Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)

Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environment...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 24; pp. 1196 - 11922
Main Authors Wang, Hao, Yao, Chang-Jiang, Nie, Hai-Jing, Wang, Ke-Zhi, Zhong, Yu-Wu, Chen, Pengwan, Mei, Shilin, Zhang, Qichun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 23.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed. Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics.
AbstractList Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed.
Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics. Compared with traditional inorganic compounds that often cause various environmental problems, organic electrode materials possess many advantages, such as the diversity of molecular structures, feasibility of subjective design, light weight, low cost, high theoretical capacity, and eco-friendliness, making them very promising in the application of energy-related devices. Among all organic materials used as electrodes for LIBs, organic carbonyl-based polymers with multi-electron reaction centers, high theoretical capacity, reaction reversibility, rapid redox kinetics, and the inhibition of electrolyte dissolution have recently become hot topics. In this review, we summarize the recent progress in the design, synthesis, and application of carbonyl-based polymers for LIBs. In addition, the advantages/disadvantages of individual materials are also discussed. Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics.
Author Zhang, Qichun
Yao, Chang-Jiang
Wang, Ke-Zhi
Chen, Pengwan
Nie, Hai-Jing
Wang, Hao
Zhong, Yu-Wu
Mei, Shilin
AuthorAffiliation Chinese Academy of Sciences
Beijing Normal University
School of Materials Science and Engineering
Nanyang Technological University (Singapore)
CAS Key Laboratory of Photochemistry
City University of Hong Kong
Beijing Key Laboratory of Energy Conversion and Storage Materials
Department of Materials Science and Engineering
Beijing Institute of Technology
CAS Research/Education Centre for Excellence in Molecular Sciences
State Key Laboratory of Explosion Science and Technology
Institute of Chemistry
College of Chemistry
School of Mechatronical Engineering
AuthorAffiliation_xml – name: CAS Research/Education Centre for Excellence in Molecular Sciences
– name: School of Mechatronical Engineering
– name: Chinese Academy of Sciences
– name: School of Materials Science and Engineering
– name: City University of Hong Kong
– name: Beijing Normal University
– name: College of Chemistry
– name: Beijing Key Laboratory of Energy Conversion and Storage Materials
– name: State Key Laboratory of Explosion Science and Technology
– name: Institute of Chemistry
– name: Nanyang Technological University (Singapore)
– name: Beijing Institute of Technology
– name: CAS Key Laboratory of Photochemistry
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 2
  givenname: Chang-Jiang
  surname: Yao
  fullname: Yao, Chang-Jiang
– sequence: 3
  givenname: Hai-Jing
  surname: Nie
  fullname: Nie, Hai-Jing
– sequence: 4
  givenname: Ke-Zhi
  surname: Wang
  fullname: Wang, Ke-Zhi
– sequence: 5
  givenname: Yu-Wu
  surname: Zhong
  fullname: Zhong, Yu-Wu
– sequence: 6
  givenname: Pengwan
  surname: Chen
  fullname: Chen, Pengwan
– sequence: 7
  givenname: Shilin
  surname: Mei
  fullname: Mei, Shilin
– sequence: 8
  givenname: Qichun
  surname: Zhang
  fullname: Zhang, Qichun
BookMark eNp9kd9LHDEQx4MoaNWXvhdS-mILayf7K9nHq7YqHAhin5dJdvYa2U2uSe7h_vvmvGJBivMyA9_PDN_h-44dOu-IsfcCLgVU3dcBEkJVlQIP2EkJDRSy7trDl1mpY3Ye4xPkUgBt152w9ECGXOLr4FeBYuTWcYNBe7edCo2RBu7DCp01fO2n7Uwhcow7fLbRuhWniUwKfiA-Y6JgcYp89IFPNv2ym7mw3nGNaSdR5BfLu2_x8xk7GjNH53_7Kfv54_vj1W2xvL-5u1osC1PXVSq0QDQgQaoOahhaoRs0gsqGRpS6VW1VU0na1FLpzhjSSJ2WJbWqqUiWTXXKLvZ3s93fG4qpz6YNTRM68pvYl7WUrehaJTP66RX65DfBZXeZEo1qJJQ7CvaUCT7GQGNvbMKUf0wB7dQL6HdJ9NfwuHhOYpFXvrxaWQc7Y9j-H_6wh0M0L9y_WLP-8S29Xw9j9QdvOaEZ
CitedBy_id crossref_primary_10_1002_adma_202104150
crossref_primary_10_1021_jacs_3c01131
crossref_primary_10_1021_acsami_3c02862
crossref_primary_10_1016_j_jcis_2023_05_047
crossref_primary_10_1016_j_cattod_2021_09_040
crossref_primary_10_1016_j_electacta_2024_145140
crossref_primary_10_1021_acsami_1c10063
crossref_primary_10_1002_aenm_202202930
crossref_primary_10_1039_D1CC02426D
crossref_primary_10_1039_D1NJ00089F
crossref_primary_10_1021_acsami_2c21851
crossref_primary_10_1002_advs_202310239
crossref_primary_10_1016_j_elecom_2023_107506
crossref_primary_10_1039_D0TA07658A
crossref_primary_10_1039_D3TA02445H
crossref_primary_10_1002_anie_202317393
crossref_primary_10_1002_batt_202200413
crossref_primary_10_1002_cssc_202101553
crossref_primary_10_1016_j_cis_2025_103479
crossref_primary_10_1016_j_jiec_2021_12_036
crossref_primary_10_1021_acsapm_4c02362
crossref_primary_10_1016_j_electacta_2021_137759
crossref_primary_10_1073_pnas_2116775119
crossref_primary_10_1039_D0TC03934A
crossref_primary_10_1039_D1TA03784F
crossref_primary_10_1002_er_7997
crossref_primary_10_1039_D2TA01463G
crossref_primary_10_1016_j_nxener_2023_100061
crossref_primary_10_1002_slct_202400538
crossref_primary_10_1016_j_arabjc_2023_105263
crossref_primary_10_1016_j_electacta_2023_142321
crossref_primary_10_1016_j_electacta_2023_143498
crossref_primary_10_1016_j_est_2024_111874
crossref_primary_10_1039_D3MA00859B
crossref_primary_10_1002_anie_202403775
crossref_primary_10_1039_D4TA00221K
crossref_primary_10_3390_batteries8110228
crossref_primary_10_1016_j_arabjc_2022_104026
crossref_primary_10_1016_j_cej_2024_155226
crossref_primary_10_1021_acs_jpcc_3c00385
crossref_primary_10_1016_j_mattod_2022_04_010
crossref_primary_10_1016_j_comptc_2024_114936
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1002_cey2_248
crossref_primary_10_1016_j_est_2024_115152
crossref_primary_10_1039_D3TA02363J
crossref_primary_10_1002_adfm_202110871
crossref_primary_10_1021_acs_inorgchem_5c00059
crossref_primary_10_1021_acsaem_4c01344
crossref_primary_10_1039_D2QI01312F
crossref_primary_10_1039_D4TA06098A
crossref_primary_10_1021_jacs_2c02196
crossref_primary_10_1039_D2SC03980J
crossref_primary_10_1002_gch2_202300005
crossref_primary_10_1021_acs_energyfuels_4c02201
crossref_primary_10_1007_s11581_022_04676_3
crossref_primary_10_1016_j_polymer_2020_123273
crossref_primary_10_1016_j_jallcom_2021_161152
crossref_primary_10_1515_ntrev_2022_0046
crossref_primary_10_1016_j_electacta_2023_142339
crossref_primary_10_3390_batteries9020101
crossref_primary_10_1021_acsaem_2c03338
crossref_primary_10_1016_j_ensm_2021_08_003
crossref_primary_10_1039_D3TC00800B
crossref_primary_10_1038_s41427_024_00557_5
crossref_primary_10_1039_D3TA00528C
crossref_primary_10_1002_chem_202005259
crossref_primary_10_1002_cssc_202301809
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1002_marc_202400566
crossref_primary_10_1039_D1MA00490E
crossref_primary_10_1002_batt_202400118
crossref_primary_10_1038_s41598_022_07853_6
crossref_primary_10_1021_acsaem_1c03612
crossref_primary_10_1039_D3TA00596H
crossref_primary_10_1002_adma_202306491
crossref_primary_10_1002_anie_202416181
crossref_primary_10_1016_j_cej_2025_161226
crossref_primary_10_1021_acsami_4c02399
crossref_primary_10_1039_D3MA00291H
crossref_primary_10_1021_acsenergylett_4c02190
crossref_primary_10_1016_j_est_2021_103534
crossref_primary_10_1021_acs_iecr_2c04021
crossref_primary_10_1016_j_jcis_2023_11_111
crossref_primary_10_1039_D3YA00561E
crossref_primary_10_1002_cssc_202101623
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1039_D1TC05311F
crossref_primary_10_1021_acsnano_4c02307
crossref_primary_10_1002_aenm_202101880
crossref_primary_10_34133_2022_9798582
crossref_primary_10_3390_polym13193300
crossref_primary_10_1021_acsami_2c22228
crossref_primary_10_1039_D2TA08032J
crossref_primary_10_1016_j_cej_2022_136598
crossref_primary_10_1021_acselectrochem_4c00201
crossref_primary_10_1002_ange_202403775
crossref_primary_10_1021_acs_jpcc_3c02131
crossref_primary_10_1039_D0TA11648C
crossref_primary_10_1016_j_diamond_2024_111507
crossref_primary_10_3390_molecules29235487
crossref_primary_10_3390_ma16010177
crossref_primary_10_1039_D2TC01150F
crossref_primary_10_1007_s10008_023_05748_8
crossref_primary_10_1016_j_cej_2023_148447
crossref_primary_10_1016_j_matre_2024_100312
crossref_primary_10_1016_j_mattod_2021_08_006
crossref_primary_10_1002_ange_202416181
crossref_primary_10_1002_batt_202400694
crossref_primary_10_1016_j_cej_2023_143316
crossref_primary_10_1039_D2SC02939A
crossref_primary_10_1002_advs_202200187
crossref_primary_10_1039_D1CC04314E
crossref_primary_10_1039_D4CS00366G
crossref_primary_10_1016_j_cej_2021_132025
crossref_primary_10_1021_acsami_3c10722
crossref_primary_10_1021_acsami_3c14085
crossref_primary_10_1002_adfm_202411127
crossref_primary_10_1039_D1EE00419K
crossref_primary_10_1039_D1RA06528A
crossref_primary_10_1021_acs_langmuir_2c00344
crossref_primary_10_1515_ntrev_2020_0092
crossref_primary_10_1016_j_jallcom_2022_165559
crossref_primary_10_1016_j_mtener_2020_100547
crossref_primary_10_1002_aenm_202402130
crossref_primary_10_1002_eom2_12055
crossref_primary_10_1002_adma_202211152
crossref_primary_10_1021_acsaem_3c02025
crossref_primary_10_1002_eem2_12564
crossref_primary_10_1002_idm2_12070
crossref_primary_10_1002_batt_202300472
crossref_primary_10_1002_eom2_12178
crossref_primary_10_1021_acs_accounts_3c00687
crossref_primary_10_1002_cplu_202300620
crossref_primary_10_1021_acsami_2c05703
crossref_primary_10_1016_j_cej_2021_134471
crossref_primary_10_1002_adfm_202307248
crossref_primary_10_1002_anie_202405426
crossref_primary_10_1039_D3SC04571D
crossref_primary_10_1021_acsapm_4c01136
crossref_primary_10_1002_inf2_12277
crossref_primary_10_1080_02670844_2023_2184453
crossref_primary_10_1021_acsaem_2c01472
crossref_primary_10_1002_eem2_12557
crossref_primary_10_1016_j_cej_2025_161098
crossref_primary_10_1016_j_synthmet_2022_117112
crossref_primary_10_1021_acs_nanolett_4c02588
crossref_primary_10_1021_acssuschemeng_2c07577
crossref_primary_10_1002_bkcs_12202
crossref_primary_10_26599_NRE_2025_9120159
crossref_primary_10_1007_s10008_024_05970_y
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1039_D2CC05660G
crossref_primary_10_1002_advs_202304497
crossref_primary_10_1002_ange_202317393
crossref_primary_10_3390_polym15183728
crossref_primary_10_1021_acsami_1c01745
crossref_primary_10_1016_j_cej_2024_156578
crossref_primary_10_1016_j_biombioe_2022_106641
crossref_primary_10_1002_ange_202405426
crossref_primary_10_1021_acsami_2c18433
crossref_primary_10_1002_smll_202300518
crossref_primary_10_1002_advs_202004490
crossref_primary_10_1039_D3NJ00698K
crossref_primary_10_3390_ma16020839
crossref_primary_10_1002_aenm_202500150
crossref_primary_10_1002_er_8215
crossref_primary_10_1149_1945_7111_abf180
Cites_doi 10.1149/1.1837179
10.1038/451652a
10.1002/adma.201502241
10.1039/C8TA03857K
10.1039/c2jm15764k
10.1021/cg070386q
10.1021/ja306663g
10.1149/1.2411755
10.1021/acsami.6b01118
10.1016/j.jpowsour.2013.01.103
10.1039/C8TA11994E
10.1016/j.nanoen.2017.01.016
10.1149/2.0391811jes
10.1039/C6TA05231B
10.1016/0013-4686(72)90010-2
10.1021/jacs.7b02648
10.1002/anie.200702505
10.1021/acsami.7b02336
10.1039/C5TA04699H
10.1021/acsami.6b07591
10.1016/j.cclet.2017.09.005
10.1149/1.1391947
10.1002/anie.201803703
10.1016/j.nanoen.2017.08.038
10.1039/C4RA02686A
10.1002/anie.201909613
10.1039/c0jm03127e
10.1002/aenm.201402189
10.1021/acsami.6b04277
10.1039/C9EE03245B
10.1002/anie.196206593
10.1021/acsami.9b15462
10.1039/C7TA02105D
10.1039/C6MH00072J
10.1002/adma.201703868
10.1002/adma.201305452
10.1021/ja3091438
10.1002/cplu.201800652
10.1039/C7TA07893E
10.1002/advs.201500124
10.1002/adma.200602584
10.1002/cssc.201802948
10.1002/pat.1968
10.1039/C8TA12441H
10.1021/acsami.9b06437
10.1002/batt.202000038
10.1039/C6TA10520C
10.1039/c3sc22093a
10.1021/jz4017359
10.1039/C5QI00194C
10.1007/s11581-015-1545-5
10.1038/s41467-019-13739-5
10.1016/j.electacta.2017.12.075
10.1002/adma.201704682
10.1021/nl302254v
10.1021/jacs.5b02290
10.1002/anie.201805540
10.1002/macp.201700051
10.1002/anie.201710502
10.1002/smll.201704094
10.1016/j.enconman.2014.11.002
10.1016/j.jpowsour.2013.09.052
10.1021/nl2039666
10.1002/aenm.201700960
10.1002/adma.201203999
10.1002/aenm.201904199
10.1039/C6TA01069E
10.1021/am5060959
10.1021/acsenergylett.7b00494
10.1007/s40843-019-1185-2
10.1002/cssc.201702001
10.1016/j.jpowsour.2016.03.010
10.1016/j.electacta.2017.01.172
10.1002/anie.201506673
10.1149/1.2108689
10.1016/j.matchemphys.2015.12.004
10.1002/ente.201801016
10.1002/aenm.201200947
10.1039/c3ta10473g
10.1002/asia.201901344
10.1002/aenm.201902428
10.1002/asia.201700070
10.1016/j.nanoen.2017.04.055
10.1039/C4EE02575J
10.1016/j.electacta.2013.06.130
10.1021/acssuschemeng.6b02127
10.1039/C4TA00364K
10.1002/asia.201600293
10.1016/j.electacta.2017.09.062
10.1002/marc.201800565
10.1021/acsami.7b03687
10.3390/polym11010107
10.1021/acs.chemmater.9b02601
10.1021/acsami.8b12888
10.1021/acs.chemmater.9b03109
10.1016/j.jpowsour.2013.10.091
10.1039/c3ra45563g
10.1021/acsmacrolett.8b00154
10.1021/ma00113a042
10.1002/aenm.201100795
10.1021/ja501958u
10.1039/C5RA27471K
10.1016/j.ijhydene.2009.05.063
10.1002/anie.201604519
10.1016/j.jpowsour.2013.05.051
10.1016/j.electacta.2018.07.062
10.1007/s40843-016-0112-3
10.1126/science.1212741
10.1126/science.1182383
10.1002/anie.201002439
10.1038/srep08225
10.1039/C5TA07246H
10.1039/C6TA09754E
10.1039/C7TA03334F
10.1002/smll.201903188
10.1039/C8TA04906H
10.1016/j.jpowsour.2009.08.089
10.1002/adma.201607007
10.1002/smll.201805061
10.1016/j.elecom.2018.03.006
10.1002/aenm.201703509
10.1039/B814515F
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta03321a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 11922
ExternalDocumentID 10_1039_D0TA03321A
d0ta03321a
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c443t-b1aac070789040d61b5ac1e25efa7b68634e2ebc478b9ccebae9b72e6853e7253
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 21:56:34 EDT 2025
Mon Jun 30 11:57:53 EDT 2025
Tue Jul 01 01:12:52 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Sat Jan 08 04:02:15 EST 2022
Wed Nov 11 00:26:55 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-b1aac070789040d61b5ac1e25efa7b68634e2ebc478b9ccebae9b72e6853e7253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2642-1770
0000-0003-1854-8659
0000-0003-0455-1953
0000-0003-0712-0374
PQID 2415857027
PQPubID 2047523
PageCount 17
ParticipantIDs crossref_citationtrail_10_1039_D0TA03321A
rsc_primary_d0ta03321a
proquest_journals_2415857027
proquest_miscellaneous_2477619687
crossref_primary_10_1039_D0TA03321A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200623
PublicationDateYYYYMMDD 2020-06-23
PublicationDate_xml – month: 6
  year: 2020
  text: 20200623
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D0TA03321A-(cit77)/*[position()=1]) 2013; 233
Sotomura (D0TA03321A-(cit23a)/*[position()=1]) 1996; 143
Winter (D0TA03321A-(cit1b)/*[position()=1]) 2009; 34
Xu (D0TA03321A-(cit65a)/*[position()=1]) 2015; 5
Iordache (D0TA03321A-(cit31)/*[position()=1]) 2016; 8
Amin (D0TA03321A-(cit1a)/*[position()=1]) 2019; 40
Pirnat (D0TA03321A-(cit79)/*[position()=1]) 2016; 315
Fan (D0TA03321A-(cit29)/*[position()=1]) 2018; 57
Lee (D0TA03321A-(cit22)/*[position()=1]) 2018; 30
Sun (D0TA03321A-(cit68)/*[position()=1]) 2016; 55
Tang (D0TA03321A-(cit11a)/*[position()=1]) 2018; 29
Lyu (D0TA03321A-(cit91)/*[position()=1]) 2017; 5
Deng (D0TA03321A-(cit9)/*[position()=1]) 2014; 4
Sun (D0TA03321A-(cit15b)/*[position()=1]) 2020; 10
Song (D0TA03321A-(cit52)/*[position()=1]) 2015; 54
Oyaizu (D0TA03321A-(cit80)/*[position()=1]) 2011; 22
Lyu (D0TA03321A-(cit39)/*[position()=1]) 2018; 11
Xie (D0TA03321A-(cit98)/*[position()=1]) 2016; 8
Haldar (D0TA03321A-(cit72)/*[position()=1]) 2019
Liang (D0TA03321A-(cit14)/*[position()=1]) 2012; 2
Wu (D0TA03321A-(cit86)/*[position()=1]) 2013; 1
Song (D0TA03321A-(cit50)/*[position()=1]) 2012; 12
Xiang (D0TA03321A-(cit49)/*[position()=1]) 2008; 8
Xie (D0TA03321A-(cit102)/*[position()=1]) 2016; 59
Yao (D0TA03321A-(cit1c)/*[position()=1]) 2019; 11
Yang (D0TA03321A-(cit19)/*[position()=1]) 2013; 25
Liang (D0TA03321A-(cit42)/*[position()=1]) 2012; 2
Serkan (D0TA03321A-(cit24)/*[position()=1]) 2017; 218
Qin (D0TA03321A-(cit101)/*[position()=1]) 2014; 249
Zhang (D0TA03321A-(cit20)/*[position()=1]) 2013; 108
Zhang (D0TA03321A-(cit84)/*[position()=1]) 2018; 260
Häringer (D0TA03321A-(cit48)/*[position()=1]) 1999; 146
Schon (D0TA03321A-(cit81)/*[position()=1]) 2017; 9
Xie (D0TA03321A-(cit41)/*[position()=1]) 2018; 6
Xie (D0TA03321A-(cit38)/*[position()=1]) 2017; 12
Meng (D0TA03321A-(cit87)/*[position()=1]) 2014; 2
Amin (D0TA03321A-(cit55)/*[position()=1]) 2018; 30
Dou (D0TA03321A-(cit10)/*[position()=1]) 2015; 21
Wu (D0TA03321A-(cit61)/*[position()=1]) 2014; 26
Huang (D0TA03321A-(cit74)/*[position()=1]) 2018; 283
Song (D0TA03321A-(cit35)/*[position()=1]) 2009
Wu (D0TA03321A-(cit69)/*[position()=1]) 2015; 5
Ahmad (D0TA03321A-(cit96)/*[position()=1]) 2016; 6
Zhang (D0TA03321A-(cit17b)/*[position()=1]) 2020
Häupler (D0TA03321A-(cit73)/*[position()=1]) 2015; 7
Wang (D0TA03321A-(cit5b)/*[position()=1]) 2019; 7
Gomez (D0TA03321A-(cit53)/*[position()=1]) 2018; 7
Jung (D0TA03321A-(cit92)/*[position()=1]) 2018; 165
Wei (D0TA03321A-(cit75)/*[position()=1]) 2018; 90
Yu (D0TA03321A-(cit65b)/*[position()=1]) 2019; 58
Luo (D0TA03321A-(cit66)/*[position()=1]) 2018; 57
Kang (D0TA03321A-(cit71)/*[position()=1]) 2018; 10
Wu (D0TA03321A-(cit15f)/*[position()=1]) 2019; 7
Sharma (D0TA03321A-(cit60)/*[position()=1]) 2013; 4
Chen (D0TA03321A-(cit83)/*[position()=1]) 2017; 229
Manecke (D0TA03321A-(cit46)/*[position()=1]) 1962; 1
Bruce (D0TA03321A-(cit4a)/*[position()=1]) 2008; 47
Li (D0TA03321A-(cit97)/*[position()=1]) 2019; 11
Liu (D0TA03321A-(cit54)/*[position()=1]) 2011; 21
Nie (D0TA03321A-(cit11d)/*[position()=1]) 2015; 3
Dunn (D0TA03321A-(cit3a)/*[position()=1]) 2011; 334
Xie (D0TA03321A-(cit58)/*[position()=1]) 2018
Fergus (D0TA03321A-(cit7)/*[position()=1]) 2010; 195
Zhao (D0TA03321A-(cit26)/*[position()=1]) 2017; 29
Nokami (D0TA03321A-(cit67)/*[position()=1]) 2012; 134
Sun (D0TA03321A-(cit33)/*[position()=1]) 2018; 57
Shestakov (D0TA03321A-(cit90)/*[position()=1]) 2017; 5
Tian (D0TA03321A-(cit93)/*[position()=1]) 2016; 3
Wang (D0TA03321A-(cit30)/*[position()=1]) 2017; 139
Jing (D0TA03321A-(cit78)/*[position()=1]) 2017; 37
Shi (D0TA03321A-(cit2b)/*[position()=1]) 2020; 11
Yao (D0TA03321A-(cit16a)/*[position()=1]) 2019; 12
Williams (D0TA03321A-(cit13)/*[position()=1]) 1969; 116
Gao (D0TA03321A-(cit32)/*[position()=1]) 2014; 136
Xie (D0TA03321A-(cit16c)/*[position()=1]) 2016; 11
Foos (D0TA03321A-(cit47)/*[position()=1]) 1986; 133
Nie (D0TA03321A-(cit11c)/*[position()=1]) 2016; 3
Wang (D0TA03321A-(cit70)/*[position()=1]) 2018; 14
Ye (D0TA03321A-(cit100)/*[position()=1]) 2017; 253
Bhosale (D0TA03321A-(cit25)/*[position()=1]) 2018; 6
Kim (D0TA03321A-(cit4b)/*[position()=1]) 2020
Han (D0TA03321A-(cit34)/*[position()=1]) 2007; 19
Song (D0TA03321A-(cit59)/*[position()=1]) 2010; 49
Zhu (D0TA03321A-(cit6a)/*[position()=1]) 2019; 31
Huang (D0TA03321A-(cit17c)/*[position()=1]) 2020; 63
Xu (D0TA03321A-(cit94)/*[position()=1]) 2016; 169
Chikkannanavar (D0TA03321A-(cit8)/*[position()=1]) 2014; 248
Liang (D0TA03321A-(cit45)/*[position()=1]) 2013; 3
Lin (D0TA03321A-(cit17a)/*[position()=1]) 2017; 41
Fan (D0TA03321A-(cit63)/*[position()=1]) 2018; 57
Wu (D0TA03321A-(cit62)/*[position()=1]) 2015; 27
Lyu (D0TA03321A-(cit21)/*[position()=1]) 2017; 5
Bahceci (D0TA03321A-(cit18)/*[position()=1]) 2013; 242
Huang (D0TA03321A-(cit17d)/*[position()=1]) 2019; 14
Zhang (D0TA03321A-(cit5a)/*[position()=1]) 2016; 4
Zhan (D0TA03321A-(cit15c)/*[position()=1]) 2017; 5
Xu (D0TA03321A-(cit51)/*[position()=1]) 2012; 22
Xie (D0TA03321A-(cit15a)/*[position()=1]) 2017; 2
Yamamoto (D0TA03321A-(cit28)/*[position()=1]) 1995; 28
Deng (D0TA03321A-(cit44)/*[position()=1]) 2017; 33
Xie (D0TA03321A-(cit15d)/*[position()=1]) 2019; 15
Zhang (D0TA03321A-(cit40)/*[position()=1]) 2017; 9
Rogers (D0TA03321A-(cit36)/*[position()=1]) 2010; 327
Koo (D0TA03321A-(cit37)/*[position()=1]) 2012; 12
Alt (D0TA03321A-(cit43)/*[position()=1]) 1972; 17
Guo (D0TA03321A-(cit99)/*[position()=1]) 2017; 5
Nie (D0TA03321A-(cit11b)/*[position()=1]) 2017; 5
Huang (D0TA03321A-(cit89)/*[position()=1]) 2017; 5
Oubaha (D0TA03321A-(cit12)/*[position()=1]) 2019; 84
Mumyatov (D0TA03321A-(cit85)/*[position()=1]) 2019; 7
Gu (D0TA03321A-(cit23b)/*[position()=1]) 2016; 8
Xiong (D0TA03321A-(cit6b)/*[position()=1]) 2019; 31
Xie (D0TA03321A-(cit15e)/*[position()=1]) 2019; 15
Petronico (D0TA03321A-(cit57)/*[position()=1]) 2018; 8
Xie (D0TA03321A-(cit16b)/*[position()=1]) 2016; 4
Song (D0TA03321A-(cit56)/*[position()=1]) 2015; 2
Liang (D0TA03321A-(cit64)/*[position()=1]) 2015; 137
Liu (D0TA03321A-(cit82)/*[position()=1]) 2019; 11
Song (D0TA03321A-(cit76)/*[position()=1]) 2014; 7
Liang (D0TA03321A-(cit27)/*[position()=1]) 2013; 4
Wu (D0TA03321A-(cit88)/*[position()=1]) 2016; 4
Tian (D0TA03321A-(cit95)/*[position()=1]) 2014; 4
Goodenough (D0TA03321A-(cit3b)/*[position()=1]) 2013; 135
Bizon (D0TA03321A-(cit1d)/*[position()=1]) 2015; 90
Armand (D0TA03321A-(cit2a)/*[position()=1]) 2008; 451
References_xml – volume: 143
  start-page: 3152
  year: 1996
  ident: D0TA03321A-(cit23a)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837179
– volume: 451
  start-page: 652
  year: 2008
  ident: D0TA03321A-(cit2a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 27
  start-page: 6504
  year: 2015
  ident: D0TA03321A-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502241
– volume: 6
  start-page: 12985
  year: 2018
  ident: D0TA03321A-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03857K
– volume: 22
  start-page: 4032
  year: 2012
  ident: D0TA03321A-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15764k
– volume: 8
  start-page: 280
  year: 2008
  ident: D0TA03321A-(cit49)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070386q
– volume: 134
  start-page: 19694
  year: 2012
  ident: D0TA03321A-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306663g
– volume: 116
  start-page: 2
  year: 1969
  ident: D0TA03321A-(cit13)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2411755
– volume: 8
  start-page: 7464
  year: 2016
  ident: D0TA03321A-(cit23b)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01118
– volume: 233
  start-page: 23
  year: 2013
  ident: D0TA03321A-(cit77)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.103
– volume: 7
  start-page: 4259
  year: 2019
  ident: D0TA03321A-(cit15f)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11994E
– volume: 33
  start-page: 350
  year: 2017
  ident: D0TA03321A-(cit44)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.016
– volume: 165
  start-page: A2476
  year: 2018
  ident: D0TA03321A-(cit92)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0391811jes
– volume: 4
  start-page: 14902
  year: 2016
  ident: D0TA03321A-(cit5a)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05231B
– volume: 17
  start-page: 873
  year: 1972
  ident: D0TA03321A-(cit43)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(72)90010-2
– volume: 139
  start-page: 4258
  year: 2017
  ident: D0TA03321A-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 47
  start-page: 2930
  year: 2008
  ident: D0TA03321A-(cit4a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702505
– volume: 9
  start-page: 15631
  year: 2017
  ident: D0TA03321A-(cit81)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02336
– volume: 3
  start-page: 19410
  year: 2015
  ident: D0TA03321A-(cit11d)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04699H
– volume: 8
  start-page: 22762
  year: 2016
  ident: D0TA03321A-(cit31)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07591
– volume: 29
  start-page: 232
  year: 2018
  ident: D0TA03321A-(cit11a)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.09.005
– volume: 146
  start-page: 2393
  year: 1999
  ident: D0TA03321A-(cit48)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1391947
– volume: 57
  start-page: 7146
  year: 2018
  ident: D0TA03321A-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803703
– volume: 41
  start-page: 117
  year: 2017
  ident: D0TA03321A-(cit17a)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.038
– volume: 4
  start-page: 23914
  year: 2014
  ident: D0TA03321A-(cit9)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA02686A
– volume: 58
  start-page: 16101
  year: 2019
  ident: D0TA03321A-(cit65b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909613
– volume: 21
  start-page: 4125
  year: 2011
  ident: D0TA03321A-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03127e
– volume: 5
  start-page: 1402189
  year: 2015
  ident: D0TA03321A-(cit69)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402189
– volume: 8
  start-page: 16932
  year: 2016
  ident: D0TA03321A-(cit98)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04277
– year: 2020
  ident: D0TA03321A-(cit4b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03245B
– volume: 1
  start-page: 659
  year: 1962
  ident: D0TA03321A-(cit46)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.196206593
– volume: 11
  start-page: 46726
  issue: 50
  year: 2019
  ident: D0TA03321A-(cit82)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15462
– volume: 5
  start-page: 14463
  year: 2017
  ident: D0TA03321A-(cit15c)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02105D
– volume: 3
  start-page: 429
  year: 2016
  ident: D0TA03321A-(cit93)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00072J
– volume: 30
  start-page: 1703868
  year: 2018
  ident: D0TA03321A-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703868
– volume: 26
  start-page: 3338
  year: 2014
  ident: D0TA03321A-(cit61)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305452
– volume: 135
  start-page: 1167
  year: 2013
  ident: D0TA03321A-(cit3b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 84
  start-page: 1179
  year: 2019
  ident: D0TA03321A-(cit12)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201800652
– volume: 5
  start-page: 24083
  year: 2017
  ident: D0TA03321A-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07893E
– volume: 2
  start-page: 1500124
  year: 2015
  ident: D0TA03321A-(cit56)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500124
– volume: 19
  start-page: 1616
  year: 2007
  ident: D0TA03321A-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
– volume: 12
  start-page: 1
  year: 2019
  ident: D0TA03321A-(cit16a)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802948
– volume: 22
  start-page: 1242
  year: 2011
  ident: D0TA03321A-(cit80)/*[position()=1]
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1968
– volume: 7
  start-page: 10138
  year: 2019
  ident: D0TA03321A-(cit5b)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12441H
– volume: 11
  start-page: 28801
  year: 2019
  ident: D0TA03321A-(cit97)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06437
– year: 2020
  ident: D0TA03321A-(cit17b)/*[position()=1]
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202000038
– volume: 5
  start-page: 6532
  year: 2017
  ident: D0TA03321A-(cit90)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10520C
– volume: 4
  start-page: 1330
  year: 2013
  ident: D0TA03321A-(cit27)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc22093a
– volume: 5
  start-page: 24083
  year: 2017
  ident: D0TA03321A-(cit91)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07893E
– volume: 4
  start-page: 3192
  year: 2013
  ident: D0TA03321A-(cit60)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4017359
– volume: 3
  start-page: 111
  year: 2016
  ident: D0TA03321A-(cit11c)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00194C
– volume: 21
  start-page: 3001
  year: 2015
  ident: D0TA03321A-(cit10)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-015-1545-5
– volume: 11
  start-page: 178
  year: 2020
  ident: D0TA03321A-(cit2b)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13739-5
– volume: 260
  start-page: 598
  year: 2018
  ident: D0TA03321A-(cit84)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.12.075
– volume: 30
  start-page: 1704682
  year: 2018
  ident: D0TA03321A-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704682
– volume: 12
  start-page: 4810
  year: 2012
  ident: D0TA03321A-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl302254v
– volume: 137
  start-page: 4956
  year: 2015
  ident: D0TA03321A-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02290
– volume: 57
  start-page: 9443
  year: 2018
  ident: D0TA03321A-(cit66)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805540
– volume: 218
  start-page: 1700051
  year: 2017
  ident: D0TA03321A-(cit24)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201700051
– volume: 57
  start-page: 1034
  year: 2018
  ident: D0TA03321A-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710502
– volume: 14
  start-page: 1704094
  year: 2018
  ident: D0TA03321A-(cit70)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201704094
– volume: 90
  start-page: 93
  year: 2015
  ident: D0TA03321A-(cit1d)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.11.002
– volume: 248
  start-page: 91
  year: 2014
  ident: D0TA03321A-(cit8)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.052
– volume: 12
  start-page: 2205
  year: 2012
  ident: D0TA03321A-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2039666
– volume: 8
  start-page: 1700960
  year: 2018
  ident: D0TA03321A-(cit57)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700960
– volume: 25
  start-page: 1180
  year: 2013
  ident: D0TA03321A-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203999
– volume: 10
  start-page: 1904199
  year: 2020
  ident: D0TA03321A-(cit15b)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904199
– volume: 4
  start-page: 7091
  year: 2016
  ident: D0TA03321A-(cit16b)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01069E
– volume: 7
  start-page: 3473
  year: 2015
  ident: D0TA03321A-(cit73)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5060959
– volume: 2
  start-page: 1985
  year: 2017
  ident: D0TA03321A-(cit15a)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00494
– volume: 63
  start-page: 339
  year: 2020
  ident: D0TA03321A-(cit17c)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-1185-2
– volume: 11
  start-page: 763
  year: 2018
  ident: D0TA03321A-(cit39)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702001
– volume: 315
  start-page: 169
  year: 2016
  ident: D0TA03321A-(cit79)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.010
– volume: 229
  start-page: 387
  year: 2017
  ident: D0TA03321A-(cit83)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.172
– volume: 57
  start-page: 7146
  year: 2018
  ident: D0TA03321A-(cit63)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803703
– volume: 54
  start-page: 13947
  year: 2015
  ident: D0TA03321A-(cit52)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506673
– volume: 133
  start-page: 836
  year: 1986
  ident: D0TA03321A-(cit47)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2108689
– volume: 169
  start-page: 192
  year: 2016
  ident: D0TA03321A-(cit94)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.12.004
– volume: 7
  start-page: 1801016
  year: 2019
  ident: D0TA03321A-(cit85)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801016
– volume: 3
  start-page: 600
  year: 2013
  ident: D0TA03321A-(cit45)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200947
– volume: 1
  start-page: 6366
  year: 2013
  ident: D0TA03321A-(cit86)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10473g
– volume: 14
  start-page: 4164
  year: 2019
  ident: D0TA03321A-(cit17d)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201901344
– start-page: 1902428
  year: 2019
  ident: D0TA03321A-(cit72)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902428
– volume: 12
  start-page: 868
  year: 2017
  ident: D0TA03321A-(cit38)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201700070
– volume: 37
  start-page: 46
  year: 2017
  ident: D0TA03321A-(cit78)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.055
– volume: 7
  start-page: 4077
  year: 2014
  ident: D0TA03321A-(cit76)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02575J
– volume: 108
  start-page: 820
  year: 2013
  ident: D0TA03321A-(cit20)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.06.130
– volume: 5
  start-page: 1503
  year: 2017
  ident: D0TA03321A-(cit99)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02127
– volume: 2
  start-page: 10842
  year: 2014
  ident: D0TA03321A-(cit87)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00364K
– volume: 11
  start-page: 1489
  year: 2016
  ident: D0TA03321A-(cit16c)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201600293
– volume: 253
  start-page: 319
  year: 2017
  ident: D0TA03321A-(cit100)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.062
– volume: 40
  start-page: 1800565
  year: 2019
  ident: D0TA03321A-(cit1a)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800565
– volume: 9
  start-page: 15549
  year: 2017
  ident: D0TA03321A-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03687
– volume: 11
  start-page: 107
  year: 2019
  ident: D0TA03321A-(cit1c)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym11010107
– volume: 31
  start-page: 8069
  year: 2019
  ident: D0TA03321A-(cit6b)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02601
– volume: 10
  start-page: 37023
  year: 2018
  ident: D0TA03321A-(cit71)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12888
– volume: 31
  start-page: 8582
  year: 2019
  ident: D0TA03321A-(cit6a)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03109
– volume: 249
  start-page: 367
  year: 2014
  ident: D0TA03321A-(cit101)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.091
– volume: 4
  start-page: 7506
  year: 2014
  ident: D0TA03321A-(cit95)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra45563g
– volume: 7
  start-page: 419
  year: 2018
  ident: D0TA03321A-(cit53)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00154
– volume: 28
  start-page: 3371
  year: 1995
  ident: D0TA03321A-(cit28)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma00113a042
– volume: 2
  start-page: 742
  year: 2012
  ident: D0TA03321A-(cit14)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100795
– volume: 136
  start-page: 7209
  year: 2014
  ident: D0TA03321A-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501958u
– volume: 6
  start-page: 33287
  year: 2016
  ident: D0TA03321A-(cit96)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27471K
– volume: 34
  start-page: S1
  year: 2009
  ident: D0TA03321A-(cit1b)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.063
– volume: 55
  start-page: 10662
  year: 2016
  ident: D0TA03321A-(cit68)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604519
– volume: 242
  start-page: 33
  year: 2013
  ident: D0TA03321A-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.051
– volume: 283
  start-page: 1284
  year: 2018
  ident: D0TA03321A-(cit74)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.062
– volume: 59
  start-page: 6
  year: 2016
  ident: D0TA03321A-(cit102)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-016-0112-3
– volume: 334
  start-page: 928
  year: 2011
  ident: D0TA03321A-(cit3a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 327
  start-page: 1603
  year: 2010
  ident: D0TA03321A-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 49
  start-page: 8444
  year: 2010
  ident: D0TA03321A-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002439
– volume: 5
  start-page: 8225
  year: 2015
  ident: D0TA03321A-(cit65a)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep08225
– volume: 4
  start-page: 2115
  year: 2016
  ident: D0TA03321A-(cit88)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07246H
– volume: 5
  start-page: 2710
  year: 2017
  ident: D0TA03321A-(cit89)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09754E
– volume: 2
  start-page: 742
  year: 2012
  ident: D0TA03321A-(cit42)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100795
– volume: 5
  start-page: 14198
  year: 2017
  ident: D0TA03321A-(cit11b)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03334F
– volume: 15
  start-page: 1903188
  year: 2019
  ident: D0TA03321A-(cit15d)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201903188
– volume: 6
  start-page: 19885
  year: 2018
  ident: D0TA03321A-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04906H
– volume: 195
  start-page: 939
  year: 2010
  ident: D0TA03321A-(cit7)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.089
– volume: 29
  start-page: 1607007
  year: 2017
  ident: D0TA03321A-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201607007
– volume: 15
  start-page: 1805061
  year: 2019
  ident: D0TA03321A-(cit15e)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201805061
– volume: 90
  start-page: 21
  year: 2018
  ident: D0TA03321A-(cit75)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.03.006
– start-page: 1703509
  year: 2018
  ident: D0TA03321A-(cit58)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703509
– start-page: 448
  year: 2009
  ident: D0TA03321A-(cit35)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B814515F
SSID ssj0000800699
Score 2.6336522
Snippet Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1196
SubjectTerms Addition polymerization
Carbonyl compounds
Carbonyls
chemical structure
Chemical synthesis
Electric vehicles
Electrode materials
Electrodes
electrolytes
electronics
energy
Energy storage
Inorganic compounds
Lithium
lithium batteries
Lithium-ion batteries
Molecular structure
Organic materials
Polymers
Reaction centers
Reaction kinetics
Rechargeable batteries
Smart grid
Storage systems
Weight reduction
Title Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)
URI https://www.proquest.com/docview/2415857027
https://www.proquest.com/docview/2477619687
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEx0BGcGBCHomTOM2xwNA2BqdOmrhEtuNulUY6tekB_kn-Jd6zYyejPQwuUeq4r2neL-89P78PQt7EcQV6QxpWFbJgKSw42Ggax0zBSqwA9Z1Jmwvz9Zs4Pk9PL7KLweB3L2pp1ahD_WtjXsn_cBXGgK-YJfsPnA1EYQDOgb9wBA7D8U48BpsPt_JtjBVKLIwplwuFweYM1VPVNm3S2IvhJ3qosa0MTAfmooug7YFjg1gbd8M27BBM86vZ6gdDaChbgHPmvLNnJx-W3newbtF2RLRvI3f4buwygvrkjcs3tC57n7-FIbo9776TQMdyHqSSnLfRAfUlOwVMX3Y7KsbNncF4N-xpfDHs-9Ws79zg2AOHufxjJwN5lEVY7tSJaNMfc41wvRAf9bDK055EjsHiET31Dp9dIvSa7ogSLL36KZqMoyThcai-2hXo_ktxhnBGu5GfFGX33S2yw2HdAoJ3Z3w0OTkLbj800IXtahr-mi-amxTvOwK3zaRu7bO18I1prAE0eUgetHymYwfDR2Rg6sfkfq-e5RPSOEBSD0g6q-ltQNIWkNQDksolDYCkAZA0YIkCYmgPkDQAkr5FOB48JeefjyYfj1nb1oPpNE0apmIpta0yVYAGqUSsMqljwzMzlbkSI5Gkhhul03ykCq2NkqZQOTcCLEuT8yzZJdv1vDbPCNWRMELCIkGC3S-nUmWF4SqLoio1YNuKITnwT7HUbc17bL1yXa6zbEheh7k3rtLLxln7nhllKwmWJVrB2CiC50PyKlyGJ4ebb7I28xXOydFjKEYwZxeYGH6jihppacsh2dt8obyppnt3ur3n5F73Gu2T7WaxMi_Aam7UyxaJfwAXO8Mw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+carbonyl-based+organic+polymers+as+promising+electrode+materials+for+lithium-ion+batteries+%28LIBs%29&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Hao&rft.au=Yao%2C+Chang-Jiang&rft.au=Nie%2C+Hai-Jing&rft.au=Wang%2C+Ke-Zhi&rft.date=2020-06-23&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=24&rft.spage=11906&rft.epage=11922&rft_id=info:doi/10.1039%2FD0TA03321A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA03321A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon