Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions
Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the...
Saved in:
Published in | Journal of Virology Vol. 88; no. 5; pp. 2508 - 2518 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.02034-13 |
Cover
Loading…
Abstract | Classifications
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | Classifications
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion.UNLABELLEDAntigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion.Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.IMPORTANCEInfection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection. Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by T helper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. IMPORTANCE Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection. Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10R alpha results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN- gamma ), IL-2, and IL-13 secretion, IL-10R alpha blockade preferentially restores IFN- gamma production. In viremic subjects, combined PD-L1/IL-10R alpha blockade results in a striking 10-fold increase in IFN- gamma secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN- gamma production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN- gamma produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN- gamma was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN- gamma and IL-12 secretion. IMPORTANCE Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection. Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection. |
Author | Daniel G. Kavanagh Filippos Porichis Thomas Brennan Ashley McMullen Meghan G. Hart Daniel E. Kaufmann Jennifer Zupkosky Lucie Barblu Douglas S. Kwon Rafi Ahmed Gordon J. Freeman |
Author_xml | – sequence: 1 givenname: Filippos surname: Porichis fullname: Porichis, Filippos organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 2 givenname: Meghan G. surname: Hart fullname: Hart, Meghan G. organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 3 givenname: Jennifer surname: Zupkosky fullname: Zupkosky, Jennifer organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 4 givenname: Lucie surname: Barblu fullname: Barblu, Lucie organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada – sequence: 5 givenname: Douglas S. surname: Kwon fullname: Kwon, Douglas S. organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA – sequence: 6 givenname: Ashley surname: McMullen fullname: McMullen, Ashley organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 7 givenname: Thomas surname: Brennan fullname: Brennan, Thomas organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 8 givenname: Rafi surname: Ahmed fullname: Ahmed, Rafi organization: Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, California, USA – sequence: 9 givenname: Gordon J. surname: Freeman fullname: Freeman, Gordon J. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA – sequence: 10 givenname: Daniel G. surname: Kavanagh fullname: Kavanagh, Daniel G. organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 11 givenname: Daniel E. surname: Kaufmann fullname: Kaufmann, Daniel E. organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24352453$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAUxC1URLeFG2dkbhxw-_y161yQyi6lQZWoRKm4WY7j7LpN7K2dFHHgfydhWwRIiJMP7zfjefYcoL0Qg0PoOYUjSpk6_nBVHgEDLgjlj9CMQqGIlFTsoRkAY0Ry9WUfHeR8DUCFmIsnaJ8JLpmQfIa-r3zTuORC702Ly25rbI9jgy9WhGIT6uOYcBl6l1o33PhAKOC3bbQ3pnY4BnxWXhFKPm2d9Y23eLkS-BIvXdtOWnwyuq5dIBfJ5emGsN7NTodgex9DfooeN6bN7tn9eYg-n767XJ6R84_vy-XJObFC8J5U9VwCKDanQGExZ64qFtbNeVU3hqqibqCurXSwsBygNgUbeVEVrubcTip-iN7sfLdD1bnajmGSafU2-c6kbzoar_-cBL_R63ineSEVqMVo8OreIMXbweVedz7bcRcTXByyphIkF4Uq4P-oKArKxz0m1xe_x_qV5-F7RoDtAJtizsk12vreTE83pvStpqCnDuixA_pnBzSdRK__Ej34_gN_ucM3fr356pPTJnf6-s5rpbTUTILiPwCpe7uZ |
CitedBy_id | crossref_primary_10_1016_j_imbio_2022_152304 crossref_primary_10_1128_IAI_00278_16 crossref_primary_10_1371_journal_pone_0186998 crossref_primary_10_1038_nprot_2017_039 crossref_primary_10_1186_s12977_015_0144_x crossref_primary_10_1093_infdis_jiu472 crossref_primary_10_1093_infdis_jix341 crossref_primary_10_3390_v12101097 crossref_primary_10_3390_pharmaceutics15010167 crossref_primary_10_3390_v13050753 crossref_primary_10_1038_s41586_020_03075_w crossref_primary_10_3390_v12080799 crossref_primary_10_1016_j_ebiom_2022_104254 crossref_primary_10_1097_COH_0000000000000485 crossref_primary_10_1007_s11882_025_01199_5 crossref_primary_10_4049_immunohorizons_2000051 crossref_primary_10_1128_JVI_01186_18 crossref_primary_10_3390_vaccines6030050 crossref_primary_10_1111_imr_13388 crossref_primary_10_1097_COH_0000000000000094 crossref_primary_10_1097_COH_0000000000000093 crossref_primary_10_1172_JCI140965 crossref_primary_10_1016_j_clim_2025_110486 crossref_primary_10_3389_fimmu_2018_01923 crossref_primary_10_1128_JVI_01263_17 crossref_primary_10_3389_fimmu_2017_00708 crossref_primary_10_1016_j_cellin_2024_100200 crossref_primary_10_1080_21645515_2015_1009809 crossref_primary_10_3389_fimmu_2023_1138145 crossref_primary_10_1111_imm_13238 crossref_primary_10_1172_JCI155251 crossref_primary_10_1186_s12981_017_0171_x crossref_primary_10_4049_jimmunol_2100367 crossref_primary_10_1186_s12916_015_0517_y crossref_primary_10_1371_journal_pone_0153849 crossref_primary_10_4049_jimmunol_1701551 crossref_primary_10_3390_ijms231911845 crossref_primary_10_1002_mco2_390 crossref_primary_10_1016_j_jcyt_2016_04_007 crossref_primary_10_3389_fimmu_2018_02569 crossref_primary_10_1097_QAD_0000000000000437 crossref_primary_10_1111_imr_12512 crossref_primary_10_3389_fimmu_2019_01777 crossref_primary_10_3748_wjg_v22_i4_1393 crossref_primary_10_1111_all_15406 crossref_primary_10_3389_fimmu_2018_01995 crossref_primary_10_3390_ijms21218159 crossref_primary_10_1016_j_isci_2024_110947 crossref_primary_10_1016_S1473_3099_14_70917_X crossref_primary_10_1016_j_immuni_2016_04_022 crossref_primary_10_3390_v14010135 |
Cites_doi | 10.1073/pnas.0914500107 10.1182/blood-2006-10-051482 10.1073/pnas.231486598 10.1172/JCI117031 10.1038/ni1129 10.4049/jimmunol.179.3.1979 10.1084/jem.20112741 10.1038/nature05115 10.3791/50821 10.1089/aid.1998.14.393 10.4049/jimmunol.1000156 10.1111/j.1600-065X.2010.00923.x 10.1056/NEJMoa1200694 10.1038/nm.2106 10.1038/ni.1679 10.1084/jem.179.4.1361 10.1056/NEJMoa1302369 10.1093/infdis/174.1.46 10.1182/blood-2010-12-328070 10.1128/JVI.76.4.1731-1743.2002 10.1038/nature07662 10.1046/j.1365-2249.1999.00865.x 10.1038/nm1293 10.1146/annurev.immunol.19.1.683 10.1038/nprot.2006.1 10.1189/jlb.0610327 10.1038/ni.2035 10.1007/s00262-010-0909-y 10.1038/nm1292 10.1038/nature08511 10.1038/ni1515 10.1182/blood-2008-12-191296 10.1038/ni0909-929 10.1007/s11904-012-0115-y 10.1002/eji.200324270 10.1038/nri1001 10.1002/eji.1830241235 10.1038/nri2711 10.1128/JVI.06251-11 10.1182/blood-2005-07-2731 10.1056/NEJMoa1200690 10.1073/pnas.0811139106 10.1182/blood-2010-11-317297 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1128/JVI.02034-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 2518 |
ExternalDocumentID | PMC3958087 24352453 10_1128_JVI_02034_13 jvi_88_5_2508 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI078897 – fundername: NIAID NIH HHS grantid: P01 AI-080192 – fundername: NIAID NIH HHS grantid: UM1AI100663 – fundername: NHLBI NIH HHS grantid: R01 HL-092565 – fundername: NIAID NIH HHS grantid: UM1 AI100663 – fundername: NIAID NIH HHS grantid: P01 AI056299 – fundername: NIAID NIH HHS grantid: P01 AI080192 – fundername: NHLBI NIH HHS grantid: R01 HL092565 – fundername: NIAID NIH HHS grantid: AI56299 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM PKN RHF UCJ 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c443t-bd65008261010762eb97ce63bdfa189df0ddc5e07c300da92d654b9ed33c82613 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 17:36:39 EDT 2025 Fri Jul 11 02:30:04 EDT 2025 Fri Jul 11 05:46:03 EDT 2025 Wed Feb 19 01:52:27 EST 2025 Tue Jul 01 01:02:28 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Wed May 18 15:26:45 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-bd65008261010762eb97ce63bdfa189df0ddc5e07c300da92d654b9ed33c82613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://jvi.asm.org/content/jvi/88/5/2508.full.pdf |
PMID | 24352453 |
PQID | 1499131077 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1128_JVI_02034_13 crossref_citationtrail_10_1128_JVI_02034_13 pubmed_primary_24352453 highwire_asm_jvi_88_5_2508 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3958087 proquest_miscellaneous_1505349890 proquest_miscellaneous_1499131077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140301 2014-03-00 2014-Mar |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 20140301 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20 17406204 - Nat Protoc. 2006;1(1):1-6 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 19075244 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20428-33 19898495 - Nature. 2009 Nov 26;462(7272):510-3 7908324 - J Exp Med. 1994 Apr 1;179(4):1361-6 17641065 - J Immunol. 2007 Aug 1;179(3):1979-87 12563297 - Nat Rev Immunol. 2003 Feb;3(2):133-46 19078956 - Nature. 2009 Mar 12;458(7235):206-10 20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81 8113410 - J Clin Invest. 1994 Feb;93(2):768-75 19365081 - Blood. 2009 Jul 9;114(2):346-56 9546798 - AIDS Res Hum Retroviruses. 1998 Mar 20;14(5):393-9 17363736 - Blood. 2007 Jul 1;110(1):296-304 20208540 - Nat Med. 2010 Apr;16(4):452-9 20814675 - Cancer Immunol Immunother. 2010 Dec;59(12):1839-49 21739672 - Nat Immunol. 2011 Jun;12(6):492-9 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65 8656012 - J Infect Dis. 1996 Jul;174(1):46-53 19043418 - Nat Immunol. 2009 Jan;10(1):29-37 11799168 - J Virol. 2002 Feb;76(4):1731-43 19692989 - Nat Immunol. 2009 Sep;10(9):929-32 21652684 - Blood. 2011 Jul 28;118(4):965-74 20133700 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3018-23 21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15 24193166 - J Vis Exp. 2013;(80):e50821 16921384 - Nature. 2006 Sep 21;443(7109):350-4 22641383 - J Exp Med. 2012 Jun 4;209(6):1201-17 11244051 - Annu Rev Immunol. 2001;19:683-765 14579280 - Eur J Immunol. 2003 Nov;33(11):3117-26 20656923 - J Immunol. 2010 Sep 1;185(5):3007-18 15475958 - Nat Immunol. 2004 Nov;5(11):1143-8 11698646 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13866-71 20636820 - Immunol Rev. 2010 Jul;236:219-42 22415474 - Curr HIV/AIDS Rep. 2012 Jun;9(2):121-31 22496237 - J Virol. 2012 Jun;86(12):6586-94 21398582 - Blood. 2011 May 5;117(18):4805-15 16269614 - Blood. 2006 Mar 1;107(5):1989-95 16186817 - Nat Med. 2005 Oct;11(10):1113-7 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 16186818 - Nat Med. 2005 Oct;11(10):1118-24 7528671 - Eur J Immunol. 1994 Dec;24(12):3148-54 |
References_xml | – ident: e_1_3_3_36_2 doi: 10.1073/pnas.0914500107 – ident: e_1_3_3_24_2 doi: 10.1182/blood-2006-10-051482 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.231486598 – ident: e_1_3_3_10_2 doi: 10.1172/JCI117031 – ident: e_1_3_3_26_2 doi: 10.1038/ni1129 – ident: e_1_3_3_5_2 doi: 10.4049/jimmunol.179.3.1979 – ident: e_1_3_3_33_2 doi: 10.1084/jem.20112741 – ident: e_1_3_3_19_2 doi: 10.1038/nature05115 – ident: e_1_3_3_22_2 doi: 10.3791/50821 – ident: e_1_3_3_43_2 doi: 10.1089/aid.1998.14.393 – ident: e_1_3_3_6_2 doi: 10.4049/jimmunol.1000156 – ident: e_1_3_3_20_2 doi: 10.1111/j.1600-065X.2010.00923.x – ident: e_1_3_3_40_2 doi: 10.1056/NEJMoa1200694 – ident: e_1_3_3_37_2 doi: 10.1038/nm.2106 – ident: e_1_3_3_13_2 doi: 10.1038/ni.1679 – ident: e_1_3_3_30_2 doi: 10.1084/jem.179.4.1361 – ident: e_1_3_3_14_2 doi: 10.1056/NEJMoa1302369 – ident: e_1_3_3_31_2 doi: 10.1093/infdis/174.1.46 – ident: e_1_3_3_3_2 doi: 10.1182/blood-2010-12-328070 – ident: e_1_3_3_42_2 doi: 10.1128/JVI.76.4.1731-1743.2002 – ident: e_1_3_3_7_2 doi: 10.1038/nature07662 – ident: e_1_3_3_9_2 doi: 10.1046/j.1365-2249.1999.00865.x – ident: e_1_3_3_18_2 doi: 10.1038/nm1293 – ident: e_1_3_3_35_2 doi: 10.1146/annurev.immunol.19.1.683 – ident: e_1_3_3_17_2 doi: 10.1038/nprot.2006.1 – ident: e_1_3_3_38_2 doi: 10.1189/jlb.0610327 – ident: e_1_3_3_2_2 doi: 10.1038/ni.2035 – ident: e_1_3_3_25_2 doi: 10.1007/s00262-010-0909-y – ident: e_1_3_3_16_2 doi: 10.1038/nm1292 – ident: e_1_3_3_44_2 doi: 10.1038/nature08511 – ident: e_1_3_3_4_2 doi: 10.1038/ni1515 – ident: e_1_3_3_11_2 doi: 10.1182/blood-2008-12-191296 – ident: e_1_3_3_32_2 doi: 10.1038/ni0909-929 – ident: e_1_3_3_41_2 doi: 10.1007/s11904-012-0115-y – ident: e_1_3_3_23_2 doi: 10.1002/eji.200324270 – ident: e_1_3_3_29_2 doi: 10.1038/nri1001 – ident: e_1_3_3_27_2 doi: 10.1002/eji.1830241235 – ident: e_1_3_3_21_2 doi: 10.1038/nri2711 – ident: e_1_3_3_8_2 doi: 10.1128/JVI.06251-11 – ident: e_1_3_3_28_2 doi: 10.1182/blood-2005-07-2731 – ident: e_1_3_3_39_2 doi: 10.1056/NEJMoa1200690 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0811139106 – ident: e_1_3_3_15_2 doi: 10.1182/blood-2010-11-317297 – reference: 16269614 - Blood. 2006 Mar 1;107(5):1989-95 – reference: 20814675 - Cancer Immunol Immunother. 2010 Dec;59(12):1839-49 – reference: 7528671 - Eur J Immunol. 1994 Dec;24(12):3148-54 – reference: 22496237 - J Virol. 2012 Jun;86(12):6586-94 – reference: 16921384 - Nature. 2006 Sep 21;443(7109):350-4 – reference: 21398582 - Blood. 2011 May 5;117(18):4805-15 – reference: 15475958 - Nat Immunol. 2004 Nov;5(11):1143-8 – reference: 16186818 - Nat Med. 2005 Oct;11(10):1118-24 – reference: 11244051 - Annu Rev Immunol. 2001;19:683-765 – reference: 17406204 - Nat Protoc. 2006;1(1):1-6 – reference: 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 – reference: 19365081 - Blood. 2009 Jul 9;114(2):346-56 – reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 – reference: 14579280 - Eur J Immunol. 2003 Nov;33(11):3117-26 – reference: 22641383 - J Exp Med. 2012 Jun 4;209(6):1201-17 – reference: 20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81 – reference: 10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20 – reference: 11698646 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13866-71 – reference: 19078956 - Nature. 2009 Mar 12;458(7235):206-10 – reference: 20133700 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3018-23 – reference: 20636820 - Immunol Rev. 2010 Jul;236:219-42 – reference: 12563297 - Nat Rev Immunol. 2003 Feb;3(2):133-46 – reference: 24193166 - J Vis Exp. 2013;(80):e50821 – reference: 19898495 - Nature. 2009 Nov 26;462(7272):510-3 – reference: 16186817 - Nat Med. 2005 Oct;11(10):1113-7 – reference: 11799168 - J Virol. 2002 Feb;76(4):1731-43 – reference: 21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15 – reference: 19043418 - Nat Immunol. 2009 Jan;10(1):29-37 – reference: 22415474 - Curr HIV/AIDS Rep. 2012 Jun;9(2):121-31 – reference: 17641065 - J Immunol. 2007 Aug 1;179(3):1979-87 – reference: 17363736 - Blood. 2007 Jul 1;110(1):296-304 – reference: 8656012 - J Infect Dis. 1996 Jul;174(1):46-53 – reference: 21652684 - Blood. 2011 Jul 28;118(4):965-74 – reference: 8113410 - J Clin Invest. 1994 Feb;93(2):768-75 – reference: 19692989 - Nat Immunol. 2009 Sep;10(9):929-32 – reference: 20208540 - Nat Med. 2010 Apr;16(4):452-9 – reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 – reference: 21739672 - Nat Immunol. 2011 Jun;12(6):492-9 – reference: 20656923 - J Immunol. 2010 Sep 1;185(5):3007-18 – reference: 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65 – reference: 7908324 - J Exp Med. 1994 Apr 1;179(4):1361-6 – reference: 9546798 - AIDS Res Hum Retroviruses. 1998 Mar 20;14(5):393-9 – reference: 19075244 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20428-33 |
SSID | ssj0014464 |
Score | 2.3683918 |
Snippet | Classifications
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2508 |
SubjectTerms | Antibodies, Monoclonal - pharmacology Antigen-Presenting Cells - immunology Antigen-Presenting Cells - metabolism Antigen-Presenting Cells - virology B7-H1 Antigen - antagonists & inhibitors CD4-Positive T-Lymphocytes - drug effects CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - metabolism CD4-Positive T-Lymphocytes - virology Cytokines - biosynthesis Epitopes, T-Lymphocyte - immunology HIV Infections - immunology HIV Infections - metabolism HIV-1 - immunology Human immunodeficiency virus Human immunodeficiency virus 1 Humans Interferon-gamma - metabolism Interleukin-10 - metabolism Interleukin-10 Receptor alpha Subunit - antagonists & inhibitors Lymphocyte Activation - drug effects Lymphocyte Activation - immunology Monocytes - drug effects Monocytes - immunology Monocytes - metabolism Pathogenesis and Immunity Programmed Cell Death 1 Receptor - metabolism Signal Transduction - drug effects |
Title | Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions |
URI | http://jvi.asm.org/content/88/5/2508.abstract https://www.ncbi.nlm.nih.gov/pubmed/24352453 https://www.proquest.com/docview/1499131077 https://www.proquest.com/docview/1505349890 https://pubmed.ncbi.nlm.nih.gov/PMC3958087 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDcpDy0SnCynttfPY0lI04qiHNIo4mLFu-vGJLWjJEYCiV_JH2JmHTt2GyrgYkX22t5kvsxrZ74l5B0uETLD4vqUm46OrZ26LyFY4RGus0kBahl7h88_u4ML-2ziTFqtX7WqpXwTdfiPvX0l_yNVOAdyxS7Zf5Bs9VA4AZ9BvnAECcPxr2Tc2-5uslGMGVW_47Cnm5oqWOxnqyLnt5D5PElBG2ofwHrNp0LiKsHgdAyxndqCPk641u3Z2kjrYjYP0-nH8Fx4tT4sOpRUgQBe64Mp3KX5bjq242TVyNX3MWWzzNbaEPlIZknlxZ_Lyxmol5MOthJV5TdlvY32JV_Os_W8es6nHPSQWiBZ5PVkhWnvqrVq_QGouGolqefJjnKqrqoxSmZq32EwVIV2RvJTdPHq6tv3azB16rrYUYwRe4yEhY0PZ-PTDi7D2nrRDFvDy_JKAcYCV9KyCy7jJlP3NQta1TV-_ZaEvh86Ib77DrlrQeyC1uJkUtUdYfxtlxT2-P3KbgzLP6pPCVmqt-9vukwljfW-kOh6ZW_NVRo9JA-2UKDHBWAfkZZMH5N7xa6n35-Qn3XY0gK2NIspwpYC8I6yFW2ClpagpVlKm6ClAFo6oghMvJfeBG1xrQLtU3LR_zjqDvTtLiA6t2220SMBQQQ4quDnmwaYbhkFHpcui0Q8Nf1AxIYQ3JGGx5lhiGlgwXg7CqRgjONd7Bk5SLNUviDUsEUsOGeuxE0eXB6ZpvRcI4iFMF0vMtpEK3_okG8p8nGnlkWoQmXLD0FCoZJQaLI2eV-NXhbUMH8Yd1jKLJyur8IGSNrkbSnFEBQ7rtZNU5nla4jJIXSD4MvzbhkD8QuzAz-AqT8vJF9NpURPm3gNTFQDkFi-eSVNZopgngWOb_je4W0Tf0nu7_7gr8jBZpXL1-Cfb6I3Cu-_ASs-5Lo |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Impact+of+PD-1+and%2For+Interleukin-10+Blockade+on+HIV-1-Specific+CD4+T+Cell+and+Antigen-Presenting+Cell+Functions&rft.jtitle=Journal+of+Virology&rft.au=Filippos+Porichis&rft.au=Meghan+G.+Hart&rft.au=Jennifer+Zupkosky&rft.au=Lucie+Barblu&rft.date=2014-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=5&rft.spage=2508&rft_id=info:doi/10.1128%2FJVI.02034-13&rft_id=info%3Apmid%2F24352453&rft.externalDBID=n%2Fa&rft.externalDocID=jvi_88_5_2508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |