Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference

Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underly...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 32; pp. 1 - 10
Main Authors Noble, Stephanie, Mejia, Amanda F., Zalesky, Andrew, Scheinost, Dustin
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.08.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2203020119

Cover

Loading…
Abstract Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples taskbased connectomes from the Human Connectome Project dataset (~1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate– compared with familywise error rate–controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
AbstractList Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples task-based connectomes from the Human Connectome Project dataset (∼1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate– compared with familywise error rate–controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
Localizing cognitive function to distinct brain areas has been a mainstay of human brain research since early reports that focal injuries produce changes in behavior. Yet, accumulating evidence shows that areas do not act in isolation. Here, we evaluate the practical implications of the localizationist perspective by comparing the performance of localizing versus broad-scale statistical procedures in real connectome data (1,000 subjects performing 7 tasks). We find that popular localizing procedures miss substantially more true effects than simple broad-scale procedures. By highlighting the power of simple alternatives, we argue that moving beyond localization is viable and can help unlock opportunities for human neuroscience discovery. Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples task-based connectomes from the Human Connectome Project dataset (∼1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate– compared with familywise error rate–controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples taskbased connectomes from the Human Connectome Project dataset (~1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate– compared with familywise error rate–controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples task-based connectomes from the Human Connectome Project dataset (∼1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate- compared with familywise error rate-controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples task-based connectomes from the Human Connectome Project dataset (∼1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate- compared with familywise error rate-controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
Author Mejia, Amanda F.
Zalesky, Andrew
Noble, Stephanie
Scheinost, Dustin
Author_xml – sequence: 1
  givenname: Stephanie
  surname: Noble
  fullname: Noble, Stephanie
– sequence: 2
  givenname: Amanda F.
  surname: Mejia
  fullname: Mejia, Amanda F.
– sequence: 3
  givenname: Andrew
  surname: Zalesky
  fullname: Zalesky, Andrew
– sequence: 4
  givenname: Dustin
  surname: Scheinost
  fullname: Scheinost, Dustin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35925887$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFNStQJDZs0voRx_YGCVU8KlViA2vLca4HjxI72MlU8-9xmDJAF6wsXX_n3GOfC3QWYgCEXhJ8RbBg11Mw-YpSzDDFhKgnaEOwInXbKHyGNhhTUcuGNufoIucdxlhxiZ-hc8YV5VKKDTK345Ti3odtNcV7SJUPlVuCnX0MZqhGsw0we1slyGUQLFS-zFa8O1TjUdjBIYa-ssOSZ0j1AHsYio-DBEXwHD11Zsjw4uG8RN8-fvh687m--_Lp9ub9XW2bhs11J6wE2mMnleG07du-hOedop1TTvWSO9cBNI1smXGYOGkd61vWOeo44VyyS_Tu6Dst3Qi9hTAnM-gplcDpoKPx-t-b4L_rbdxrxQRpG1oM3j4YpPhjgTzr0WcLw2ACxCVr2qqyHLe_dr15hO7iksqHFUpgLBSjZKVe_53oFOX37xfg-gjYFHNO4E4IwXrtV6_96j_9FgV_pLB-NmtZ5Ul--I_u1VG3y3NMpzVUEEEaQdhPTjG2IA
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00401
crossref_primary_10_3233_BPL_240003
crossref_primary_10_1016_j_neuroimage_2022_119742
crossref_primary_10_1523_ENEURO_0209_24_2024
crossref_primary_10_1016_j_neubiorev_2024_105729
crossref_primary_10_3389_fnins_2024_1508077
crossref_primary_10_1016_j_biopsych_2024_10_007
crossref_primary_10_1016_j_ejon_2023_102499
crossref_primary_10_1016_j_psychres_2024_116113
crossref_primary_10_1016_j_bpsc_2023_09_002
crossref_primary_10_1038_s44271_024_00114_4
crossref_primary_10_1038_s41467_024_50248_6
crossref_primary_10_1016_j_bpsc_2022_12_006
crossref_primary_10_1016_j_jpsychires_2022_10_067
crossref_primary_10_1016_j_bbr_2024_115272
crossref_primary_10_1371_journal_pcbi_1010634
crossref_primary_10_1038_s44220_023_00101_4
crossref_primary_10_1214_24_AOAS1880
crossref_primary_10_1111_ejn_15889
crossref_primary_10_1038_s41380_024_02767_3
crossref_primary_10_1016_j_nicl_2024_103630
crossref_primary_10_1016_j_tics_2022_12_011
crossref_primary_10_1016_j_tics_2023_05_006
crossref_primary_10_1038_s41586_024_08260_9
crossref_primary_10_1155_2024_3103115
crossref_primary_10_1016_j_patter_2023_100756
crossref_primary_10_1162_imag_a_00138
crossref_primary_10_3389_fnins_2023_1206604
crossref_primary_10_1038_s41467_024_46150_w
Cites_doi 10.1016/j.neuroimage.2019.116468
10.1016/j.neuroimage.2021.118648
10.1111/1467-9868.00346
10.1007/978-3-030-59728-3_44
10.1523/JNEUROSCI.2965-15.2016
10.1073/pnas.1121049109
10.1038/s41467-020-17368-1
10.1038/s41593-020-00719-y
10.1038/nrn.2016.167
10.3389/fnhum.2013.00493
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1073/pnas.0506580102
10.1093/biomet/73.3.751
10.1371/journal.pone.0184923
10.1093/cercor/bhaa290
10.1016/j.neuron.2014.05.014
10.1093/cercor/bhx230
10.1109/MEMB.2006.1607672
10.1073/pnas.1602413113
10.1080/01621459.2019.1679638
10.1016/j.neuroimage.2009.10.090
10.1136/bmj.310.6973.170
10.1006/nimg.1996.0074
10.1016/j.neuroimage.2020.117477
10.1016/j.neuroimage.2018.07.060
10.1016/j.neuroimage.2020.117164
10.1002/hbm.25561
10.1002/hbm.20919
10.1016/j.celrep.2020.108066
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2013.05.081
10.1073/pnas.1614502114
10.1002/hbm.24982
10.1016/j.cobeha.2020.12.012
10.1016/j.neuroimage.2019.116233
10.1016/j.neuroimage.2010.06.041
10.1073/pnas.0905267106
10.1162/netn_a_00234
10.1038/s41586-022-04492-9
10.1111/j.1745-6924.2009.01125.x
10.1038/nn.3776
10.1101/2021.07.15.452548
10.1038/nrn3475
10.1111/j.2517-6161.1995.tb02031.x
10.1137/110832380
10.1007/s10548-019-00744-6
10.1016/j.neuroimage.2021.118647
10.1016/j.neuroimage.2022.118908
10.1016/j.biopsych.2019.02.019
10.1016/j.neuroimage.2008.03.061
10.1016/j.neuroimage.2013.12.058
10.1016/j.neuroimage.2014.11.059
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Aug 9, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Aug 9, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2203020119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
EISSN 1091-6490
EndPage 10
ExternalDocumentID PMC9371642
35925887
10_1073_pnas_2203020119
27171471
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: HHS | NIH | National Institute of Mental Health (NIMH)
  grantid: K00MH122372
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: R01EB027119
– fundername: NIMH NIH HHS
  grantid: K00 MH122372
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIBIB NIH HHS
  grantid: R01 EB027119
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
2AX
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
ABBHK
AEUPB
AEXZC
C1K
DCCCD
FR3
H94
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
M7N
P64
RC3
SA0
7X8
5PM
ID FETCH-LOGICAL-c443t-b7c8e2d0f89a526d6d0275b92bf9f9d85ffbee44863af01f8cf3d63bf2f515583
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:42:28 EDT 2025
Fri Sep 05 04:48:46 EDT 2025
Wed Aug 13 07:07:38 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Tue Jul 01 01:03:21 EDT 2025
Thu May 29 08:51:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords empirical
fMRI
power
inference
network
Language English
License This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-b7c8e2d0f89a526d6d0275b92bf9f9d85ffbee44863af01f8cf3d63bf2f515583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: S.N. conceived the study; S.N. and D.S. designed research; A.F.M. and A.Z. provided conceptual advice; S.N. performed research and contributed new analytic tools; A.F.M. proposed the inclusion of a multivariate inferential procedure; A.Z. proposed the inclusion of specificity benchmarking and community randomization tests; S.N. wrote the paper with contributions from A.F.M., A.Z., and D.S.; and D.S. provided supervision.
Edited by Marcus Raichle, Washington University in St. Louis, St. Louis, MO; received March 7, 2022; accepted June 23, 2022
ORCID 0000-0002-6301-1167
0000-0002-4804-5553
0000-0002-4312-8974
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9371642
PMID 35925887
PQID 2700793218
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371642
proquest_miscellaneous_2698630658
proquest_journals_2700793218
pubmed_primary_35925887
crossref_primary_10_1073_pnas_2203020119
crossref_citationtrail_10_1073_pnas_2203020119
jstor_primary_27171471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
Raichle M. E. (e_1_3_4_20_2) 2019
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_34_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
Noble S. (e_1_3_4_11_2) 2020; 12267
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_4_2
  doi: 10.1016/j.neuroimage.2019.116468
– ident: e_1_3_4_25_2
  doi: 10.1016/j.neuroimage.2021.118648
– ident: e_1_3_4_51_2
  doi: 10.1111/1467-9868.00346
– ident: e_1_3_4_6_2
  doi: 10.1007/978-3-030-59728-3_44
– ident: e_1_3_4_40_2
  doi: 10.1523/JNEUROSCI.2965-15.2016
– ident: e_1_3_4_5_2
  doi: 10.1073/pnas.1121049109
– ident: e_1_3_4_47_2
  doi: 10.1038/s41467-020-17368-1
– ident: e_1_3_4_7_2
  doi: 10.1038/s41593-020-00719-y
– ident: e_1_3_4_15_2
  doi: 10.1038/nrn.2016.167
– ident: e_1_3_4_39_2
  doi: 10.3389/fnhum.2013.00493
– ident: e_1_3_4_9_2
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– ident: e_1_3_4_48_2
  doi: 10.1073/pnas.0506580102
– ident: e_1_3_4_53_2
  doi: 10.1093/biomet/73.3.751
– ident: e_1_3_4_3_2
  doi: 10.1371/journal.pone.0184923
– ident: e_1_3_4_12_2
  doi: 10.1093/cercor/bhaa290
– ident: e_1_3_4_38_2
  doi: 10.1016/j.neuron.2014.05.014
– ident: e_1_3_4_54_2
  doi: 10.1093/cercor/bhx230
– ident: e_1_3_4_46_2
  doi: 10.1109/MEMB.2006.1607672
– ident: e_1_3_4_17_2
  doi: 10.1073/pnas.1602413113
– ident: e_1_3_4_55_2
– ident: e_1_3_4_32_2
  doi: 10.1080/01621459.2019.1679638
– ident: e_1_3_4_35_2
  doi: 10.1016/j.neuroimage.2009.10.090
– ident: e_1_3_4_50_2
  doi: 10.1136/bmj.310.6973.170
– ident: e_1_3_4_1_2
  doi: 10.1006/nimg.1996.0074
– ident: e_1_3_4_30_2
  doi: 10.1016/j.neuroimage.2020.117477
– ident: e_1_3_4_28_2
  doi: 10.1016/j.neuroimage.2018.07.060
– volume: 12267
  start-page: 458
  year: 2020
  ident: e_1_3_4_11_2
  article-title: The constrained network-based statistic: A new level of inference for neuroimaging
  publication-title: Med. Image Comput. Comput. Assist Interv.
– ident: e_1_3_4_16_2
  doi: 10.1016/j.neuroimage.2020.117164
– ident: e_1_3_4_22_2
  doi: 10.1002/hbm.25561
– ident: e_1_3_4_10_2
  doi: 10.1002/hbm.20919
– ident: e_1_3_4_42_2
  doi: 10.1016/j.celrep.2020.108066
– ident: e_1_3_4_56_2
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_3_4_49_2
  doi: 10.1016/j.neuroimage.2013.05.081
– ident: e_1_3_4_36_2
  doi: 10.1073/pnas.1614502114
– ident: e_1_3_4_13_2
  doi: 10.1002/hbm.24982
– ident: e_1_3_4_44_2
  doi: 10.1016/j.cobeha.2020.12.012
– ident: e_1_3_4_23_2
  doi: 10.1016/j.neuroimage.2019.116233
– ident: e_1_3_4_2_2
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: e_1_3_4_37_2
  doi: 10.1073/pnas.0905267106
– ident: e_1_3_4_41_2
  doi: 10.1162/netn_a_00234
– ident: e_1_3_4_14_2
  doi: 10.1038/s41586-022-04492-9
– ident: e_1_3_4_33_2
  doi: 10.1111/j.1745-6924.2009.01125.x
– ident: e_1_3_4_21_2
  doi: 10.1038/nn.3776
– ident: e_1_3_4_45_2
  doi: 10.1101/2021.07.15.452548
– start-page: 97
  volume-title: The Neocortex
  year: 2019
  ident: e_1_3_4_20_2
– ident: e_1_3_4_34_2
  doi: 10.1038/nrn3475
– ident: e_1_3_4_18_2
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_4_29_2
  doi: 10.1137/110832380
– ident: e_1_3_4_24_2
  doi: 10.1007/s10548-019-00744-6
– ident: e_1_3_4_43_2
  doi: 10.1016/j.neuroimage.2021.118647
– ident: e_1_3_4_31_2
  doi: 10.1016/j.neuroimage.2022.118908
– ident: e_1_3_4_26_2
  doi: 10.1016/j.biopsych.2019.02.019
– ident: e_1_3_4_52_2
  doi: 10.1016/j.neuroimage.2008.03.061
– ident: e_1_3_4_27_2
– ident: e_1_3_4_19_2
  doi: 10.1016/j.neuroimage.2013.12.058
– ident: e_1_3_4_8_2
  doi: 10.1016/j.neuroimage.2014.11.059
SSID ssj0009580
Score 2.5234675
Snippet Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture...
Localizing cognitive function to distinct brain areas has been a mainstay of human brain research since early reports that focal injuries produce changes in...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biological Sciences
Brain
Brain - physiology
Brain mapping
Clusters
Connectome - methods
Functional magnetic resonance imaging
Humans
Inference
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neural networks
Neuroimaging
Resampling
Statistics
Title Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference
URI https://www.jstor.org/stable/27171471
https://www.ncbi.nlm.nih.gov/pubmed/35925887
https://www.proquest.com/docview/2700793218
https://www.proquest.com/docview/2698630658
https://pubmed.ncbi.nlm.nih.gov/PMC9371642
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBiEDWQkDkNVSus4sX2sgDFxqHbYpN6qOLFZpzabaHtgfwt_LO_FjpOWTRpcoipxrKTfl_een98PQj4Ya4uMwUoVTI8k5lqYOMcPLwVCaTC3S1jNYbTFJDu94N-n6bTX-92JWtqs9aC4vTOv5H9QhXOAK2bJ_gOyYVI4Ab8BXzgCwnB8EMatR-AGm52h7wL1lHfvLfMflXElmtHexi94vnRNicDmXLobtctgKRYbrJgQLzCGqI7QqrMAu6brWVB1qyawYNJ4EsdtXooXFqt-3D-btF2OJ9i3JoSVYV57gNpcuYDd8RK9Gv2TQXBmg_Lyvt1O3GW9a3Rp5pVPV_mC_ciqrvcCFr51tEVXIjPQktzlUQ-ME8Jgw8QZd21Eg5QeqQ4dnU_0L_EP8gp7Flf5asAYsA2tG9VqumZ3f0cBhrDEekNeJDOcYNZO8Ig8ZkLUQQDfpqNOSWfpEpz8GzSFo0TyaecJtmweF_Z614JmNy63Y-icPyNP_QqFjh3d9knPVM_JfgMrPfaFyj--IHngH635R-cVbflHG_7RwD_q-Uf1L-r4Rx3_6Bb_aODfS3Jx8vX882nsW3bEBefJOtaikIaVQytVnrKszErcFteKaausKmVqrTaGc5kluR2OrCxsUmaJtsxiryGZHJC96royrwmVxpicFaVWRcHZUCspSxjPjZRKGGkiMmj-1Fnh69ljW5XF7B4YI3IcbrhxpVzuH3pQoxTGMTESI7DjInLUwDbzggDuE0MsMwnGckTeh8sgpnHvLa_M9QbGZAreGe39iLxyKIfJk1SxFJR9RMQW_mEAloDfvlLNL-tS8FjNMuPszcNf7ZA8ab_DI7K3_rkxb8GuXut3Nb3_APGv0d8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+power+in+functional+magnetic+resonance+imaging+by+moving+beyond+cluster-level+inference&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Noble%2C+Stephanie&rft.au=Mejia%2C+Amanda+F.&rft.au=Zalesky%2C+Andrew&rft.au=Scheinost%2C+Dustin&rft.date=2022-08-09&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=32&rft_id=info:doi/10.1073%2Fpnas.2203020119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2203020119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon