Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)
Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environment...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 24; pp. 1196 - 11922 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
23.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed.
Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. |
---|---|
AbstractList | Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed. Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed. Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. |
Author | Zhang, Qichun Yao, Chang-Jiang Wang, Ke-Zhi Chen, Pengwan Nie, Hai-Jing Wang, Hao Zhong, Yu-Wu Mei, Shilin |
AuthorAffiliation | Chinese Academy of Sciences Beijing Normal University School of Materials Science and Engineering Nanyang Technological University (Singapore) CAS Key Laboratory of Photochemistry City University of Hong Kong Beijing Key Laboratory of Energy Conversion and Storage Materials Department of Materials Science and Engineering Beijing Institute of Technology CAS Research/Education Centre for Excellence in Molecular Sciences State Key Laboratory of Explosion Science and Technology Institute of Chemistry College of Chemistry School of Mechatronical Engineering |
AuthorAffiliation_xml | – name: CAS Research/Education Centre for Excellence in Molecular Sciences – name: School of Mechatronical Engineering – name: Chinese Academy of Sciences – name: School of Materials Science and Engineering – name: City University of Hong Kong – name: Beijing Normal University – name: College of Chemistry – name: Beijing Key Laboratory of Energy Conversion and Storage Materials – name: State Key Laboratory of Explosion Science and Technology – name: Institute of Chemistry – name: Nanyang Technological University (Singapore) – name: Beijing Institute of Technology – name: CAS Key Laboratory of Photochemistry – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 2 givenname: Chang-Jiang surname: Yao fullname: Yao, Chang-Jiang – sequence: 3 givenname: Hai-Jing surname: Nie fullname: Nie, Hai-Jing – sequence: 4 givenname: Ke-Zhi surname: Wang fullname: Wang, Ke-Zhi – sequence: 5 givenname: Yu-Wu surname: Zhong fullname: Zhong, Yu-Wu – sequence: 6 givenname: Pengwan surname: Chen fullname: Chen, Pengwan – sequence: 7 givenname: Shilin surname: Mei fullname: Mei, Shilin – sequence: 8 givenname: Qichun surname: Zhang fullname: Zhang, Qichun |
BookMark | eNp9kd9LHDEQx4MoaNWXvhdS-mILayf7K9nHq7YqHAhin5dJdvYa2U2uSe7h_vvmvGJBivMyA9_PDN_h-44dOu-IsfcCLgVU3dcBEkJVlQIP2EkJDRSy7trDl1mpY3Ye4xPkUgBt152w9ECGXOLr4FeBYuTWcYNBe7edCo2RBu7DCp01fO2n7Uwhcow7fLbRuhWniUwKfiA-Y6JgcYp89IFPNv2ym7mw3nGNaSdR5BfLu2_x8xk7GjNH53_7Kfv54_vj1W2xvL-5u1osC1PXVSq0QDQgQaoOahhaoRs0gsqGRpS6VW1VU0na1FLpzhjSSJ2WJbWqqUiWTXXKLvZ3s93fG4qpz6YNTRM68pvYl7WUrehaJTP66RX65DfBZXeZEo1qJJQ7CvaUCT7GQGNvbMKUf0wB7dQL6HdJ9NfwuHhOYpFXvrxaWQc7Y9j-H_6wh0M0L9y_WLP-8S29Xw9j9QdvOaEZ |
CitedBy_id | crossref_primary_10_1002_adma_202104150 crossref_primary_10_1021_jacs_3c01131 crossref_primary_10_1021_acsami_3c02862 crossref_primary_10_1016_j_jcis_2023_05_047 crossref_primary_10_1016_j_cattod_2021_09_040 crossref_primary_10_1016_j_electacta_2024_145140 crossref_primary_10_1021_acsami_1c10063 crossref_primary_10_1002_aenm_202202930 crossref_primary_10_1039_D1CC02426D crossref_primary_10_1039_D1NJ00089F crossref_primary_10_1021_acsami_2c21851 crossref_primary_10_1002_advs_202310239 crossref_primary_10_1016_j_elecom_2023_107506 crossref_primary_10_1039_D0TA07658A crossref_primary_10_1039_D3TA02445H crossref_primary_10_1002_anie_202317393 crossref_primary_10_1002_batt_202200413 crossref_primary_10_1002_cssc_202101553 crossref_primary_10_1016_j_cis_2025_103479 crossref_primary_10_1016_j_jiec_2021_12_036 crossref_primary_10_1021_acsapm_4c02362 crossref_primary_10_1016_j_electacta_2021_137759 crossref_primary_10_1073_pnas_2116775119 crossref_primary_10_1039_D0TC03934A crossref_primary_10_1039_D1TA03784F crossref_primary_10_1002_er_7997 crossref_primary_10_1039_D2TA01463G crossref_primary_10_1016_j_nxener_2023_100061 crossref_primary_10_1002_slct_202400538 crossref_primary_10_1016_j_arabjc_2023_105263 crossref_primary_10_1016_j_electacta_2023_142321 crossref_primary_10_1016_j_electacta_2023_143498 crossref_primary_10_1016_j_est_2024_111874 crossref_primary_10_1039_D3MA00859B crossref_primary_10_1002_anie_202403775 crossref_primary_10_1039_D4TA00221K crossref_primary_10_3390_batteries8110228 crossref_primary_10_1016_j_arabjc_2022_104026 crossref_primary_10_1016_j_cej_2024_155226 crossref_primary_10_1021_acs_jpcc_3c00385 crossref_primary_10_1016_j_mattod_2022_04_010 crossref_primary_10_1016_j_comptc_2024_114936 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1002_cey2_248 crossref_primary_10_1016_j_est_2024_115152 crossref_primary_10_1039_D3TA02363J crossref_primary_10_1002_adfm_202110871 crossref_primary_10_1021_acs_inorgchem_5c00059 crossref_primary_10_1021_acsaem_4c01344 crossref_primary_10_1039_D2QI01312F crossref_primary_10_1039_D4TA06098A crossref_primary_10_1021_jacs_2c02196 crossref_primary_10_1039_D2SC03980J crossref_primary_10_1002_gch2_202300005 crossref_primary_10_1021_acs_energyfuels_4c02201 crossref_primary_10_1007_s11581_022_04676_3 crossref_primary_10_1016_j_polymer_2020_123273 crossref_primary_10_1016_j_jallcom_2021_161152 crossref_primary_10_1515_ntrev_2022_0046 crossref_primary_10_1016_j_electacta_2023_142339 crossref_primary_10_3390_batteries9020101 crossref_primary_10_1021_acsaem_2c03338 crossref_primary_10_1016_j_ensm_2021_08_003 crossref_primary_10_1039_D3TC00800B crossref_primary_10_1038_s41427_024_00557_5 crossref_primary_10_1039_D3TA00528C crossref_primary_10_1002_chem_202005259 crossref_primary_10_1002_cssc_202301809 crossref_primary_10_1016_j_cej_2021_130995 crossref_primary_10_1002_marc_202400566 crossref_primary_10_1039_D1MA00490E crossref_primary_10_1002_batt_202400118 crossref_primary_10_1038_s41598_022_07853_6 crossref_primary_10_1021_acsaem_1c03612 crossref_primary_10_1039_D3TA00596H crossref_primary_10_1002_adma_202306491 crossref_primary_10_1002_anie_202416181 crossref_primary_10_1016_j_cej_2025_161226 crossref_primary_10_1021_acsami_4c02399 crossref_primary_10_1039_D3MA00291H crossref_primary_10_1021_acsenergylett_4c02190 crossref_primary_10_1016_j_est_2021_103534 crossref_primary_10_1021_acs_iecr_2c04021 crossref_primary_10_1016_j_jcis_2023_11_111 crossref_primary_10_1039_D3YA00561E crossref_primary_10_1002_cssc_202101623 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1039_D1TC05311F crossref_primary_10_1021_acsnano_4c02307 crossref_primary_10_1002_aenm_202101880 crossref_primary_10_34133_2022_9798582 crossref_primary_10_3390_polym13193300 crossref_primary_10_1021_acsami_2c22228 crossref_primary_10_1039_D2TA08032J crossref_primary_10_1016_j_cej_2022_136598 crossref_primary_10_1021_acselectrochem_4c00201 crossref_primary_10_1002_ange_202403775 crossref_primary_10_1021_acs_jpcc_3c02131 crossref_primary_10_1039_D0TA11648C crossref_primary_10_1016_j_diamond_2024_111507 crossref_primary_10_3390_molecules29235487 crossref_primary_10_3390_ma16010177 crossref_primary_10_1039_D2TC01150F crossref_primary_10_1007_s10008_023_05748_8 crossref_primary_10_1016_j_cej_2023_148447 crossref_primary_10_1016_j_matre_2024_100312 crossref_primary_10_1016_j_mattod_2021_08_006 crossref_primary_10_1002_ange_202416181 crossref_primary_10_1002_batt_202400694 crossref_primary_10_1016_j_cej_2023_143316 crossref_primary_10_1039_D2SC02939A crossref_primary_10_1002_advs_202200187 crossref_primary_10_1039_D1CC04314E crossref_primary_10_1039_D4CS00366G crossref_primary_10_1016_j_cej_2021_132025 crossref_primary_10_1021_acsami_3c10722 crossref_primary_10_1021_acsami_3c14085 crossref_primary_10_1002_adfm_202411127 crossref_primary_10_1039_D1EE00419K crossref_primary_10_1039_D1RA06528A crossref_primary_10_1021_acs_langmuir_2c00344 crossref_primary_10_1515_ntrev_2020_0092 crossref_primary_10_1016_j_jallcom_2022_165559 crossref_primary_10_1016_j_mtener_2020_100547 crossref_primary_10_1002_aenm_202402130 crossref_primary_10_1002_eom2_12055 crossref_primary_10_1002_adma_202211152 crossref_primary_10_1021_acsaem_3c02025 crossref_primary_10_1002_eem2_12564 crossref_primary_10_1002_idm2_12070 crossref_primary_10_1002_batt_202300472 crossref_primary_10_1002_eom2_12178 crossref_primary_10_1021_acs_accounts_3c00687 crossref_primary_10_1002_cplu_202300620 crossref_primary_10_1021_acsami_2c05703 crossref_primary_10_1016_j_cej_2021_134471 crossref_primary_10_1002_adfm_202307248 crossref_primary_10_1002_anie_202405426 crossref_primary_10_1039_D3SC04571D crossref_primary_10_1021_acsapm_4c01136 crossref_primary_10_1002_inf2_12277 crossref_primary_10_1080_02670844_2023_2184453 crossref_primary_10_1021_acsaem_2c01472 crossref_primary_10_1002_eem2_12557 crossref_primary_10_1016_j_cej_2025_161098 crossref_primary_10_1016_j_synthmet_2022_117112 crossref_primary_10_1021_acs_nanolett_4c02588 crossref_primary_10_1021_acssuschemeng_2c07577 crossref_primary_10_1002_bkcs_12202 crossref_primary_10_26599_NRE_2025_9120159 crossref_primary_10_1007_s10008_024_05970_y crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1039_D2CC05660G crossref_primary_10_1002_advs_202304497 crossref_primary_10_1002_ange_202317393 crossref_primary_10_3390_polym15183728 crossref_primary_10_1021_acsami_1c01745 crossref_primary_10_1016_j_cej_2024_156578 crossref_primary_10_1016_j_biombioe_2022_106641 crossref_primary_10_1002_ange_202405426 crossref_primary_10_1021_acsami_2c18433 crossref_primary_10_1002_smll_202300518 crossref_primary_10_1002_advs_202004490 crossref_primary_10_1039_D3NJ00698K crossref_primary_10_3390_ma16020839 crossref_primary_10_1002_aenm_202500150 crossref_primary_10_1002_er_8215 crossref_primary_10_1149_1945_7111_abf180 |
Cites_doi | 10.1149/1.1837179 10.1038/451652a 10.1002/adma.201502241 10.1039/C8TA03857K 10.1039/c2jm15764k 10.1021/cg070386q 10.1021/ja306663g 10.1149/1.2411755 10.1021/acsami.6b01118 10.1016/j.jpowsour.2013.01.103 10.1039/C8TA11994E 10.1016/j.nanoen.2017.01.016 10.1149/2.0391811jes 10.1039/C6TA05231B 10.1016/0013-4686(72)90010-2 10.1021/jacs.7b02648 10.1002/anie.200702505 10.1021/acsami.7b02336 10.1039/C5TA04699H 10.1021/acsami.6b07591 10.1016/j.cclet.2017.09.005 10.1149/1.1391947 10.1002/anie.201803703 10.1016/j.nanoen.2017.08.038 10.1039/C4RA02686A 10.1002/anie.201909613 10.1039/c0jm03127e 10.1002/aenm.201402189 10.1021/acsami.6b04277 10.1039/C9EE03245B 10.1002/anie.196206593 10.1021/acsami.9b15462 10.1039/C7TA02105D 10.1039/C6MH00072J 10.1002/adma.201703868 10.1002/adma.201305452 10.1021/ja3091438 10.1002/cplu.201800652 10.1039/C7TA07893E 10.1002/advs.201500124 10.1002/adma.200602584 10.1002/cssc.201802948 10.1002/pat.1968 10.1039/C8TA12441H 10.1021/acsami.9b06437 10.1002/batt.202000038 10.1039/C6TA10520C 10.1039/c3sc22093a 10.1021/jz4017359 10.1039/C5QI00194C 10.1007/s11581-015-1545-5 10.1038/s41467-019-13739-5 10.1016/j.electacta.2017.12.075 10.1002/adma.201704682 10.1021/nl302254v 10.1021/jacs.5b02290 10.1002/anie.201805540 10.1002/macp.201700051 10.1002/anie.201710502 10.1002/smll.201704094 10.1016/j.enconman.2014.11.002 10.1016/j.jpowsour.2013.09.052 10.1021/nl2039666 10.1002/aenm.201700960 10.1002/adma.201203999 10.1002/aenm.201904199 10.1039/C6TA01069E 10.1021/am5060959 10.1021/acsenergylett.7b00494 10.1007/s40843-019-1185-2 10.1002/cssc.201702001 10.1016/j.jpowsour.2016.03.010 10.1016/j.electacta.2017.01.172 10.1002/anie.201506673 10.1149/1.2108689 10.1016/j.matchemphys.2015.12.004 10.1002/ente.201801016 10.1002/aenm.201200947 10.1039/c3ta10473g 10.1002/asia.201901344 10.1002/aenm.201902428 10.1002/asia.201700070 10.1016/j.nanoen.2017.04.055 10.1039/C4EE02575J 10.1016/j.electacta.2013.06.130 10.1021/acssuschemeng.6b02127 10.1039/C4TA00364K 10.1002/asia.201600293 10.1016/j.electacta.2017.09.062 10.1002/marc.201800565 10.1021/acsami.7b03687 10.3390/polym11010107 10.1021/acs.chemmater.9b02601 10.1021/acsami.8b12888 10.1021/acs.chemmater.9b03109 10.1016/j.jpowsour.2013.10.091 10.1039/c3ra45563g 10.1021/acsmacrolett.8b00154 10.1021/ma00113a042 10.1002/aenm.201100795 10.1021/ja501958u 10.1039/C5RA27471K 10.1016/j.ijhydene.2009.05.063 10.1002/anie.201604519 10.1016/j.jpowsour.2013.05.051 10.1016/j.electacta.2018.07.062 10.1007/s40843-016-0112-3 10.1126/science.1212741 10.1126/science.1182383 10.1002/anie.201002439 10.1038/srep08225 10.1039/C5TA07246H 10.1039/C6TA09754E 10.1039/C7TA03334F 10.1002/smll.201903188 10.1039/C8TA04906H 10.1016/j.jpowsour.2009.08.089 10.1002/adma.201607007 10.1002/smll.201805061 10.1016/j.elecom.2018.03.006 10.1002/aenm.201703509 10.1039/B814515F |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta03321a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 11922 |
ExternalDocumentID | 10_1039_D0TA03321A d0ta03321a |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c443t-b1aac070789040d61b5ac1e25efa7b68634e2ebc478b9ccebae9b72e6853e7253 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 21:56:34 EDT 2025 Mon Jun 30 11:57:53 EDT 2025 Tue Jul 01 01:12:52 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Sat Jan 08 04:02:15 EST 2022 Wed Nov 11 00:26:55 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-b1aac070789040d61b5ac1e25efa7b68634e2ebc478b9ccebae9b72e6853e7253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2642-1770 0000-0003-1854-8659 0000-0003-0455-1953 0000-0003-0712-0374 |
PQID | 2415857027 |
PQPubID | 2047523 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1039_D0TA03321A rsc_primary_d0ta03321a proquest_journals_2415857027 proquest_miscellaneous_2477619687 crossref_primary_10_1039_D0TA03321A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200623 |
PublicationDateYYYYMMDD | 2020-06-23 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200623 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D0TA03321A-(cit77)/*[position()=1]) 2013; 233 Sotomura (D0TA03321A-(cit23a)/*[position()=1]) 1996; 143 Winter (D0TA03321A-(cit1b)/*[position()=1]) 2009; 34 Xu (D0TA03321A-(cit65a)/*[position()=1]) 2015; 5 Iordache (D0TA03321A-(cit31)/*[position()=1]) 2016; 8 Amin (D0TA03321A-(cit1a)/*[position()=1]) 2019; 40 Pirnat (D0TA03321A-(cit79)/*[position()=1]) 2016; 315 Fan (D0TA03321A-(cit29)/*[position()=1]) 2018; 57 Lee (D0TA03321A-(cit22)/*[position()=1]) 2018; 30 Sun (D0TA03321A-(cit68)/*[position()=1]) 2016; 55 Tang (D0TA03321A-(cit11a)/*[position()=1]) 2018; 29 Lyu (D0TA03321A-(cit91)/*[position()=1]) 2017; 5 Deng (D0TA03321A-(cit9)/*[position()=1]) 2014; 4 Sun (D0TA03321A-(cit15b)/*[position()=1]) 2020; 10 Song (D0TA03321A-(cit52)/*[position()=1]) 2015; 54 Oyaizu (D0TA03321A-(cit80)/*[position()=1]) 2011; 22 Lyu (D0TA03321A-(cit39)/*[position()=1]) 2018; 11 Xie (D0TA03321A-(cit98)/*[position()=1]) 2016; 8 Haldar (D0TA03321A-(cit72)/*[position()=1]) 2019 Liang (D0TA03321A-(cit14)/*[position()=1]) 2012; 2 Wu (D0TA03321A-(cit86)/*[position()=1]) 2013; 1 Song (D0TA03321A-(cit50)/*[position()=1]) 2012; 12 Xiang (D0TA03321A-(cit49)/*[position()=1]) 2008; 8 Xie (D0TA03321A-(cit102)/*[position()=1]) 2016; 59 Yao (D0TA03321A-(cit1c)/*[position()=1]) 2019; 11 Yang (D0TA03321A-(cit19)/*[position()=1]) 2013; 25 Liang (D0TA03321A-(cit42)/*[position()=1]) 2012; 2 Serkan (D0TA03321A-(cit24)/*[position()=1]) 2017; 218 Qin (D0TA03321A-(cit101)/*[position()=1]) 2014; 249 Zhang (D0TA03321A-(cit20)/*[position()=1]) 2013; 108 Zhang (D0TA03321A-(cit84)/*[position()=1]) 2018; 260 Häringer (D0TA03321A-(cit48)/*[position()=1]) 1999; 146 Schon (D0TA03321A-(cit81)/*[position()=1]) 2017; 9 Xie (D0TA03321A-(cit41)/*[position()=1]) 2018; 6 Xie (D0TA03321A-(cit38)/*[position()=1]) 2017; 12 Meng (D0TA03321A-(cit87)/*[position()=1]) 2014; 2 Amin (D0TA03321A-(cit55)/*[position()=1]) 2018; 30 Dou (D0TA03321A-(cit10)/*[position()=1]) 2015; 21 Wu (D0TA03321A-(cit61)/*[position()=1]) 2014; 26 Huang (D0TA03321A-(cit74)/*[position()=1]) 2018; 283 Song (D0TA03321A-(cit35)/*[position()=1]) 2009 Wu (D0TA03321A-(cit69)/*[position()=1]) 2015; 5 Ahmad (D0TA03321A-(cit96)/*[position()=1]) 2016; 6 Zhang (D0TA03321A-(cit17b)/*[position()=1]) 2020 Häupler (D0TA03321A-(cit73)/*[position()=1]) 2015; 7 Wang (D0TA03321A-(cit5b)/*[position()=1]) 2019; 7 Gomez (D0TA03321A-(cit53)/*[position()=1]) 2018; 7 Jung (D0TA03321A-(cit92)/*[position()=1]) 2018; 165 Wei (D0TA03321A-(cit75)/*[position()=1]) 2018; 90 Yu (D0TA03321A-(cit65b)/*[position()=1]) 2019; 58 Luo (D0TA03321A-(cit66)/*[position()=1]) 2018; 57 Kang (D0TA03321A-(cit71)/*[position()=1]) 2018; 10 Wu (D0TA03321A-(cit15f)/*[position()=1]) 2019; 7 Sharma (D0TA03321A-(cit60)/*[position()=1]) 2013; 4 Chen (D0TA03321A-(cit83)/*[position()=1]) 2017; 229 Manecke (D0TA03321A-(cit46)/*[position()=1]) 1962; 1 Bruce (D0TA03321A-(cit4a)/*[position()=1]) 2008; 47 Li (D0TA03321A-(cit97)/*[position()=1]) 2019; 11 Liu (D0TA03321A-(cit54)/*[position()=1]) 2011; 21 Nie (D0TA03321A-(cit11d)/*[position()=1]) 2015; 3 Dunn (D0TA03321A-(cit3a)/*[position()=1]) 2011; 334 Xie (D0TA03321A-(cit58)/*[position()=1]) 2018 Fergus (D0TA03321A-(cit7)/*[position()=1]) 2010; 195 Zhao (D0TA03321A-(cit26)/*[position()=1]) 2017; 29 Nokami (D0TA03321A-(cit67)/*[position()=1]) 2012; 134 Sun (D0TA03321A-(cit33)/*[position()=1]) 2018; 57 Shestakov (D0TA03321A-(cit90)/*[position()=1]) 2017; 5 Tian (D0TA03321A-(cit93)/*[position()=1]) 2016; 3 Wang (D0TA03321A-(cit30)/*[position()=1]) 2017; 139 Jing (D0TA03321A-(cit78)/*[position()=1]) 2017; 37 Shi (D0TA03321A-(cit2b)/*[position()=1]) 2020; 11 Yao (D0TA03321A-(cit16a)/*[position()=1]) 2019; 12 Williams (D0TA03321A-(cit13)/*[position()=1]) 1969; 116 Gao (D0TA03321A-(cit32)/*[position()=1]) 2014; 136 Xie (D0TA03321A-(cit16c)/*[position()=1]) 2016; 11 Foos (D0TA03321A-(cit47)/*[position()=1]) 1986; 133 Nie (D0TA03321A-(cit11c)/*[position()=1]) 2016; 3 Wang (D0TA03321A-(cit70)/*[position()=1]) 2018; 14 Ye (D0TA03321A-(cit100)/*[position()=1]) 2017; 253 Bhosale (D0TA03321A-(cit25)/*[position()=1]) 2018; 6 Kim (D0TA03321A-(cit4b)/*[position()=1]) 2020 Han (D0TA03321A-(cit34)/*[position()=1]) 2007; 19 Song (D0TA03321A-(cit59)/*[position()=1]) 2010; 49 Zhu (D0TA03321A-(cit6a)/*[position()=1]) 2019; 31 Huang (D0TA03321A-(cit17c)/*[position()=1]) 2020; 63 Xu (D0TA03321A-(cit94)/*[position()=1]) 2016; 169 Chikkannanavar (D0TA03321A-(cit8)/*[position()=1]) 2014; 248 Liang (D0TA03321A-(cit45)/*[position()=1]) 2013; 3 Lin (D0TA03321A-(cit17a)/*[position()=1]) 2017; 41 Fan (D0TA03321A-(cit63)/*[position()=1]) 2018; 57 Wu (D0TA03321A-(cit62)/*[position()=1]) 2015; 27 Lyu (D0TA03321A-(cit21)/*[position()=1]) 2017; 5 Bahceci (D0TA03321A-(cit18)/*[position()=1]) 2013; 242 Huang (D0TA03321A-(cit17d)/*[position()=1]) 2019; 14 Zhang (D0TA03321A-(cit5a)/*[position()=1]) 2016; 4 Zhan (D0TA03321A-(cit15c)/*[position()=1]) 2017; 5 Xu (D0TA03321A-(cit51)/*[position()=1]) 2012; 22 Xie (D0TA03321A-(cit15a)/*[position()=1]) 2017; 2 Yamamoto (D0TA03321A-(cit28)/*[position()=1]) 1995; 28 Deng (D0TA03321A-(cit44)/*[position()=1]) 2017; 33 Xie (D0TA03321A-(cit15d)/*[position()=1]) 2019; 15 Zhang (D0TA03321A-(cit40)/*[position()=1]) 2017; 9 Rogers (D0TA03321A-(cit36)/*[position()=1]) 2010; 327 Koo (D0TA03321A-(cit37)/*[position()=1]) 2012; 12 Alt (D0TA03321A-(cit43)/*[position()=1]) 1972; 17 Guo (D0TA03321A-(cit99)/*[position()=1]) 2017; 5 Nie (D0TA03321A-(cit11b)/*[position()=1]) 2017; 5 Huang (D0TA03321A-(cit89)/*[position()=1]) 2017; 5 Oubaha (D0TA03321A-(cit12)/*[position()=1]) 2019; 84 Mumyatov (D0TA03321A-(cit85)/*[position()=1]) 2019; 7 Gu (D0TA03321A-(cit23b)/*[position()=1]) 2016; 8 Xiong (D0TA03321A-(cit6b)/*[position()=1]) 2019; 31 Xie (D0TA03321A-(cit15e)/*[position()=1]) 2019; 15 Petronico (D0TA03321A-(cit57)/*[position()=1]) 2018; 8 Xie (D0TA03321A-(cit16b)/*[position()=1]) 2016; 4 Song (D0TA03321A-(cit56)/*[position()=1]) 2015; 2 Liang (D0TA03321A-(cit64)/*[position()=1]) 2015; 137 Liu (D0TA03321A-(cit82)/*[position()=1]) 2019; 11 Song (D0TA03321A-(cit76)/*[position()=1]) 2014; 7 Liang (D0TA03321A-(cit27)/*[position()=1]) 2013; 4 Wu (D0TA03321A-(cit88)/*[position()=1]) 2016; 4 Tian (D0TA03321A-(cit95)/*[position()=1]) 2014; 4 Goodenough (D0TA03321A-(cit3b)/*[position()=1]) 2013; 135 Bizon (D0TA03321A-(cit1d)/*[position()=1]) 2015; 90 Armand (D0TA03321A-(cit2a)/*[position()=1]) 2008; 451 |
References_xml | – volume: 143 start-page: 3152 year: 1996 ident: D0TA03321A-(cit23a)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837179 – volume: 451 start-page: 652 year: 2008 ident: D0TA03321A-(cit2a)/*[position()=1] publication-title: Nature doi: 10.1038/451652a – volume: 27 start-page: 6504 year: 2015 ident: D0TA03321A-(cit62)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502241 – volume: 6 start-page: 12985 year: 2018 ident: D0TA03321A-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03857K – volume: 22 start-page: 4032 year: 2012 ident: D0TA03321A-(cit51)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm15764k – volume: 8 start-page: 280 year: 2008 ident: D0TA03321A-(cit49)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg070386q – volume: 134 start-page: 19694 year: 2012 ident: D0TA03321A-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306663g – volume: 116 start-page: 2 year: 1969 ident: D0TA03321A-(cit13)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2411755 – volume: 8 start-page: 7464 year: 2016 ident: D0TA03321A-(cit23b)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01118 – volume: 233 start-page: 23 year: 2013 ident: D0TA03321A-(cit77)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.103 – volume: 7 start-page: 4259 year: 2019 ident: D0TA03321A-(cit15f)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11994E – volume: 33 start-page: 350 year: 2017 ident: D0TA03321A-(cit44)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.016 – volume: 165 start-page: A2476 year: 2018 ident: D0TA03321A-(cit92)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0391811jes – volume: 4 start-page: 14902 year: 2016 ident: D0TA03321A-(cit5a)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05231B – volume: 17 start-page: 873 year: 1972 ident: D0TA03321A-(cit43)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(72)90010-2 – volume: 139 start-page: 4258 year: 2017 ident: D0TA03321A-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 47 start-page: 2930 year: 2008 ident: D0TA03321A-(cit4a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702505 – volume: 9 start-page: 15631 year: 2017 ident: D0TA03321A-(cit81)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02336 – volume: 3 start-page: 19410 year: 2015 ident: D0TA03321A-(cit11d)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04699H – volume: 8 start-page: 22762 year: 2016 ident: D0TA03321A-(cit31)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07591 – volume: 29 start-page: 232 year: 2018 ident: D0TA03321A-(cit11a)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.09.005 – volume: 146 start-page: 2393 year: 1999 ident: D0TA03321A-(cit48)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391947 – volume: 57 start-page: 7146 year: 2018 ident: D0TA03321A-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803703 – volume: 41 start-page: 117 year: 2017 ident: D0TA03321A-(cit17a)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.038 – volume: 4 start-page: 23914 year: 2014 ident: D0TA03321A-(cit9)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA02686A – volume: 58 start-page: 16101 year: 2019 ident: D0TA03321A-(cit65b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909613 – volume: 21 start-page: 4125 year: 2011 ident: D0TA03321A-(cit54)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm03127e – volume: 5 start-page: 1402189 year: 2015 ident: D0TA03321A-(cit69)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402189 – volume: 8 start-page: 16932 year: 2016 ident: D0TA03321A-(cit98)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04277 – year: 2020 ident: D0TA03321A-(cit4b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03245B – volume: 1 start-page: 659 year: 1962 ident: D0TA03321A-(cit46)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.196206593 – volume: 11 start-page: 46726 issue: 50 year: 2019 ident: D0TA03321A-(cit82)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15462 – volume: 5 start-page: 14463 year: 2017 ident: D0TA03321A-(cit15c)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02105D – volume: 3 start-page: 429 year: 2016 ident: D0TA03321A-(cit93)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C6MH00072J – volume: 30 start-page: 1703868 year: 2018 ident: D0TA03321A-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703868 – volume: 26 start-page: 3338 year: 2014 ident: D0TA03321A-(cit61)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305452 – volume: 135 start-page: 1167 year: 2013 ident: D0TA03321A-(cit3b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 84 start-page: 1179 year: 2019 ident: D0TA03321A-(cit12)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201800652 – volume: 5 start-page: 24083 year: 2017 ident: D0TA03321A-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07893E – volume: 2 start-page: 1500124 year: 2015 ident: D0TA03321A-(cit56)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500124 – volume: 19 start-page: 1616 year: 2007 ident: D0TA03321A-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602584 – volume: 12 start-page: 1 year: 2019 ident: D0TA03321A-(cit16a)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201802948 – volume: 22 start-page: 1242 year: 2011 ident: D0TA03321A-(cit80)/*[position()=1] publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1968 – volume: 7 start-page: 10138 year: 2019 ident: D0TA03321A-(cit5b)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12441H – volume: 11 start-page: 28801 year: 2019 ident: D0TA03321A-(cit97)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06437 – year: 2020 ident: D0TA03321A-(cit17b)/*[position()=1] publication-title: Batteries Supercaps doi: 10.1002/batt.202000038 – volume: 5 start-page: 6532 year: 2017 ident: D0TA03321A-(cit90)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10520C – volume: 4 start-page: 1330 year: 2013 ident: D0TA03321A-(cit27)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc22093a – volume: 5 start-page: 24083 year: 2017 ident: D0TA03321A-(cit91)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07893E – volume: 4 start-page: 3192 year: 2013 ident: D0TA03321A-(cit60)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4017359 – volume: 3 start-page: 111 year: 2016 ident: D0TA03321A-(cit11c)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00194C – volume: 21 start-page: 3001 year: 2015 ident: D0TA03321A-(cit10)/*[position()=1] publication-title: Ionics doi: 10.1007/s11581-015-1545-5 – volume: 11 start-page: 178 year: 2020 ident: D0TA03321A-(cit2b)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13739-5 – volume: 260 start-page: 598 year: 2018 ident: D0TA03321A-(cit84)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.075 – volume: 30 start-page: 1704682 year: 2018 ident: D0TA03321A-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704682 – volume: 12 start-page: 4810 year: 2012 ident: D0TA03321A-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl302254v – volume: 137 start-page: 4956 year: 2015 ident: D0TA03321A-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02290 – volume: 57 start-page: 9443 year: 2018 ident: D0TA03321A-(cit66)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805540 – volume: 218 start-page: 1700051 year: 2017 ident: D0TA03321A-(cit24)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201700051 – volume: 57 start-page: 1034 year: 2018 ident: D0TA03321A-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710502 – volume: 14 start-page: 1704094 year: 2018 ident: D0TA03321A-(cit70)/*[position()=1] publication-title: Small doi: 10.1002/smll.201704094 – volume: 90 start-page: 93 year: 2015 ident: D0TA03321A-(cit1d)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.11.002 – volume: 248 start-page: 91 year: 2014 ident: D0TA03321A-(cit8)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.052 – volume: 12 start-page: 2205 year: 2012 ident: D0TA03321A-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2039666 – volume: 8 start-page: 1700960 year: 2018 ident: D0TA03321A-(cit57)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700960 – volume: 25 start-page: 1180 year: 2013 ident: D0TA03321A-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203999 – volume: 10 start-page: 1904199 year: 2020 ident: D0TA03321A-(cit15b)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904199 – volume: 4 start-page: 7091 year: 2016 ident: D0TA03321A-(cit16b)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01069E – volume: 7 start-page: 3473 year: 2015 ident: D0TA03321A-(cit73)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5060959 – volume: 2 start-page: 1985 year: 2017 ident: D0TA03321A-(cit15a)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00494 – volume: 63 start-page: 339 year: 2020 ident: D0TA03321A-(cit17c)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-019-1185-2 – volume: 11 start-page: 763 year: 2018 ident: D0TA03321A-(cit39)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201702001 – volume: 315 start-page: 169 year: 2016 ident: D0TA03321A-(cit79)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.010 – volume: 229 start-page: 387 year: 2017 ident: D0TA03321A-(cit83)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.172 – volume: 57 start-page: 7146 year: 2018 ident: D0TA03321A-(cit63)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803703 – volume: 54 start-page: 13947 year: 2015 ident: D0TA03321A-(cit52)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506673 – volume: 133 start-page: 836 year: 1986 ident: D0TA03321A-(cit47)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2108689 – volume: 169 start-page: 192 year: 2016 ident: D0TA03321A-(cit94)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.12.004 – volume: 7 start-page: 1801016 year: 2019 ident: D0TA03321A-(cit85)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201801016 – volume: 3 start-page: 600 year: 2013 ident: D0TA03321A-(cit45)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200947 – volume: 1 start-page: 6366 year: 2013 ident: D0TA03321A-(cit86)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10473g – volume: 14 start-page: 4164 year: 2019 ident: D0TA03321A-(cit17d)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201901344 – start-page: 1902428 year: 2019 ident: D0TA03321A-(cit72)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902428 – volume: 12 start-page: 868 year: 2017 ident: D0TA03321A-(cit38)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201700070 – volume: 37 start-page: 46 year: 2017 ident: D0TA03321A-(cit78)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.055 – volume: 7 start-page: 4077 year: 2014 ident: D0TA03321A-(cit76)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02575J – volume: 108 start-page: 820 year: 2013 ident: D0TA03321A-(cit20)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.06.130 – volume: 5 start-page: 1503 year: 2017 ident: D0TA03321A-(cit99)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b02127 – volume: 2 start-page: 10842 year: 2014 ident: D0TA03321A-(cit87)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00364K – volume: 11 start-page: 1489 year: 2016 ident: D0TA03321A-(cit16c)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201600293 – volume: 253 start-page: 319 year: 2017 ident: D0TA03321A-(cit100)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.062 – volume: 40 start-page: 1800565 year: 2019 ident: D0TA03321A-(cit1a)/*[position()=1] publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800565 – volume: 9 start-page: 15549 year: 2017 ident: D0TA03321A-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03687 – volume: 11 start-page: 107 year: 2019 ident: D0TA03321A-(cit1c)/*[position()=1] publication-title: Polymers doi: 10.3390/polym11010107 – volume: 31 start-page: 8069 year: 2019 ident: D0TA03321A-(cit6b)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02601 – volume: 10 start-page: 37023 year: 2018 ident: D0TA03321A-(cit71)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12888 – volume: 31 start-page: 8582 year: 2019 ident: D0TA03321A-(cit6a)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03109 – volume: 249 start-page: 367 year: 2014 ident: D0TA03321A-(cit101)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.091 – volume: 4 start-page: 7506 year: 2014 ident: D0TA03321A-(cit95)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra45563g – volume: 7 start-page: 419 year: 2018 ident: D0TA03321A-(cit53)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00154 – volume: 28 start-page: 3371 year: 1995 ident: D0TA03321A-(cit28)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma00113a042 – volume: 2 start-page: 742 year: 2012 ident: D0TA03321A-(cit14)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100795 – volume: 136 start-page: 7209 year: 2014 ident: D0TA03321A-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501958u – volume: 6 start-page: 33287 year: 2016 ident: D0TA03321A-(cit96)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA27471K – volume: 34 start-page: S1 year: 2009 ident: D0TA03321A-(cit1b)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.063 – volume: 55 start-page: 10662 year: 2016 ident: D0TA03321A-(cit68)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604519 – volume: 242 start-page: 33 year: 2013 ident: D0TA03321A-(cit18)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.051 – volume: 283 start-page: 1284 year: 2018 ident: D0TA03321A-(cit74)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.062 – volume: 59 start-page: 6 year: 2016 ident: D0TA03321A-(cit102)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-016-0112-3 – volume: 334 start-page: 928 year: 2011 ident: D0TA03321A-(cit3a)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 327 start-page: 1603 year: 2010 ident: D0TA03321A-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.1182383 – volume: 49 start-page: 8444 year: 2010 ident: D0TA03321A-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002439 – volume: 5 start-page: 8225 year: 2015 ident: D0TA03321A-(cit65a)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08225 – volume: 4 start-page: 2115 year: 2016 ident: D0TA03321A-(cit88)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07246H – volume: 5 start-page: 2710 year: 2017 ident: D0TA03321A-(cit89)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09754E – volume: 2 start-page: 742 year: 2012 ident: D0TA03321A-(cit42)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100795 – volume: 5 start-page: 14198 year: 2017 ident: D0TA03321A-(cit11b)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03334F – volume: 15 start-page: 1903188 year: 2019 ident: D0TA03321A-(cit15d)/*[position()=1] publication-title: Small doi: 10.1002/smll.201903188 – volume: 6 start-page: 19885 year: 2018 ident: D0TA03321A-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04906H – volume: 195 start-page: 939 year: 2010 ident: D0TA03321A-(cit7)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.089 – volume: 29 start-page: 1607007 year: 2017 ident: D0TA03321A-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201607007 – volume: 15 start-page: 1805061 year: 2019 ident: D0TA03321A-(cit15e)/*[position()=1] publication-title: Small doi: 10.1002/smll.201805061 – volume: 90 start-page: 21 year: 2018 ident: D0TA03321A-(cit75)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.03.006 – start-page: 1703509 year: 2018 ident: D0TA03321A-(cit58)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703509 – start-page: 448 year: 2009 ident: D0TA03321A-(cit35)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B814515F |
SSID | ssj0000800699 |
Score | 2.6336522 |
Snippet | Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1196 |
SubjectTerms | Addition polymerization Carbonyl compounds Carbonyls chemical structure Chemical synthesis Electric vehicles Electrode materials Electrodes electrolytes electronics energy Energy storage Inorganic compounds Lithium lithium batteries Lithium-ion batteries Molecular structure Organic materials Polymers Reaction centers Reaction kinetics Rechargeable batteries Smart grid Storage systems Weight reduction |
Title | Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs) |
URI | https://www.proquest.com/docview/2415857027 https://www.proquest.com/docview/2477619687 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEx0BGcGBCHomTOM2xwNA2BqdOmrhEtuNulUY6tekB_kn-Jd6zYyejPQwuUeq4r2neL-89P78PQt7EcQV6QxpWFbJgKSw42Ggax0zBSqwA9Z1Jmwvz9Zs4Pk9PL7KLweB3L2pp1ahD_WtjXsn_cBXGgK-YJfsPnA1EYQDOgb9wBA7D8U48BpsPt_JtjBVKLIwplwuFweYM1VPVNm3S2IvhJ3qosa0MTAfmooug7YFjg1gbd8M27BBM86vZ6gdDaChbgHPmvLNnJx-W3newbtF2RLRvI3f4buwygvrkjcs3tC57n7-FIbo9776TQMdyHqSSnLfRAfUlOwVMX3Y7KsbNncF4N-xpfDHs-9Ws79zg2AOHufxjJwN5lEVY7tSJaNMfc41wvRAf9bDK055EjsHiET31Dp9dIvSa7ogSLL36KZqMoyThcai-2hXo_ktxhnBGu5GfFGX33S2yw2HdAoJ3Z3w0OTkLbj800IXtahr-mi-amxTvOwK3zaRu7bO18I1prAE0eUgetHymYwfDR2Rg6sfkfq-e5RPSOEBSD0g6q-ltQNIWkNQDksolDYCkAZA0YIkCYmgPkDQAkr5FOB48JeefjyYfj1nb1oPpNE0apmIpta0yVYAGqUSsMqljwzMzlbkSI5Gkhhul03ykCq2NkqZQOTcCLEuT8yzZJdv1vDbPCNWRMELCIkGC3S-nUmWF4SqLoio1YNuKITnwT7HUbc17bL1yXa6zbEheh7k3rtLLxln7nhllKwmWJVrB2CiC50PyKlyGJ4ebb7I28xXOydFjKEYwZxeYGH6jihppacsh2dt8obyppnt3ur3n5F73Gu2T7WaxMi_Aam7UyxaJfwAXO8Mw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+carbonyl-based+organic+polymers+as+promising+electrode+materials+for+lithium-ion+batteries+%28LIBs%29&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Hao&rft.au=Yao%2C+Chang-Jiang&rft.au=Nie%2C+Hai-Jing&rft.au=Wang%2C+Ke-Zhi&rft.date=2020-06-23&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=24&rft.spage=11906&rft.epage=11922&rft_id=info:doi/10.1039%2FD0TA03321A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA03321A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |