Astrocytes Transplanted during Early Postnatal Development Integrate, Mature, and Survive Long Term in Mouse Cortex

Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the develo...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 43; no. 9; pp. 1509 - 1529
Main Authors Chierzi, Sabrina, Kacerovsky, J Benjamin, Fok, Albert H K, Lahaie, Sylvie, Shibi Rosen, Arielle, Farmer, W Todd, Murai, Keith K
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine. The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.
AbstractList Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine. The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.
Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35–47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca 2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine. SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.
Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35–47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine. SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.
Author Lahaie, Sylvie
Murai, Keith K
Shibi Rosen, Arielle
Chierzi, Sabrina
Kacerovsky, J Benjamin
Fok, Albert H K
Farmer, W Todd
Author_xml – sequence: 1
  givenname: Sabrina
  surname: Chierzi
  fullname: Chierzi, Sabrina
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 2
  givenname: J Benjamin
  surname: Kacerovsky
  fullname: Kacerovsky, J Benjamin
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 3
  givenname: Albert H K
  surname: Fok
  fullname: Fok, Albert H K
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 4
  givenname: Sylvie
  surname: Lahaie
  fullname: Lahaie, Sylvie
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 5
  givenname: Arielle
  surname: Shibi Rosen
  fullname: Shibi Rosen, Arielle
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 6
  givenname: W Todd
  surname: Farmer
  fullname: Farmer, W Todd
  organization: Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
– sequence: 7
  givenname: Keith K
  surname: Murai
  fullname: Murai, Keith K
  email: keith.murai@mcgill.ca
  organization: Quantitative Life Sciences Graduate Program, McGill University, Montreal, Quebec H3A 2A7, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36669885$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9PGzEQxa2KqgTar4As9dpN_W_X3lOF0pQGBahKOFte72y6aGOntjdqvj2OgKic5jDvvXma3xk6cd4BQheUTGnJ-Nfr2_nD77v72WJKSiEKxqaMMP4OTfK2Lpgg9ARNCJOkqIQUp-gsxkdCiCRUfkCnvKqqWqlyguJlTMHbfYKIV8G4uB2MS9Didgy9W-O5CcMe__IxOZPMgL_DDga_3YBLeJGF62ASfME3Jo0hT-NafD-GXb8DvPTZv4Kwwb3DN36MgGc-JPj3Eb3vzBDh08s8Rw8_5qvZz2J5d7WYXS4LKwRPRWMrKTsgLWvAlkp2oiltzcoKmto0jBBe29YAbYRtgIHIf1CKC2JVR1UrDD9H355zt2OzgdbmzsEMehv6jQl77U2v325c_0ev_U7T_ClFKp4TPr8kBP93hJj0ox-Dy6U1k4pKTktKs6p6VtngYwzQHU9Qog-09JGWPtDSjOkDrWy8-L_g0faKhz8BgBWWQw
CitedBy_id crossref_primary_10_1111_jnc_15908
crossref_primary_10_1523_JNEUROSCI_0357_23_2023
crossref_primary_10_1523_JNEUROSCI_0802_23_2023
crossref_primary_10_1186_s42269_023_01083_0
crossref_primary_10_53053_ZFSA8687
crossref_primary_10_1016_j_biopha_2024_116526
crossref_primary_10_1038_s41586_024_07187_5
Cites_doi 10.1016/j.celrep.2017.12.039
10.1002/glia.23924
10.1016/S0896-6273(00)80280-9
10.1038/s41467-019-14198-8
10.1002/(SICI)1098-1136(199805)23:1<1::AID-GLIA1>3.0.CO;2-B
10.1242/dev.078873
10.1371/journal.pone.0196153
10.1002/dneu.20820
10.1016/j.cell.2008.02.046
10.1016/j.conb.2017.12.013
10.1016/bs.ctdb.2020.12.010
10.1038/nrn3468
10.1523/JNEUROSCI.21-06-01983.2001
10.1007/s00429-014-0775-z
10.1038/nrn.2016.159
10.3389/fcell.2021.702832
10.1016/j.neuron.2016.11.030
10.1002/cne.903170204
10.1038/jcbfm.2012.45
10.1523/JNEUROSCI.0712-17.2018
10.1038/nn.2467
10.1186/s12859-021-04344-9
10.21769/BioProtoc.2712
10.1126/science.1190721
10.1002/emmm.201302878
10.1002/cne.903110304
10.3389/fncel.2017.00300
10.1038/gt.2010.71
10.1101/2021.11.05.467391
10.1523/JNEUROSCI.2121-13.2013
10.1634/stemcells.2006-0174
10.1002/glia.440090204
10.1126/science.1222381
10.1038/s41593-020-0602-1
10.1371/journal.pone.0070091
10.1038/s41592-018-0171-3
10.1111/j.1471-4159.1985.tb04080.x
10.1016/j.tins.2020.04.003
10.1016/j.neuron.2015.11.013
10.1002/glia.22878
10.1523/JNEUROSCI.1924-05.2005
10.1523/JNEUROSCI.4178-07.2008
10.1146/annurev-neuro-070918-050443
10.1016/j.brainresbull.2016.12.013
10.1073/pnas.2012482118
10.1038/342427a0
10.1126/science.1156120
10.1093/cercor/bhw213
10.1111/j.1460-9568.1997.tb01522.x
10.1016/S0306-4522(02)00041-6
10.1002/glia.24016
10.1126/science.aab3103
10.1038/nn.3725
10.1038/s41467-018-03940-3
10.3389/fncel.2016.00021
10.1038/s41467-019-12791-5
10.1016/j.neuroscience.2019.05.048
10.1038/s41593-019-0492-2
10.1002/glia.20599
10.1016/j.tins.2015.08.003
10.1016/j.ijdevneu.2003.12.008
10.1002/glia.24064
10.1016/j.neuron.2008.04.029
10.1046/j.0022-7722.2002.00021.x
10.1016/0006-8993(91)91054-5
10.1523/JNEUROSCI.5027-09.2010
10.1007/s00401-009-0619-8
10.1016/j.stem.2017.06.012
10.1089/neu.2013.3143
10.1093/nar/gks665
10.1007/3-540-29784-7_14
10.1016/j.neuron.2017.09.056
10.1038/s41593-020-00783-4
10.1016/j.celrep.2015.10.030
10.1038/s41598-020-67526-0
10.3389/fnmol.2017.00316
10.1126/science.1221140
10.1038/ncomms5430
10.1016/S2215-0366(19)30302-5
10.1002/glia.20200
10.1016/j.neuron.2017.08.022
10.3390/ijms21249607
10.1038/nature10959
10.3389/fncel.2021.702685
10.1016/j.bbi.2010.11.007
10.1038/s41592-019-0471-2
ContentType Journal Article
Copyright Copyright © 2023 the authors.
Copyright Society for Neuroscience Mar 1, 2023
Copyright © 2023 the authors 2023
Copyright_xml – notice: Copyright © 2023 the authors.
– notice: Copyright Society for Neuroscience Mar 1, 2023
– notice: Copyright © 2023 the authors 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
5PM
DOI 10.1523/JNEUROSCI.0544-22.2023
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1529
ExternalDocumentID 10_1523_JNEUROSCI_0544_22_2023
36669885
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: PJT148569
– fundername: CIHR
  grantid: 156247
– fundername: ;
– fundername: IDRC
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
AENEX
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
5PM
ID FETCH-LOGICAL-c443t-bc677fe0d2bec587f4b5c9256eb9ab20039cdae1b4cbe2e454488340c8f18d4a3
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:29:51 EDT 2024
Fri Aug 30 23:36:49 EDT 2024
Fri Aug 23 02:44:05 EDT 2024
Sat Sep 28 08:18:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords cortex
confocal imaging
diversity
astrocytes
transplantation
Language English
License Copyright © 2023 the authors.
SfN exclusive license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-bc677fe0d2bec587f4b5c9256eb9ab20039cdae1b4cbe2e454488340c8f18d4a3
Notes Author contributions: S.C., W.T.F., and K.K.M. designed research; S.C., J.B.K., A.H.K.F., S.L., and A.S.R. performed research; S.C., J.B.K., A.H.K.F., S.L., A.S.R., W.T.F., and K.K.M. analyzed data; S.C. and K.K.M. wrote the first draft of the paper; S.C., W.T.F., and K.K.M. edited the paper; S.C. and K.K.M. wrote the paper.
OpenAccessLink https://doi.org/10.1523/jneurosci.0544-22.2023
PMID 36669885
PQID 2781731511
PQPubID 2049535
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10008063
proquest_journals_2781731511
crossref_primary_10_1523_JNEUROSCI_0544_22_2023
pubmed_primary_36669885
PublicationCentury 2000
PublicationDate 2023-03-01
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2023
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803555974000_43.9.1509.6
2023041803555974000_43.9.1509.52
2023041803555974000_43.9.1509.7
2023041803555974000_43.9.1509.51
2023041803555974000_43.9.1509.8
2023041803555974000_43.9.1509.50
2023041803555974000_43.9.1509.9
Emmett (2023041803555974000_43.9.1509.20) 1991; 311
2023041803555974000_43.9.1509.2
2023041803555974000_43.9.1509.3
Ishii (2023041803555974000_43.9.1509.32) 2021; 118
2023041803555974000_43.9.1509.4
2023041803555974000_43.9.1509.5
Tan (2023041803555974000_43.9.1509.71) 2021; 142
2023041803555974000_43.9.1509.15
2023041803555974000_43.9.1509.59
2023041803555974000_43.9.1509.14
2023041803555974000_43.9.1509.58
2023041803555974000_43.9.1509.1
2023041803555974000_43.9.1509.13
2023041803555974000_43.9.1509.56
2023041803555974000_43.9.1509.11
2023041803555974000_43.9.1509.55
Milbreta (2023041803555974000_43.9.1509.49) 2014; 31
Peterson (2023041803555974000_43.9.1509.53) 2019; 411
Hatton (2023041803555974000_43.9.1509.30) 1993; 9
Stackhouse (2023041803555974000_43.9.1509.69) 2021; 9
Welle (2023041803555974000_43.9.1509.79) 2021; 69
2023041803555974000_43.9.1509.63
2023041803555974000_43.9.1509.62
2023041803555974000_43.9.1509.61
2023041803555974000_43.9.1509.60
2023041803555974000_43.9.1509.27
2023041803555974000_43.9.1509.26
2023041803555974000_43.9.1509.25
Warren (2023041803555974000_43.9.1509.78) 2020; 10
2023041803555974000_43.9.1509.24
2023041803555974000_43.9.1509.68
2023041803555974000_43.9.1509.23
Jin (2023041803555974000_43.9.1509.34) 2017; 10
2023041803555974000_43.9.1509.67
2023041803555974000_43.9.1509.22
2023041803555974000_43.9.1509.21
Petrelli (2023041803555974000_43.9.1509.54) 2016; 10
2023041803555974000_43.9.1509.65
2023041803555974000_43.9.1509.64
Smith (2023041803555974000_43.9.1509.66) 1991; 543
2023041803555974000_43.9.1509.18
2023041803555974000_43.9.1509.17
Todd (2023041803555974000_43.9.1509.72) 2020; 21
Cohen-Salmon (2023041803555974000_43.9.1509.16) 2021; 69
Ponroy Bally (2023041803555974000_43.9.1509.57) 2021; 15
2023041803555974000_43.9.1509.74
2023041803555974000_43.9.1509.73
2023041803555974000_43.9.1509.70
2023041803555974000_43.9.1509.38
2023041803555974000_43.9.1509.37
2023041803555974000_43.9.1509.36
2023041803555974000_43.9.1509.35
2023041803555974000_43.9.1509.33
2023041803555974000_43.9.1509.77
2023041803555974000_43.9.1509.76
2023041803555974000_43.9.1509.31
2023041803555974000_43.9.1509.75
2023041803555974000_43.9.1509.29
2023041803555974000_43.9.1509.28
Chouchane (2023041803555974000_43.9.1509.12) 2018; 8
Camassa (2023041803555974000_43.9.1509.10) 2015; 63
2023041803555974000_43.9.1509.41
2023041803555974000_43.9.1509.85
2023041803555974000_43.9.1509.40
2023041803555974000_43.9.1509.84
2023041803555974000_43.9.1509.83
2023041803555974000_43.9.1509.82
2023041803555974000_43.9.1509.81
2023041803555974000_43.9.1509.80
2023041803555974000_43.9.1509.48
2023041803555974000_43.9.1509.47
2023041803555974000_43.9.1509.46
2023041803555974000_43.9.1509.45
2023041803555974000_43.9.1509.44
2023041803555974000_43.9.1509.43
2023041803555974000_43.9.1509.42
2023041803555974000_43.9.1509.86
2023041803555974000_43.9.1509.39
Dietz (2023041803555974000_43.9.1509.19) 2020; 7
References_xml – ident: 2023041803555974000_43.9.1509.7
  doi: 10.1016/j.celrep.2017.12.039
– volume: 69
  start-page: 817
  year: 2021
  ident: 2023041803555974000_43.9.1509.16
  article-title: Astrocytes in the regulation of cerebrovascular functions
  publication-title: Glia
  doi: 10.1002/glia.23924
  contributor:
    fullname: Cohen-Salmon
– ident: 2023041803555974000_43.9.1509.26
  doi: 10.1016/S0896-6273(00)80280-9
– ident: 2023041803555974000_43.9.1509.3
  doi: 10.1038/s41467-019-14198-8
– ident: 2023041803555974000_43.9.1509.35
  doi: 10.1002/(SICI)1098-1136(199805)23:1<1::AID-GLIA1>3.0.CO;2-B
– ident: 2023041803555974000_43.9.1509.85
  doi: 10.1242/dev.078873
– ident: 2023041803555974000_43.9.1509.75
  doi: 10.1371/journal.pone.0196153
– ident: 2023041803555974000_43.9.1509.25
  doi: 10.1002/dneu.20820
– ident: 2023041803555974000_43.9.1509.31
  doi: 10.1016/j.cell.2008.02.046
– ident: 2023041803555974000_43.9.1509.18
  doi: 10.1016/j.conb.2017.12.013
– volume: 142
  start-page: 371
  year: 2021
  ident: 2023041803555974000_43.9.1509.71
  article-title: Role of astrocytes in synapse formation and maturation
  publication-title: Curr Top Dev Biol
  doi: 10.1016/bs.ctdb.2020.12.010
  contributor:
    fullname: Tan
– ident: 2023041803555974000_43.9.1509.52
  doi: 10.1038/nrn3468
– ident: 2023041803555974000_43.9.1509.59
  doi: 10.1523/JNEUROSCI.21-06-01983.2001
– ident: 2023041803555974000_43.9.1509.43
  doi: 10.1007/s00429-014-0775-z
– ident: 2023041803555974000_43.9.1509.5
  doi: 10.1038/nrn.2016.159
– volume: 9
  start-page: 702832
  year: 2021
  ident: 2023041803555974000_43.9.1509.69
  article-title: Neurovascular coupling in development and disease: focus on astrocytes
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.702832
  contributor:
    fullname: Stackhouse
– ident: 2023041803555974000_43.9.1509.68
  doi: 10.1016/j.neuron.2016.11.030
– ident: 2023041803555974000_43.9.1509.84
  doi: 10.1002/cne.903170204
– ident: 2023041803555974000_43.9.1509.22
  doi: 10.1038/jcbfm.2012.45
– ident: 2023041803555974000_43.9.1509.86
  doi: 10.1523/JNEUROSCI.0712-17.2018
– ident: 2023041803555974000_43.9.1509.44
  doi: 10.1038/nn.2467
– ident: 2023041803555974000_43.9.1509.70
  doi: 10.1186/s12859-021-04344-9
– volume: 8
  start-page: e2712
  year: 2018
  ident: 2023041803555974000_43.9.1509.12
  article-title: Culture and nucleofection of postnatal day 7 cortical and cerebellar mouse astroglial cells
  publication-title: Bio Protoc
  doi: 10.21769/BioProtoc.2712
  contributor:
    fullname: Chouchane
– ident: 2023041803555974000_43.9.1509.29
  doi: 10.1126/science.1190721
– ident: 2023041803555974000_43.9.1509.58
  doi: 10.1002/emmm.201302878
– volume: 311
  start-page: 330
  year: 1991
  ident: 2023041803555974000_43.9.1509.20
  article-title: Cultured epithelioid astrocytes migrate after transplantation into the adult rat brain
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903110304
  contributor:
    fullname: Emmett
– ident: 2023041803555974000_43.9.1509.23
  doi: 10.3389/fncel.2017.00300
– ident: 2023041803555974000_43.9.1509.28
  doi: 10.1038/gt.2010.71
– ident: 2023041803555974000_43.9.1509.63
  doi: 10.1101/2021.11.05.467391
– ident: 2023041803555974000_43.9.1509.77
  doi: 10.1523/JNEUROSCI.2121-13.2013
– ident: 2023041803555974000_43.9.1509.17
  doi: 10.1634/stemcells.2006-0174
– volume: 9
  start-page: 113
  year: 1993
  ident: 2023041803555974000_43.9.1509.30
  article-title: Differential migration of astrocytes grafted into the developing rat brain
  publication-title: Glia
  doi: 10.1002/glia.440090204
  contributor:
    fullname: Hatton
– ident: 2023041803555974000_43.9.1509.73
  doi: 10.1126/science.1222381
– ident: 2023041803555974000_43.9.1509.4
  doi: 10.1038/s41593-020-0602-1
– ident: 2023041803555974000_43.9.1509.39
  doi: 10.1371/journal.pone.0070091
– ident: 2023041803555974000_43.9.1509.46
  doi: 10.1038/s41592-018-0171-3
– ident: 2023041803555974000_43.9.1509.41
  doi: 10.1111/j.1471-4159.1985.tb04080.x
– ident: 2023041803555974000_43.9.1509.48
  doi: 10.1016/j.tins.2020.04.003
– ident: 2023041803555974000_43.9.1509.83
  doi: 10.1016/j.neuron.2015.11.013
– volume: 63
  start-page: 2073
  year: 2015
  ident: 2023041803555974000_43.9.1509.10
  article-title: Mechanisms underlying AQP4 accumulation in astrocyte endfeet
  publication-title: Glia
  doi: 10.1002/glia.22878
  contributor:
    fullname: Camassa
– ident: 2023041803555974000_43.9.1509.45
  doi: 10.1523/JNEUROSCI.1924-05.2005
– ident: 2023041803555974000_43.9.1509.9
  doi: 10.1523/JNEUROSCI.4178-07.2008
– ident: 2023041803555974000_43.9.1509.36
  doi: 10.1146/annurev-neuro-070918-050443
– ident: 2023041803555974000_43.9.1509.61
  doi: 10.1016/j.brainresbull.2016.12.013
– volume: 118
  start-page: e2012482118
  year: 2021
  ident: 2023041803555974000_43.9.1509.32
  article-title: Primary cilia safeguard cortical neurons in neonatal mouse forebrain from environmental stress-induced dendritic degeneration
  publication-title: Proc Natl Acad Sci U
  doi: 10.1073/pnas.2012482118
  contributor:
    fullname: Ishii
– ident: 2023041803555974000_43.9.1509.50
  doi: 10.1038/342427a0
– ident: 2023041803555974000_43.9.1509.65
  doi: 10.1126/science.1156120
– ident: 2023041803555974000_43.9.1509.82
  doi: 10.1093/cercor/bhw213
– ident: 2023041803555974000_43.9.1509.74
  doi: 10.1111/j.1460-9568.1997.tb01522.x
– ident: 2023041803555974000_43.9.1509.51
  doi: 10.1016/S0306-4522(02)00041-6
– volume: 69
  start-page: 2160
  year: 2021
  ident: 2023041803555974000_43.9.1509.79
  article-title: Epigenetic control of region-specific transcriptional programs in mouse cerebellar and cortical astrocytes
  publication-title: Glia
  doi: 10.1002/glia.24016
  contributor:
    fullname: Welle
– ident: 2023041803555974000_43.9.1509.24
  doi: 10.1126/science.aab3103
– ident: 2023041803555974000_43.9.1509.37
  doi: 10.1038/nn.3725
– ident: 2023041803555974000_43.9.1509.40
  doi: 10.1038/s41467-018-03940-3
– volume: 10
  start-page: 21
  year: 2016
  ident: 2023041803555974000_43.9.1509.54
  article-title: Astrocytes and microglia and their potential link with autism spectrum disorders
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2016.00021
  contributor:
    fullname: Petrelli
– ident: 2023041803555974000_43.9.1509.15
  doi: 10.1038/s41467-019-12791-5
– volume: 411
  start-page: 185
  year: 2019
  ident: 2023041803555974000_43.9.1509.53
  article-title: Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.05.048
  contributor:
    fullname: Peterson
– ident: 2023041803555974000_43.9.1509.76
  doi: 10.1038/s41593-019-0492-2
– ident: 2023041803555974000_43.9.1509.56
  doi: 10.1002/glia.20599
– ident: 2023041803555974000_43.9.1509.13
  doi: 10.1016/j.tins.2015.08.003
– ident: 2023041803555974000_43.9.1509.8
  doi: 10.1016/j.ijdevneu.2003.12.008
– ident: 2023041803555974000_43.9.1509.38
  doi: 10.1002/glia.24064
– ident: 2023041803555974000_43.9.1509.55
  doi: 10.1016/j.neuron.2008.04.029
– ident: 2023041803555974000_43.9.1509.81
  doi: 10.1046/j.0022-7722.2002.00021.x
– volume: 543
  start-page: 111
  year: 1991
  ident: 2023041803555974000_43.9.1509.66
  article-title: Immature type-1 astrocytes suppress glial scar formation, are motile and interact with blood vessels
  publication-title: Brain Res
  doi: 10.1016/0006-8993(91)91054-5
  contributor:
    fullname: Smith
– ident: 2023041803555974000_43.9.1509.33
  doi: 10.1523/JNEUROSCI.5027-09.2010
– ident: 2023041803555974000_43.9.1509.67
  doi: 10.1007/s00401-009-0619-8
– ident: 2023041803555974000_43.9.1509.80
  doi: 10.1016/j.stem.2017.06.012
– volume: 31
  start-page: 803
  year: 2014
  ident: 2023041803555974000_43.9.1509.49
  article-title: Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2013.3143
  contributor:
    fullname: Milbreta
– ident: 2023041803555974000_43.9.1509.2
  doi: 10.1093/nar/gks665
– ident: 2023041803555974000_43.9.1509.64
  doi: 10.1007/3-540-29784-7_14
– ident: 2023041803555974000_43.9.1509.1
  doi: 10.1016/j.neuron.2017.09.056
– ident: 2023041803555974000_43.9.1509.21
  doi: 10.1038/s41593-020-00783-4
– ident: 2023041803555974000_43.9.1509.60
  doi: 10.1016/j.celrep.2015.10.030
– volume: 10
  start-page: 11262
  year: 2020
  ident: 2023041803555974000_43.9.1509.78
  article-title: Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67526-0
  contributor:
    fullname: Warren
– volume: 10
  start-page: 316
  year: 2017
  ident: 2023041803555974000_43.9.1509.34
  article-title: MeCP2 deficiency in neuroglia: new progress in the pathogenesis of Rett syndrome
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2017.00316
  contributor:
    fullname: Jin
– ident: 2023041803555974000_43.9.1509.62
  doi: 10.1126/science.1221140
– ident: 2023041803555974000_43.9.1509.11
  doi: 10.1038/ncomms5430
– volume: 7
  start-page: 272
  year: 2020
  ident: 2023041803555974000_43.9.1509.19
  article-title: Glial cells in schizophrenia: a unified hypothesis
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(19)30302-5
  contributor:
    fullname: Dietz
– ident: 2023041803555974000_43.9.1509.42
  doi: 10.1002/glia.20200
– ident: 2023041803555974000_43.9.1509.14
  doi: 10.1016/j.neuron.2017.08.022
– volume: 21
  start-page: 9607
  year: 2020
  ident: 2023041803555974000_43.9.1509.72
  article-title: The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21249607
  contributor:
    fullname: Todd
– ident: 2023041803555974000_43.9.1509.27
  doi: 10.1038/nature10959
– volume: 15
  start-page: 702685
  year: 2021
  ident: 2023041803555974000_43.9.1509.57
  article-title: Astrocytes in Down syndrome across the lifespan
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2021.702685
  contributor:
    fullname: Ponroy Bally
– ident: 2023041803555974000_43.9.1509.6
  doi: 10.1016/j.bbi.2010.11.007
– ident: 2023041803555974000_43.9.1509.47
  doi: 10.1038/s41592-019-0471-2
SSID ssj0007017
Score 2.4795678
Snippet Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1509
SubjectTerms Animals
Aquaporin 4
Astrocytes
Astrocytes - metabolism
Brain
Calcium ions
Cerebellum
Cerebral Cortex
Circuits
Female
Male
Maturation
Mice
Microenvironments
Morphology
Neuroglia
Phenotypes
Physiology
Regenerative medicine
Survival
Tiling
Transplantation
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
Title Astrocytes Transplanted during Early Postnatal Development Integrate, Mature, and Survive Long Term in Mouse Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/36669885
https://www.proquest.com/docview/2781731511/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10008063
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1RTntBC-wuZQHNAe2JNHXsJs6xqkB8bNGuAIlbFH9EW4m6aNsi-PeMnaQqcOOcOLL8HM8b680bgGOhCVTDRaSMTiLhnbUVhYLIMG4ty42QwUtvfJ2e34nL-8H9BqRtLUwQ7Ws16bmHac9N_gVt5eNUx61OLP4zHrFAdFIed6CTcd7m6M35m_VDn13KtygxEplo6oIp44ovr70-7mZ00SOmIqLEV2IlvpUOJxafS99QeT06faCc75WTa6Ho7CtsNRwSh_Vct2HDuh3YHTrKn6cv-AuDqjNcl-_CfDhfUIx6IUaJtZH5g19Lg3V9IgaDY_Qte52_yME1ERFetFYSJzgO_p8nWDqDN0s6Xp4s_p7R-Fs62XHicDxbzi2OvHT3-RvcnZ3ejs6jptFCpIXgi0jpNMsq2zcJITqQWSXUQOdEhqzKS-Xla7k2pWVKaGUTK2jtpOSir2XFpBEl_w6bbubsHqAyA6MNJXFVnouKkpGy7DPFNbeyzFNWdSFuF7h4rP00Cp-HEDrFCp3Co1MkSeHR6cJBi0PR_F_zIskkyzixFdaFHzUkq8-1WHZBvgFr9YJ31H77hDZacNZuN9b-54f-hC9-1rVM7QA2F_-X9pB4y0IdQefqrzwKm_UV9HTuKA
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VcoALBcpHSgt7QJxqO_sRe32MolZJiSOkpqI3y_thEdE4FXEQ5dczu7ajtJzgvF5Lq7e782b15g3AR6ERVMNFoIxmgXDO2gpDQWAot5amRkjvpZfN4vGVuLgeXO9B3NXCeNG-VouwulmG1eKb11beLnXU6cSiL9mIeqIT8-gRPMYDy5IuS29v4KTvO-1ixoWpkUhEWxmMOVd0MXMKucvRJESuIgLmarGYa6bDkcen0rVU3o1Pf5HOh9rJnWB0fgBfu2U0GpTv4aZWof79wOHx39f5HJ61_JQMm_EXsGerl3A4rDA3X96RT8QrRv1T_CGsh-sa498dslXSmKTfOJwMaWofiTdPJq4dcOUeiciOQIlMOpuKU5J5b9FTUlSGXG7w6vppyXSF8-cYNciiItlqs7Zk5GTBv17B1fnZfDQO2iYOgRaC14HScZKUtm8Y7paBTEqhBjpFomVVWignjUu1KSxVQivLrEBUpOSir2VJpREFfw371aqyb4EoMzDaYIJYpqkoMdEpij5VXHMrizSmZQ-iDrr8tvHqyF2Og7jnW9xzh3vOWO5w78Fxh3Dent11zhJJE45MiPbgTQP29nfdLumBvLcNth84t-77Iwiud-3uwDz6_6kf4Ml4nk3z6WT2-R08dSto5HDHsF__2NgT5Ee1eu8Pwx8GAw9d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLVgSIgXbuNSGOAHxNOS1Jc29mNVqNaxVpO2SZN4sOJLtIrVrUiKGL-ez05SdeNtz4kjWcfOd451fD6EPnMDoFrGE20NTXhI1tZQChJLmHNEWi5ilt5sPjy64MeXg8vWVVm1tkpv9CL118vUL66it3K9NFnnE8tOZ2MSic6QZWtbZg_RI9i0VHZKvf0L5_3YbRdUF8gjnvP2djDorux4HlxyZ-NpCnyFJzTcx6KhoQ4DLi9FaKu8W6P-I553_ZM7BWnyDP3optL4UH6mm1qn5u-dlMf7zfU5etryVDxq3nmBHjj_Eu2PPGj05Q3-gqNzNB7J76NqVNVQB2-AteImLP064GVxcwcSxxBlHNoC-3BYhHeMSnjaxVUc4lnMGD3Ehbf4bAO_sN8On6xg_DlUD7zweLbaVA6Pgz34zyt0Mfl2Pj5K2mYOieGc1Yk2wzwvXd9SWDUDkZdcD4wEwuW0LHSwyEljC0c0N9pRxwEZIRjvG1ESYXnBXqM9v_LuLcLaDqyxIBRLKXkJgqco-kQzw5wo5JCUPZR18Kl1k9mhgtYB7NUWexWwV5SqgH0PHXQoq3YPV4rmguQMGBHpoTcN4NvPdSulh8StpbB9IaR2334CAMf07g7Qd_cf-gk9Pv06USfT-ff36EmYQOOKO0B79a-N-wA0qdYf4374B4BQEd0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocytes+Transplanted+during+Early+Postnatal+Development+Integrate%2C+Mature%2C+and+Survive+Long+Term+in+Mouse+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chierzi%2C+Sabrina&rft.au=Kacerovsky%2C+J+Benjamin&rft.au=Fok%2C+Albert+H+K&rft.au=Lahaie%2C+Sylvie&rft.date=2023-03-01&rft.eissn=1529-2401&rft.volume=43&rft.issue=9&rft.spage=1509&rft_id=info:doi/10.1523%2FJNEUROSCI.0544-22.2023&rft_id=info%3Apmid%2F36669885&rft.externalDocID=36669885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon