dba5116cdc6ce92690a0875dfa2ed4ca24fa0c0034f438a11b64e91f93
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 18:28:59 EDT 2025
Thu Jul 10 17:12:49 EDT 2025
Fri Jul 25 12:01:09 EDT 2025
Tue Jun 10 20:59:33 EDT 2025
Fri Jun 27 05:13:04 EDT 2025
Thu Apr 03 07:05:19 EDT 2025
Tue Jul 01 02:37:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords object detection
state space model
strawberry flower
YOLOv8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-bf030c7dba5116cdc6ce92690a0875dfa2ed4ca24fa0c0034f438a11b64e91f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5982-4088
0009-0007-5104-5646
0000-0003-1745-4722
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants14030468
PMID 39943029
PQID 3165847486
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_5583444d5a6046f08c27adc7df92acc5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11821262
proquest_miscellaneous_3166267698
proquest_journals_3165847486
gale_infotracacademiconefile_A832607509
gale_incontextgauss_ISR_A832607509
pubmed_primary_39943029
crossref_primary_10_3390_plants14030468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250205
PublicationDateYYYYMMDD 2025-02-05
PublicationDate_xml – month: 2
  year: 2025
  text: 20250205
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_38) 2024; 248
Yang (ref_34) 2023; 235
Mu (ref_21) 2023; 4
Lin (ref_1) 2020; 21
Stopar (ref_10) 2014; 15
Wu (ref_19) 2020; 178
Dias (ref_23) 2018; 3
Mithra (ref_7) 2023; 27
Li (ref_47) 2024; 217
ref_18
McCarthy (ref_12) 2022; 194
Ergen (ref_16) 2020; 158
Punithavathi (ref_29) 2023; 44
Chen (ref_46) 2024; 132
ref_25
Zhang (ref_26) 2022; 192
ref_20
ref_28
Li (ref_3) 2022; 193
Yu (ref_24) 2024; 10
Lawal (ref_36) 2024; 83
Liu (ref_48) 2024; 218
Tian (ref_15) 2020; 193
Liu (ref_5) 2018; 172
ref_31
ref_30
Li (ref_32) 2024; 83
David (ref_42) 2020; 2020
Shuai (ref_41) 2023; 231
ref_39
Xu (ref_22) 2023; 11
Qi (ref_45) 2024; 226
Hu (ref_37) 2024; 226
Aquino (ref_4) 2015; 119
Palacios (ref_2) 2020; 178
Peng (ref_35) 2022; 199
Thorp (ref_9) 2011; 34
ref_44
Li (ref_40) 2021; 212
ref_43
Budak (ref_17) 2019; 137
Dias (ref_13) 2018; 99
Diwedi (ref_27) 2024; 83
ref_49
ref_8
Kong (ref_33) 2024; 21
Dorj (ref_11) 2013; 27
Bai (ref_14) 2024; 237
ref_6
References_xml – volume: 3
  start-page: 3003
  year: 2018
  ident: ref_23
  article-title: Multispecies fruit flower detection using a refined semantic segmentation network
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2849498
– ident: ref_28
  doi: 10.3389/fpls.2024.1416940
– ident: ref_49
  doi: 10.1109/CVPR.2018.00913
– volume: 99
  start-page: 17
  year: 2018
  ident: ref_13
  article-title: Apple flower detection using deep convolutional networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.010
– volume: 83
  start-page: 8281
  year: 2024
  ident: ref_36
  article-title: Study on strawberry fruit detection using lightweight algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16034-0
– volume: 212
  start-page: 347
  year: 2021
  ident: ref_40
  article-title: A real-time table grape detection method based on improved YOLOv4-tiny network in complex background
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.11.011
– ident: ref_43
  doi: 10.1109/WACV56688.2023.00372
– volume: 137
  start-page: 7
  year: 2019
  ident: ref_17
  article-title: Efficient deep features selections and classification for flower species recognition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.041
– volume: 10
  start-page: 2047
  year: 2024
  ident: ref_24
  article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-023-01261-7
– ident: ref_25
  doi: 10.3390/agriculture14010036
– ident: ref_39
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 217
  start-page: 108605
  year: 2024
  ident: ref_47
  article-title: An efficient detection method for litchi fruits in a natural environment based on improved YOLOv7-Litchi
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108605
– volume: 178
  start-page: 105796
  year: 2020
  ident: ref_2
  article-title: Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105796
– volume: 192
  start-page: 106586
  year: 2022
  ident: ref_26
  article-title: Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106586
– volume: 248
  start-page: 97
  year: 2024
  ident: ref_38
  article-title: LSANNet: A lightweight convolutional neural network for maize leaf disease identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2024.09.023
– ident: ref_31
  doi: 10.3390/app14135683
– volume: 83
  start-page: 55751
  year: 2024
  ident: ref_32
  article-title: DENS-YOLOv6: A small object detection model for garbage detection on water surface
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17679-7
– volume: 226
  start-page: 109387
  year: 2024
  ident: ref_45
  article-title: A novel method for tomato stem diameter measurement based on improved YOLOv8-seg and RGB-D data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109387
– ident: ref_6
  doi: 10.3390/plants13172388
– volume: 237
  start-page: 1
  year: 2024
  ident: ref_14
  article-title: An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.11.008
– volume: 11
  start-page: 64358
  year: 2023
  ident: ref_22
  article-title: Cucumber flower detection based on YOLOv5s-SE7 within greenhouse environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3286545
– volume: 132
  start-page: 107886
  year: 2024
  ident: ref_46
  article-title: CSPNeXt: A new efficient token hybrid backbone
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107886
– ident: ref_20
  doi: 10.3390/horticulturae8100904
– volume: 44
  start-page: 2759
  year: 2023
  ident: ref_29
  article-title: Computer vision and deep learning-enabled weed detection model for precision agriculture
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.027647
– volume: 21
  start-page: 387
  year: 2020
  ident: ref_1
  article-title: A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09673-7
– ident: ref_30
  doi: 10.3389/fpls.2024.1381694
– volume: 199
  start-page: 107179
  year: 2022
  ident: ref_35
  article-title: Weed detection in paddy field using an improved RetinaNet network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107179
– volume: 194
  start-page: 106727
  year: 2022
  ident: ref_12
  article-title: Automated variety trial plot growth and flowering detection for maize and soybean using machine vision
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106727
– volume: 4
  start-page: 100151
  year: 2023
  ident: ref_21
  article-title: Mask R-CNN based apple flower detection and king flower identification for precision pollination
  publication-title: Smart Agric. Technol.
  doi: 10.1016/j.atech.2022.100151
– ident: ref_44
  doi: 10.3390/s21196565
– volume: 83
  start-page: 33823
  year: 2024
  ident: ref_27
  article-title: CNN-based medicinal plant identification and classification using optimized SVM
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16733-8
– volume: 218
  start-page: 108674
  year: 2024
  ident: ref_48
  article-title: Upgrading swin-B transformer-based model for accurately identifying ripe strawberries by coupling task-aligned one-stage object detection mechanism
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108674
– ident: ref_18
– volume: 226
  start-page: 109404
  year: 2024
  ident: ref_37
  article-title: Real-time lettuce-weed localization and weed severity classification based on lightweight YOLO convolutional neural networks for intelligent intra-row weed control
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109404
– volume: 172
  start-page: 110
  year: 2018
  ident: ref_5
  article-title: A robust automated flower estimation system for grape vines
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.05.009
– volume: 15
  start-page: 466
  year: 2014
  ident: ref_10
  article-title: Flowering estimation in apple orchards by image analysis
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-013-9341-6
– volume: 178
  start-page: 105742
  year: 2020
  ident: ref_19
  article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105742
– ident: ref_8
  doi: 10.1038/s41598-024-73035-1
– volume: 193
  start-page: 264
  year: 2020
  ident: ref_15
  article-title: Instance segmentation of apple flowers using the improved mask R–CNN model
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.008
– volume: 235
  start-page: 103787
  year: 2023
  ident: ref_34
  article-title: 3DF-FCOS: Small object detection with 3D features based on FCOS
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2023.103787
– volume: 2020
  start-page: 3521852
  year: 2020
  ident: ref_42
  article-title: Global Wheat Head Detection (GWHD) Dataset: A large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods
  publication-title: Plant Phenomics
  doi: 10.34133/2020/3521852
– volume: 158
  start-page: 107703
  year: 2020
  ident: ref_16
  article-title: Classification of flower species by using features extracted from the intersection of feature selection methods in convolutional neural network models
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107703
– volume: 27
  start-page: 1354007
  year: 2013
  ident: ref_11
  article-title: A novel technique for tangerine yield prediction using flower detection algorithm
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001413540074
– volume: 34
  start-page: 1150
  year: 2011
  ident: ref_9
  article-title: Color image segmentation approach to monitor flowering in lesquerella
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2011.04.002
– volume: 21
  start-page: 200325
  year: 2024
  ident: ref_33
  article-title: Detection model based on improved faster-RCNN in apple orchard environment
  publication-title: Intell. Syst. Appl.
– volume: 231
  start-page: 117
  year: 2023
  ident: ref_41
  article-title: An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.06.007
– volume: 193
  start-page: 106641
  year: 2022
  ident: ref_3
  article-title: Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106641
– volume: 119
  start-page: 92
  year: 2015
  ident: ref_4
  article-title: Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.10.009
– volume: 27
  start-page: 8345
  year: 2023
  ident: ref_7
  article-title: Cucurbitaceous family flower inferencing using deep transfer learning approaches: CuCuFlower UAV imagery data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08186-w
SSID ssj0000800816
Score 2.2893257
Snippet Computer vision technology is widely used in smart agriculture, primarily because of its non-invasive nature, which avoids causing damage to delicate crops....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 468
SubjectTerms Ablation
Accuracy
Agricultural equipment
Agricultural technology
Algorithms
Artificial neural networks
Computer vision
Crop damage
Damage detection
Datasets
Digital agriculture
Equipment and supplies
Experiments
Flowers
Image processing
Machine learning
Machine vision
Modules
Neural networks
object detection
Object recognition
Performance evaluation
Plant reproduction
Sensitivity analysis
state space model
State space models
Strawberries
strawberry flower
YOLOv8
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKGXqoVCl5cMqsQpIrEdJ-HGawWoWyReoifLT2gFWbQPVfx7Zpyw2ohDL73k4FhW5ps4800y-YaQ79blZfAyTXTmWCIKmyYGwn4irC5sqLxzUbtz8FOe3ojzu_xurtUX1oQ18sANcHt5jp0ghMu1hFQupKVlhXa2cKFi2tqoXgoxby6Z-tPyoDKTjUojh7x-7_kR60pQnQ6WKTtRKIr1v38kz8Wkbr3kXADqfyafWuZID5or_kI--HqJLB4Ogd29LJP920Hy6-LHxT7FI8XXq_R2oJ-MpkBLKYrQ_jV-NHqh_cfYGI0e-0ksw6q_kpv-yfXRadL2RUisEHySmABGAAJGA1uS1llpfcUgzdUoT--CZt4B1kwEnVoUoAmClzrLjBS-ykLFV8hCPaz9N0I90C_ruTFV5oUwzBheBEy6NIxwWfTI7htO6rmRv1CQNiCiqotojxwijLNZKFsdB8CZqnWm-pcze2QHnaBQmKLGypd7PR2P1dnVpTqAR4-M_AauqZ0UhgCe1e2PBGARall1Zm68OVO1W3OseIakqxCl7JHt2WnYVPilRNd-OI1zINErZAVmrTa-nxkGjE7wlMHiZeeu6FjePVP_fojC3ZjMZUyytf-B1Tr5yLAXMVaQ5xtkYTKa-k0gSBOzFffCK_P2DYg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAFUZ4LLQoIiZPVxHacpBfUha5axLao0KqcLD8LUkmWfQj13zPj9S6NkHrJIXYiz9ie-caZfEPIW-vKOniZU104RkVlc2rA7VNhdWVD452L3J3jY3l4Jj5dlBfpwG2W0ipXNjEaatdZPCPf5QX6ykrU8v3kN8WqUfh1NZXQuEs2wQTXEHxtDg-Ov5yuT1kQD9WFXLI1cojvdydXmF-CLHUQGdY9bxRJ-_83zTd8Uz9v8oYjGj0kDxKCzPaXU75F7vj2Ebk37ADlXT8me-dj-v3k88lehtcMj1mz87H-ZXQG8DRDMto_xk-n19noKhZIyz76eUzHap-Qs9HBtw-HNNVHoFYIPqcmgBC2ckYDapLWWWl9wyDc1UhT74Jm3oHOmQg6t0hEEwSvdVEYKXxThIY_JRtt1_rnJPMAw6znxjSFF8IwY3gVMPjScIfLakDerfSkJksaDAXhA2pU9TU6IENU47oX0lfHG930UqXdoMoSy3sIV2oJz4S8tqzSDkQJDdPWlgPyBidBIUFFixkwl3oxm6mjr6dqH0yQjDgHxpQ6hQ6UZ3X6oQAkQk6rXs_t1WSqtEVn6t-CGpDX62bYXPjFRLe-W8Q-EPBVsgGxni3nfi0YIDvBcwYvr3uroid5v6X9-SMSeGNQVzDJXtw-rpfkPsNqw5gjXm6Tjfl04XcAAs3Nq7TO_wLO7QZj
  priority: 102
  providerName: ProQuest
Title VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39943029
https://www.proquest.com/docview/3165847486
https://www.proquest.com/docview/3166267698
https://pubmed.ncbi.nlm.nih.gov/PMC11821262
https://doaj.org/article/5583444d5a6046f08c27adc7df92acc5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1By4ELonwGSmQQEieDvV7v2pUQatpGBZEWFVKV02o_CyjYxUkE-fed2TihFj1w8cFeW57ZHc979vgNIS-NzQvveBKr1NKYCZPEGtJ-zIwSxpfO2qDdOTrih2P24Sw_-1v_1Dpwei21w35S42by-s-vxTsI-LfIOIGyv7mYYMkICs8B2Stukk3ISgKDdNRC_R8tMipCJ1TMiAAqmVhqOF5ziU6OClL-_z6wr2SsbjXllfQ0vEvutLgy2l0uhC1yw1X3yK1BDdhvcZ_snI7ir8cfj3ci3Eb48jU6HamfWkUAWiOUqP2tXdMsouEktE2L9t0sFGlVD8h4ePBl7zBuuybEhrFsFmsPRhhhtQIsxY013LiSAglWKF5vvaLOwkxQ5lViUJ7Gs6xQaao5c2Xqy-wh2ajqyj0mkQNwZlymdZk6xjTVOhMeKZmCPRkXPfJq5Sd5sRTHkEAq0KOy69EeGaAb16NQ1DrsqJtz2caIzHNs-sFsrjic45PCUKEsmOJLqozJe-QFToJE2YoK62LO1Xw6le8_n8hdeDDxgH7gntpBvgbnGdX-ZgAWodJVZ-T2ajLlat3JLEVIJljBe-T5-jCEHH5HUZWr52EM0EDBSzDr0XLu14YB3mNZQuHiRWdVdCzvHqm-fwuy3kj1Usrpk__26lNym2I7Yiwiz7fJxqyZu2eAkWa6TzYHB0efTvrhHUM_hMIl3PEQdg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEG8CBQwCcbJqr9druxJCDW2U0CRFpa3a07LPglTskIeq_Cl-IzN-hFpI3HrJwV5HO7OzM9-sx98Q8labOHWWB74MDfVZogNfQdj3mZaJdpk1puTuHE_44IR9PovPNsjv5lsYLKtsfGLpqE2h8Yx8OwoxViYs5R-nv3zsGoVvV5sWGpVZHNjVFaRs8w_DPVjfd5T2948_Dfy6q4CvGYsWvnJg1zoxSgLW4Nporm1GIUmUSO5unKTWwEwpczLQSN_iWJTKMFSc2Sx0SL4ELn-TRZDKdMhmb3_y5Wh9qoP4Kw15xQ4ZRVmwPb3EehZkxYNMNG1Fv7JJwL-h4FosbNdpXgt8_Xvkbo1Yvd3KxO6TDZs_ILd6BaDK1UOyczr2zw9Hhzse_np4rOudjuVPJT2Awx6S314pO5utvP5l2ZDN27OLsvwrf0RObkRzj0knL3L7lHgWYJ-2kVJZaBlTVKkocZjsSbgS8aRL3jd6EtOKdkNAuoIaFW2NdkkP1bgehXTZ5YVidiHq3SfiGNuJMBNLDs-4INU0kQZEcRmVWsdd8gYXQSAhRo4VNxdyOZ-L4dcjsQsuj5e4CuZUD3IFKE_L-gMGkAg5tFojt5rFFLVLmIu_Btwlr9e3YTPjGxqZ22JZjoEEM-EZiPWkWvu1YIAkWRRQ-PO0ZRUtydt38h_fS8JwTCJDyumz_8_rFbk9OB6PxGg4OXhO7lDsdIz16fEW6SxmS_sC4NdCvaxt3iPfbnqb_QE7R0Po
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKUJcEG8CBQwCcbJir9druxJCDWnU0CatCq3a07LPglTskIeq_DV-HTN-hFpI3HrJwV5HO7OzM9-sx98Q8labOHWWB74MDfVZogNfQdj3mZaJdpk1puTuHE_43gn7fBafbZDfzbcwWFbZ-MTSUZtC4xl5LwoxViYs5T1Xl0UcDYYfp7987CCFb1qbdhqViezb1RWkb_MPowGs9TtKh7tfP-35dYcBXzMWLXzlwMZ1YpQE3MG10VzbjELCKJHo3ThJrYFZU-ZkoJHKxbEolWGoOLNZ6JCICdz_ZgJZUdAhm_3dydHx-oQHsVga8oopMoqyoDe9xNoWZMiDrDRtRcKyYcC_YeFaXGzXbF4LgsN75G6NXr2dytzukw2bPyC3-gUgzNVDsn069s8PDw63Pfz18IjXOx3Ln0p6AI09JMK9UnY2W3nDy7I5mzewi7IULH9ETm5Ec49JJy9y-5R4FiCgtpFSWWgZU1SpKHGY-Em4EvGkS943ehLTioJDQOqCGhVtjXZJH9W4HoXU2eWFYnYh6p0o4hhbizATSw7PuCDVNJEGRHEZlVrHXfIGF0EgOUaOZnYhl_O5GH05Fjvg_niJsWBO9SBXgPK0rD9mAImQT6s1cqtZTFG7h7n4a8xd8np9GzY2vq2RuS2W5RhINhOegVhPqrVfCwaokkUBhT9PW1bRkrx9J__xvSQPx4QypJw--_-8XpHbsL3EwWiy_5zcodj0GEvV4y3SWcyW9gUgsYV6WZu8R77d9C77Azc5SB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VM-YOLO%3A+YOLO+with+VMamba+for+Strawberry+Flowers+Detection&rft.jtitle=Plants+%28Basel%29&rft.au=Wang%2C+Yujin&rft.au=Lin%2C+Xueying&rft.au=Xiang%2C+Zhaowei&rft.au=Su%2C+Wen-Hao&rft.date=2025-02-05&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=14&rft.issue=3&rft.spage=468&rft_id=info:doi/10.3390%2Fplants14030468&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants14030468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon