Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions

Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 88; no. 5; pp. 2508 - 2518
Main Authors Porichis, Filippos, Hart, Meghan G., Zupkosky, Jennifer, Barblu, Lucie, Kwon, Douglas S., McMullen, Ashley, Brennan, Thomas, Ahmed, Rafi, Freeman, Gordon J., Kavanagh, Daniel G., Kaufmann, Daniel E.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2014
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.02034-13

Cover

Loading…
Abstract Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion.UNLABELLEDAntigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion.Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.IMPORTANCEInfection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by T helper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. IMPORTANCE Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10R alpha results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN- gamma ), IL-2, and IL-13 secretion, IL-10R alpha blockade preferentially restores IFN- gamma production. In viremic subjects, combined PD-L1/IL-10R alpha blockade results in a striking 10-fold increase in IFN- gamma secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN- gamma production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN- gamma produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN- gamma was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN- gamma and IL-12 secretion. IMPORTANCE Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.
Author Daniel G. Kavanagh
Filippos Porichis
Thomas Brennan
Ashley McMullen
Meghan G. Hart
Daniel E. Kaufmann
Jennifer Zupkosky
Lucie Barblu
Douglas S. Kwon
Rafi Ahmed
Gordon J. Freeman
Author_xml – sequence: 1
  givenname: Filippos
  surname: Porichis
  fullname: Porichis, Filippos
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 2
  givenname: Meghan G.
  surname: Hart
  fullname: Hart, Meghan G.
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 3
  givenname: Jennifer
  surname: Zupkosky
  fullname: Zupkosky, Jennifer
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 4
  givenname: Lucie
  surname: Barblu
  fullname: Barblu, Lucie
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
– sequence: 5
  givenname: Douglas S.
  surname: Kwon
  fullname: Kwon, Douglas S.
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
– sequence: 6
  givenname: Ashley
  surname: McMullen
  fullname: McMullen, Ashley
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 7
  givenname: Thomas
  surname: Brennan
  fullname: Brennan, Thomas
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 8
  givenname: Rafi
  surname: Ahmed
  fullname: Ahmed, Rafi
  organization: Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, California, USA
– sequence: 9
  givenname: Gordon J.
  surname: Freeman
  fullname: Freeman, Gordon J.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 10
  givenname: Daniel G.
  surname: Kavanagh
  fullname: Kavanagh, Daniel G.
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 11
  givenname: Daniel E.
  surname: Kaufmann
  fullname: Kaufmann, Daniel E.
  organization: Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24352453$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAUxC1URLeFG2dkbhxw-_y161yQyi6lQZWoRKm4WY7j7LpN7K2dFHHgfydhWwRIiJMP7zfjefYcoL0Qg0PoOYUjSpk6_nBVHgEDLgjlj9CMQqGIlFTsoRkAY0Ry9WUfHeR8DUCFmIsnaJ8JLpmQfIa-r3zTuORC702Ly25rbI9jgy9WhGIT6uOYcBl6l1o33PhAKOC3bbQ3pnY4BnxWXhFKPm2d9Y23eLkS-BIvXdtOWnwyuq5dIBfJ5emGsN7NTodgex9DfooeN6bN7tn9eYg-n767XJ6R84_vy-XJObFC8J5U9VwCKDanQGExZ64qFtbNeVU3hqqibqCurXSwsBygNgUbeVEVrubcTip-iN7sfLdD1bnajmGSafU2-c6kbzoar_-cBL_R63ineSEVqMVo8OreIMXbweVedz7bcRcTXByyphIkF4Uq4P-oKArKxz0m1xe_x_qV5-F7RoDtAJtizsk12vreTE83pvStpqCnDuixA_pnBzSdRK__Ej34_gN_ucM3fr356pPTJnf6-s5rpbTUTILiPwCpe7uZ
CitedBy_id crossref_primary_10_1016_j_imbio_2022_152304
crossref_primary_10_1128_IAI_00278_16
crossref_primary_10_1371_journal_pone_0186998
crossref_primary_10_1038_nprot_2017_039
crossref_primary_10_1186_s12977_015_0144_x
crossref_primary_10_1093_infdis_jiu472
crossref_primary_10_1093_infdis_jix341
crossref_primary_10_3390_v12101097
crossref_primary_10_3390_pharmaceutics15010167
crossref_primary_10_3390_v13050753
crossref_primary_10_1038_s41586_020_03075_w
crossref_primary_10_3390_v12080799
crossref_primary_10_1016_j_ebiom_2022_104254
crossref_primary_10_1097_COH_0000000000000485
crossref_primary_10_1007_s11882_025_01199_5
crossref_primary_10_4049_immunohorizons_2000051
crossref_primary_10_1128_JVI_01186_18
crossref_primary_10_3390_vaccines6030050
crossref_primary_10_1111_imr_13388
crossref_primary_10_1097_COH_0000000000000094
crossref_primary_10_1097_COH_0000000000000093
crossref_primary_10_1172_JCI140965
crossref_primary_10_1016_j_clim_2025_110486
crossref_primary_10_3389_fimmu_2018_01923
crossref_primary_10_1128_JVI_01263_17
crossref_primary_10_3389_fimmu_2017_00708
crossref_primary_10_1016_j_cellin_2024_100200
crossref_primary_10_1080_21645515_2015_1009809
crossref_primary_10_3389_fimmu_2023_1138145
crossref_primary_10_1111_imm_13238
crossref_primary_10_1172_JCI155251
crossref_primary_10_1186_s12981_017_0171_x
crossref_primary_10_4049_jimmunol_2100367
crossref_primary_10_1186_s12916_015_0517_y
crossref_primary_10_1371_journal_pone_0153849
crossref_primary_10_4049_jimmunol_1701551
crossref_primary_10_3390_ijms231911845
crossref_primary_10_1002_mco2_390
crossref_primary_10_1016_j_jcyt_2016_04_007
crossref_primary_10_3389_fimmu_2018_02569
crossref_primary_10_1097_QAD_0000000000000437
crossref_primary_10_1111_imr_12512
crossref_primary_10_3389_fimmu_2019_01777
crossref_primary_10_3748_wjg_v22_i4_1393
crossref_primary_10_1111_all_15406
crossref_primary_10_3389_fimmu_2018_01995
crossref_primary_10_3390_ijms21218159
crossref_primary_10_1016_j_isci_2024_110947
crossref_primary_10_1016_S1473_3099_14_70917_X
crossref_primary_10_1016_j_immuni_2016_04_022
crossref_primary_10_3390_v14010135
Cites_doi 10.1073/pnas.0914500107
10.1182/blood-2006-10-051482
10.1073/pnas.231486598
10.1172/JCI117031
10.1038/ni1129
10.4049/jimmunol.179.3.1979
10.1084/jem.20112741
10.1038/nature05115
10.3791/50821
10.1089/aid.1998.14.393
10.4049/jimmunol.1000156
10.1111/j.1600-065X.2010.00923.x
10.1056/NEJMoa1200694
10.1038/nm.2106
10.1038/ni.1679
10.1084/jem.179.4.1361
10.1056/NEJMoa1302369
10.1093/infdis/174.1.46
10.1182/blood-2010-12-328070
10.1128/JVI.76.4.1731-1743.2002
10.1038/nature07662
10.1046/j.1365-2249.1999.00865.x
10.1038/nm1293
10.1146/annurev.immunol.19.1.683
10.1038/nprot.2006.1
10.1189/jlb.0610327
10.1038/ni.2035
10.1007/s00262-010-0909-y
10.1038/nm1292
10.1038/nature08511
10.1038/ni1515
10.1182/blood-2008-12-191296
10.1038/ni0909-929
10.1007/s11904-012-0115-y
10.1002/eji.200324270
10.1038/nri1001
10.1002/eji.1830241235
10.1038/nri2711
10.1128/JVI.06251-11
10.1182/blood-2005-07-2731
10.1056/NEJMoa1200690
10.1073/pnas.0811139106
10.1182/blood-2010-11-317297
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.1128/JVI.02034-13
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList
MEDLINE - Academic
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 2518
ExternalDocumentID PMC3958087
24352453
10_1128_JVI_02034_13
jvi_88_5_2508
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI078897
– fundername: NIAID NIH HHS
  grantid: P01 AI-080192
– fundername: NIAID NIH HHS
  grantid: UM1AI100663
– fundername: NHLBI NIH HHS
  grantid: R01 HL-092565
– fundername: NIAID NIH HHS
  grantid: UM1 AI100663
– fundername: NIAID NIH HHS
  grantid: P01 AI056299
– fundername: NIAID NIH HHS
  grantid: P01 AI080192
– fundername: NHLBI NIH HHS
  grantid: R01 HL092565
– fundername: NIAID NIH HHS
  grantid: AI56299
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c443t-bd65008261010762eb97ce63bdfa189df0ddc5e07c300da92d654b9ed33c82613
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 17:36:39 EDT 2025
Fri Jul 11 02:30:04 EDT 2025
Fri Jul 11 05:46:03 EDT 2025
Wed Feb 19 01:52:27 EST 2025
Tue Jul 01 01:02:28 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Wed May 18 15:26:45 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-bd65008261010762eb97ce63bdfa189df0ddc5e07c300da92d654b9ed33c82613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://jvi.asm.org/content/jvi/88/5/2508.full.pdf
PMID 24352453
PQID 1499131077
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1128_JVI_02034_13
crossref_citationtrail_10_1128_JVI_02034_13
pubmed_primary_24352453
highwire_asm_jvi_88_5_2508
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3958087
proquest_miscellaneous_1505349890
proquest_miscellaneous_1499131077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140301
2014-03-00
2014-Mar
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 20140301
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
17906628 - Nat Immunol. 2007 Nov;8(11):1246-54
10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20
17406204 - Nat Protoc. 2006;1(1):1-6
22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
19075244 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20428-33
19898495 - Nature. 2009 Nov 26;462(7272):510-3
7908324 - J Exp Med. 1994 Apr 1;179(4):1361-6
17641065 - J Immunol. 2007 Aug 1;179(3):1979-87
12563297 - Nat Rev Immunol. 2003 Feb;3(2):133-46
19078956 - Nature. 2009 Mar 12;458(7235):206-10
20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81
8113410 - J Clin Invest. 1994 Feb;93(2):768-75
19365081 - Blood. 2009 Jul 9;114(2):346-56
9546798 - AIDS Res Hum Retroviruses. 1998 Mar 20;14(5):393-9
17363736 - Blood. 2007 Jul 1;110(1):296-304
20208540 - Nat Med. 2010 Apr;16(4):452-9
20814675 - Cancer Immunol Immunother. 2010 Dec;59(12):1839-49
21739672 - Nat Immunol. 2011 Jun;12(6):492-9
22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65
8656012 - J Infect Dis. 1996 Jul;174(1):46-53
19043418 - Nat Immunol. 2009 Jan;10(1):29-37
11799168 - J Virol. 2002 Feb;76(4):1731-43
19692989 - Nat Immunol. 2009 Sep;10(9):929-32
21652684 - Blood. 2011 Jul 28;118(4):965-74
20133700 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3018-23
21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15
24193166 - J Vis Exp. 2013;(80):e50821
16921384 - Nature. 2006 Sep 21;443(7109):350-4
22641383 - J Exp Med. 2012 Jun 4;209(6):1201-17
11244051 - Annu Rev Immunol. 2001;19:683-765
14579280 - Eur J Immunol. 2003 Nov;33(11):3117-26
20656923 - J Immunol. 2010 Sep 1;185(5):3007-18
15475958 - Nat Immunol. 2004 Nov;5(11):1143-8
11698646 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13866-71
20636820 - Immunol Rev. 2010 Jul;236:219-42
22415474 - Curr HIV/AIDS Rep. 2012 Jun;9(2):121-31
22496237 - J Virol. 2012 Jun;86(12):6586-94
21398582 - Blood. 2011 May 5;117(18):4805-15
16269614 - Blood. 2006 Mar 1;107(5):1989-95
16186817 - Nat Med. 2005 Oct;11(10):1113-7
23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
16186818 - Nat Med. 2005 Oct;11(10):1118-24
7528671 - Eur J Immunol. 1994 Dec;24(12):3148-54
References_xml – ident: e_1_3_3_36_2
  doi: 10.1073/pnas.0914500107
– ident: e_1_3_3_24_2
  doi: 10.1182/blood-2006-10-051482
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.231486598
– ident: e_1_3_3_10_2
  doi: 10.1172/JCI117031
– ident: e_1_3_3_26_2
  doi: 10.1038/ni1129
– ident: e_1_3_3_5_2
  doi: 10.4049/jimmunol.179.3.1979
– ident: e_1_3_3_33_2
  doi: 10.1084/jem.20112741
– ident: e_1_3_3_19_2
  doi: 10.1038/nature05115
– ident: e_1_3_3_22_2
  doi: 10.3791/50821
– ident: e_1_3_3_43_2
  doi: 10.1089/aid.1998.14.393
– ident: e_1_3_3_6_2
  doi: 10.4049/jimmunol.1000156
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1600-065X.2010.00923.x
– ident: e_1_3_3_40_2
  doi: 10.1056/NEJMoa1200694
– ident: e_1_3_3_37_2
  doi: 10.1038/nm.2106
– ident: e_1_3_3_13_2
  doi: 10.1038/ni.1679
– ident: e_1_3_3_30_2
  doi: 10.1084/jem.179.4.1361
– ident: e_1_3_3_14_2
  doi: 10.1056/NEJMoa1302369
– ident: e_1_3_3_31_2
  doi: 10.1093/infdis/174.1.46
– ident: e_1_3_3_3_2
  doi: 10.1182/blood-2010-12-328070
– ident: e_1_3_3_42_2
  doi: 10.1128/JVI.76.4.1731-1743.2002
– ident: e_1_3_3_7_2
  doi: 10.1038/nature07662
– ident: e_1_3_3_9_2
  doi: 10.1046/j.1365-2249.1999.00865.x
– ident: e_1_3_3_18_2
  doi: 10.1038/nm1293
– ident: e_1_3_3_35_2
  doi: 10.1146/annurev.immunol.19.1.683
– ident: e_1_3_3_17_2
  doi: 10.1038/nprot.2006.1
– ident: e_1_3_3_38_2
  doi: 10.1189/jlb.0610327
– ident: e_1_3_3_2_2
  doi: 10.1038/ni.2035
– ident: e_1_3_3_25_2
  doi: 10.1007/s00262-010-0909-y
– ident: e_1_3_3_16_2
  doi: 10.1038/nm1292
– ident: e_1_3_3_44_2
  doi: 10.1038/nature08511
– ident: e_1_3_3_4_2
  doi: 10.1038/ni1515
– ident: e_1_3_3_11_2
  doi: 10.1182/blood-2008-12-191296
– ident: e_1_3_3_32_2
  doi: 10.1038/ni0909-929
– ident: e_1_3_3_41_2
  doi: 10.1007/s11904-012-0115-y
– ident: e_1_3_3_23_2
  doi: 10.1002/eji.200324270
– ident: e_1_3_3_29_2
  doi: 10.1038/nri1001
– ident: e_1_3_3_27_2
  doi: 10.1002/eji.1830241235
– ident: e_1_3_3_21_2
  doi: 10.1038/nri2711
– ident: e_1_3_3_8_2
  doi: 10.1128/JVI.06251-11
– ident: e_1_3_3_28_2
  doi: 10.1182/blood-2005-07-2731
– ident: e_1_3_3_39_2
  doi: 10.1056/NEJMoa1200690
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0811139106
– ident: e_1_3_3_15_2
  doi: 10.1182/blood-2010-11-317297
– reference: 16269614 - Blood. 2006 Mar 1;107(5):1989-95
– reference: 20814675 - Cancer Immunol Immunother. 2010 Dec;59(12):1839-49
– reference: 7528671 - Eur J Immunol. 1994 Dec;24(12):3148-54
– reference: 22496237 - J Virol. 2012 Jun;86(12):6586-94
– reference: 16921384 - Nature. 2006 Sep 21;443(7109):350-4
– reference: 21398582 - Blood. 2011 May 5;117(18):4805-15
– reference: 15475958 - Nat Immunol. 2004 Nov;5(11):1143-8
– reference: 16186818 - Nat Med. 2005 Oct;11(10):1118-24
– reference: 11244051 - Annu Rev Immunol. 2001;19:683-765
– reference: 17406204 - Nat Protoc. 2006;1(1):1-6
– reference: 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54
– reference: 19365081 - Blood. 2009 Jul 9;114(2):346-56
– reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
– reference: 14579280 - Eur J Immunol. 2003 Nov;33(11):3117-26
– reference: 22641383 - J Exp Med. 2012 Jun 4;209(6):1201-17
– reference: 20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81
– reference: 10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20
– reference: 11698646 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13866-71
– reference: 19078956 - Nature. 2009 Mar 12;458(7235):206-10
– reference: 20133700 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3018-23
– reference: 20636820 - Immunol Rev. 2010 Jul;236:219-42
– reference: 12563297 - Nat Rev Immunol. 2003 Feb;3(2):133-46
– reference: 24193166 - J Vis Exp. 2013;(80):e50821
– reference: 19898495 - Nature. 2009 Nov 26;462(7272):510-3
– reference: 16186817 - Nat Med. 2005 Oct;11(10):1113-7
– reference: 11799168 - J Virol. 2002 Feb;76(4):1731-43
– reference: 21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15
– reference: 19043418 - Nat Immunol. 2009 Jan;10(1):29-37
– reference: 22415474 - Curr HIV/AIDS Rep. 2012 Jun;9(2):121-31
– reference: 17641065 - J Immunol. 2007 Aug 1;179(3):1979-87
– reference: 17363736 - Blood. 2007 Jul 1;110(1):296-304
– reference: 8656012 - J Infect Dis. 1996 Jul;174(1):46-53
– reference: 21652684 - Blood. 2011 Jul 28;118(4):965-74
– reference: 8113410 - J Clin Invest. 1994 Feb;93(2):768-75
– reference: 19692989 - Nat Immunol. 2009 Sep;10(9):929-32
– reference: 20208540 - Nat Med. 2010 Apr;16(4):452-9
– reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
– reference: 21739672 - Nat Immunol. 2011 Jun;12(6):492-9
– reference: 20656923 - J Immunol. 2010 Sep 1;185(5):3007-18
– reference: 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65
– reference: 7908324 - J Exp Med. 1994 Apr 1;179(4):1361-6
– reference: 9546798 - AIDS Res Hum Retroviruses. 1998 Mar 20;14(5):393-9
– reference: 19075244 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20428-33
SSID ssj0014464
Score 2.3683918
Snippet Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2508
SubjectTerms Antibodies, Monoclonal - pharmacology
Antigen-Presenting Cells - immunology
Antigen-Presenting Cells - metabolism
Antigen-Presenting Cells - virology
B7-H1 Antigen - antagonists & inhibitors
CD4-Positive T-Lymphocytes - drug effects
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
CD4-Positive T-Lymphocytes - virology
Cytokines - biosynthesis
Epitopes, T-Lymphocyte - immunology
HIV Infections - immunology
HIV Infections - metabolism
HIV-1 - immunology
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Interferon-gamma - metabolism
Interleukin-10 - metabolism
Interleukin-10 Receptor alpha Subunit - antagonists & inhibitors
Lymphocyte Activation - drug effects
Lymphocyte Activation - immunology
Monocytes - drug effects
Monocytes - immunology
Monocytes - metabolism
Pathogenesis and Immunity
Programmed Cell Death 1 Receptor - metabolism
Signal Transduction - drug effects
Title Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions
URI http://jvi.asm.org/content/88/5/2508.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24352453
https://www.proquest.com/docview/1499131077
https://www.proquest.com/docview/1505349890
https://pubmed.ncbi.nlm.nih.gov/PMC3958087
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDcpDy0SnCynttfPY0lI04qiHNIo4mLFu-vGJLWjJEYCiV_JH2JmHTt2GyrgYkX22t5kvsxrZ74l5B0uETLD4vqUm46OrZ26LyFY4RGus0kBahl7h88_u4ML-2ziTFqtX7WqpXwTdfiPvX0l_yNVOAdyxS7Zf5Bs9VA4AZ9BvnAECcPxr2Tc2-5uslGMGVW_47Cnm5oqWOxnqyLnt5D5PElBG2ofwHrNp0LiKsHgdAyxndqCPk641u3Z2kjrYjYP0-nH8Fx4tT4sOpRUgQBe64Mp3KX5bjq242TVyNX3MWWzzNbaEPlIZknlxZ_Lyxmol5MOthJV5TdlvY32JV_Os_W8es6nHPSQWiBZ5PVkhWnvqrVq_QGouGolqefJjnKqrqoxSmZq32EwVIV2RvJTdPHq6tv3azB16rrYUYwRe4yEhY0PZ-PTDi7D2nrRDFvDy_JKAcYCV9KyCy7jJlP3NQta1TV-_ZaEvh86Ib77DrlrQeyC1uJkUtUdYfxtlxT2-P3KbgzLP6pPCVmqt-9vukwljfW-kOh6ZW_NVRo9JA-2UKDHBWAfkZZMH5N7xa6n35-Qn3XY0gK2NIspwpYC8I6yFW2ClpagpVlKm6ClAFo6oghMvJfeBG1xrQLtU3LR_zjqDvTtLiA6t2220SMBQQQ4quDnmwaYbhkFHpcui0Q8Nf1AxIYQ3JGGx5lhiGlgwXg7CqRgjONd7Bk5SLNUviDUsEUsOGeuxE0eXB6ZpvRcI4iFMF0vMtpEK3_okG8p8nGnlkWoQmXLD0FCoZJQaLI2eV-NXhbUMH8Yd1jKLJyur8IGSNrkbSnFEBQ7rtZNU5nla4jJIXSD4MvzbhkD8QuzAz-AqT8vJF9NpURPm3gNTFQDkFi-eSVNZopgngWOb_je4W0Tf0nu7_7gr8jBZpXL1-Cfb6I3Cu-_ASs-5Lo
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Impact+of+PD-1+and%2For+Interleukin-10+Blockade+on+HIV-1-Specific+CD4+T+Cell+and+Antigen-Presenting+Cell+Functions&rft.jtitle=Journal+of+Virology&rft.au=Filippos+Porichis&rft.au=Meghan+G.+Hart&rft.au=Jennifer+Zupkosky&rft.au=Lucie+Barblu&rft.date=2014-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=5&rft.spage=2508&rft_id=info:doi/10.1128%2FJVI.02034-13&rft_id=info%3Apmid%2F24352453&rft.externalDBID=n%2Fa&rft.externalDocID=jvi_88_5_2508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon