Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin
Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their La...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 6; pp. 3167 - 3173 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd
of ~1 μM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions. |
---|---|
AbstractList | Pseudomonas aeruginosa
, a versatile bacterium that lives in environmental habitats and causes life-threatening opportunistic infections, uses quorum sensing to coordinate gene expression. The
lasR
gene, which encodes a quorum-sensing regulator, is often found to have loss-of-function mutations in clinical isolates. Interestingly, LasR− strains have high activity of the oxygen-sensitive transcription factor Anr in microoxic conditions. This report identifies and characterizes an Anr-regulated microoxic hemerythrin that binds oxygen. We show that both
anr
and
mhr
are critical to fitness in microoxia and that these genes uniquely benefit LasR− strains in biofilms grown in normoxia. Our data suggest that the success of
P. aeruginosa
in chronic infections is in part through its propensity to lose LasR functionality resulting in increased microoxic fitness.
Pseudomonas aeruginosa
strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was
PA14_42860
(
PA1673
), which we named
mhr
for microoxic hemerythrin. Purified
P. aeruginosa
Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent
K
d
of ∼1 µM. Both Anr and Mhr were necessary for fitness in
lasR
+ and
lasR
mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the
lasR
mutant. Among genes in the Anr regulon,
mhr
was most closely coregulated with the Anr-controlled high-affinity cytochrome
c
oxidase genes. In the absence of high-affinity cytochrome
c
oxidases, deletion of
mhr
no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a
lasR
mutant, expression of Anr-regulated
mhr
leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to
lasR
mutants in microoxic conditions. strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was ( ), which we named for microoxic hemerythrin. Purified Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent of ∼1 µM. Both Anr and Mhr were necessary for fitness in + and mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the mutant. Among genes in the Anr regulon, was most closely coregulated with the Anr-controlled high-affinity cytochrome oxidase genes. In the absence of high-affinity cytochrome oxidases, deletion of no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a mutant, expression of Anr-regulated leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to mutants in microoxic conditions. Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ~1 μM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions. Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions. |
Author | Greene, Casey S. Hammond, John H. Zhong, Fangfang Porter, Monique S. Pletneva, Ekaterina V. Clay, Michelle E. Hampton, Thomas H. Hogan, Deborah A. Lee, Alexandra J. Chen, Xiaolei Kowalski, Caitlin H. |
Author_xml | – sequence: 1 givenname: Michelle E. surname: Clay fullname: Clay, Michelle E. – sequence: 2 givenname: John H. surname: Hammond fullname: Hammond, John H. – sequence: 3 givenname: Fangfang surname: Zhong fullname: Zhong, Fangfang – sequence: 4 givenname: Xiaolei surname: Chen fullname: Chen, Xiaolei – sequence: 5 givenname: Caitlin H. surname: Kowalski fullname: Kowalski, Caitlin H. – sequence: 6 givenname: Alexandra J. surname: Lee fullname: Lee, Alexandra J. – sequence: 7 givenname: Monique S. surname: Porter fullname: Porter, Monique S. – sequence: 8 givenname: Thomas H. surname: Hampton fullname: Hampton, Thomas H. – sequence: 9 givenname: Casey S. surname: Greene fullname: Greene, Casey S. – sequence: 10 givenname: Ekaterina V. surname: Pletneva fullname: Pletneva, Ekaterina V. – sequence: 11 givenname: Deborah A. surname: Hogan fullname: Hogan, Deborah A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31980538$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctr3DAQxkVJaTZpzz21CHrpxYkelmxfCiH0BYGW0p7FWB57tdiSK9kh-99Xy6bbx2lA89M3M993Qc588EjIS86uOKvk9ewhXfGGV6rSnFdPyIazhhe6bNgZ2TAmqqIuRXlOLlLaMcYaVbNn5FzypmZK1huSviZcuzCFLEQB4zo4HxLQEdI3Oq0L-IX2bvGYEnWeTs7GEB4cUJdoWuc5xAU72u4peHrjYxFxWEc4vIWH_YC-aJ3vnB_oFieM-2UbnX9OnvYwJnzxWC_Jjw_vv99-Ku6-fPx8e3NX2LKUSwFNL3lnZQ0ga4a2Y1Z2ggnRSqv6DisuQfcAfdtbLRvdaiXRZiukElbYWl6Sd0fdeW0n7Cz6JcJo5ugmiHsTwJl_O95tzRDuTZWHZIeywNtHgRh-rpgWM7lkcRzBY1iTEbJUium60hl98x-6C2v0-bxMqbIWWpVNpq6PVHYxpYj9aRnOzCFQcwjU_Ak0_3j99w0n_neCGXh1BHZpCfHUF7oReS8lfwFYt6vH |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1009375 crossref_primary_10_3390_pathogens9120980 crossref_primary_10_7554_eLife_76555 crossref_primary_10_1021_acssynbio_2c00527 crossref_primary_10_1080_1040841X_2023_2285995 crossref_primary_10_1016_j_csbj_2022_08_012 crossref_primary_10_3390_molecules27217584 crossref_primary_10_7554_eLife_81604 crossref_primary_10_1093_mtomcs_mfac009 crossref_primary_10_3389_fcimb_2023_1295063 crossref_primary_10_1128_jb_00114_23 crossref_primary_10_1128_spectrum_03157_23 crossref_primary_10_3389_fmicb_2022_821895 crossref_primary_10_1128_jb_00587_21 crossref_primary_10_1016_j_mib_2021_04_003 crossref_primary_10_1093_femsle_fnaa092 crossref_primary_10_1016_j_protis_2020_125791 crossref_primary_10_1128_mbio_01278_23 crossref_primary_10_1128_aem_00635_23 crossref_primary_10_1128_jb_00444_21 crossref_primary_10_1128_mBio_01865_20 crossref_primary_10_1128_msystems_00341_22 crossref_primary_10_1016_j_jmb_2020_07_021 crossref_primary_10_3389_fcimb_2022_904602 crossref_primary_10_1128_jb_00528_21 crossref_primary_10_3390_biom12030366 crossref_primary_10_3389_fmolb_2022_967059 crossref_primary_10_1021_acs_biochem_4c00174 crossref_primary_10_1093_nar_gkae187 crossref_primary_10_1128_mbio_02376_23 |
Cites_doi | 10.1111/j.1365-2958.2007.05772.x 10.1073/pnas.0602138103 10.1128/mSphere.00140-16 10.1128/AEM.65.9.4085-4093.1999 10.1111/j.1365-2958.2007.05678.x 10.1371/journal.pone.0157904 10.1128/IAI.00437-16 10.1021/bi00851a012 10.1128/JB.01138-07 10.1016/0010-406X(60)90031-1 10.1007/s13238-014-0100-x 10.1073/pnas.0705653104 10.1111/1462-2920.12341 10.1099/mic.0.000393 10.1038/s41598-019-45541-0 10.1099/mic.0.081158-0 10.1016/S0167-4781(00)00312-2 10.1016/j.jinorgbio.2015.04.001 10.1002/ppul.10127 10.1111/j.1462-2920.2010.02252.x 10.1128/JB.02176-14 10.1128/mBio.01513-16 10.1128/JB.00289-07 10.1098/rsob.170029 10.1128/mBio.00992-14 10.1128/JB.00182-15 10.1016/j.jinorgbio.2012.02.019 10.1016/S1286-4579(00)01349-6 10.1111/j.1574-6968.2007.01011.x 10.1093/bioinformatics/btm404 10.1126/science.1227289 10.1128/JB.187.14.4875-4883.2005 10.1021/cr00027a008 10.1038/35023079 10.1128/CMR.00040-09 10.1128/mmbr.61.4.533-616.1997 10.1016/j.jinorgbio.2008.02.008 10.1016/j.cels.2017.06.003 10.1021/acs.jproteome.7b00561 10.1016/j.jcf.2008.09.006 10.1128/CMR.15.2.194-222.2002 10.1074/jbc.271.5.2762 10.1128/JB.00393-19 10.1128/jb.177.12.3606-3609.1995 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 11, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 11, 2020 – notice: 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1917576117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3173 |
ExternalDocumentID | 10_1073_pnas_1917576117 31980538 26928765 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM098502 – fundername: NIAID NIH HHS grantid: T32 AI007519 – fundername: NHLBI NIH HHS grantid: T32 HL134598 – fundername: NIDDK NIH HHS grantid: P30 DK117469 – fundername: NIGMS NIH HHS grantid: P20 GM113132 – fundername: NIAID NIH HHS grantid: R01 AI091702 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: P20GM113132 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM098502 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: T32HL134598 – fundername: Cystic Fibrosis Foundation (CF Foundation) grantid: HOGAN19G0 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: P30DK117469 – fundername: Cystic Fibrosis Foundation (CF Foundation) grantid: STANTO19R0 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI091702 – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF4552 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-a9f31dc38aa380ecd0c3d2022b3c5fde713a6faafbfc6396b653ec175352c2c83 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:07:08 EDT 2024 Thu Oct 24 23:07:20 EDT 2024 Thu Oct 10 18:29:07 EDT 2024 Fri Dec 06 02:30:20 EST 2024 Sat Sep 28 08:35:02 EDT 2024 Tue Dec 10 23:45:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | microoxic growth Pseudomonas aeruginosa Anr lasR hemerythrin |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-a9f31dc38aa380ecd0c3d2022b3c5fde713a6faafbfc6396b653ec175352c2c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: M.E.C., J.H.H., F.Z., E.V.P., and D.A.H. designed research; M.E.C., J.H.H., F.Z., X.C., and M.S.P. performed research; M.E.C., J.H.H., F.Z., and C.H.K. contributed new reagents/analytic tools; M.E.C., J.H.H., F.Z., X.C., C.H.K., A.J.L., T.H.H., C.S.G., E.V.P., and D.A.H. analyzed data; and M.E.C., J.H.H., F.Z., C.S.G., E.V.P., and D.A.H. wrote the paper. 1M.E.C. and J.H.H. contributed equally to this work. Edited by Dianne K. Newman, California Institute of Technology, Pasadena, CA, and approved December 28, 2019 (received for review October 11, 2019) |
ORCID | 0000-0001-8713-9213 0000-0002-0377-5405 0000-0002-6366-2971 0000-0003-1380-2929 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/6/3167.full.pdf |
PMID | 31980538 |
PQID | 2354826549 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022198 proquest_miscellaneous_2345506876 proquest_journals_2354826549 crossref_primary_10_1073_pnas_1917576117 pubmed_primary_31980538 jstor_primary_26928765 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-11 |
PublicationDateYYYYMMDD | 2020-02-11 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | Sabharwal N. (e_1_3_3_16_2) 2014; 5 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_8_2 doi: 10.1111/j.1365-2958.2007.05772.x – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0602138103 – ident: e_1_3_3_17_2 doi: 10.1128/mSphere.00140-16 – ident: e_1_3_3_23_2 doi: 10.1128/AEM.65.9.4085-4093.1999 – ident: e_1_3_3_10_2 doi: 10.1111/j.1365-2958.2007.05678.x – ident: e_1_3_3_31_2 doi: 10.1371/journal.pone.0157904 – ident: e_1_3_3_43_2 doi: 10.1128/IAI.00437-16 – ident: e_1_3_3_29_2 doi: 10.1021/bi00851a012 – ident: e_1_3_3_40_2 doi: 10.1128/JB.01138-07 – ident: e_1_3_3_44_2 doi: 10.1016/0010-406X(60)90031-1 – ident: e_1_3_3_4_2 doi: 10.1007/s13238-014-0100-x – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0705653104 – ident: e_1_3_3_32_2 doi: 10.1111/1462-2920.12341 – ident: e_1_3_3_14_2 doi: 10.1099/mic.0.000393 – ident: e_1_3_3_26_2 doi: 10.1038/s41598-019-45541-0 – ident: e_1_3_3_35_2 doi: 10.1099/mic.0.081158-0 – ident: e_1_3_3_30_2 doi: 10.1016/S0167-4781(00)00312-2 – ident: e_1_3_3_36_2 doi: 10.1016/j.jinorgbio.2015.04.001 – ident: e_1_3_3_1_2 doi: 10.1002/ppul.10127 – volume: 5 start-page: 125 year: 2014 ident: e_1_3_3_16_2 article-title: Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections publication-title: Int. J. Mol. Epidemiol. Genet. contributor: fullname: Sabharwal N. – ident: e_1_3_3_34_2 doi: 10.1111/j.1462-2920.2010.02252.x – ident: e_1_3_3_24_2 doi: 10.1128/JB.02176-14 – ident: e_1_3_3_12_2 doi: 10.1128/mBio.01513-16 – ident: e_1_3_3_41_2 doi: 10.1128/JB.00289-07 – ident: e_1_3_3_15_2 doi: 10.1098/rsob.170029 – ident: e_1_3_3_9_2 doi: 10.1128/mBio.00992-14 – ident: e_1_3_3_20_2 doi: 10.1128/JB.00182-15 – ident: e_1_3_3_33_2 doi: 10.1016/j.jinorgbio.2012.02.019 – ident: e_1_3_3_5_2 doi: 10.1016/S1286-4579(00)01349-6 – ident: e_1_3_3_28_2 doi: 10.1111/j.1574-6968.2007.01011.x – ident: e_1_3_3_37_2 doi: 10.1093/bioinformatics/btm404 – ident: e_1_3_3_19_2 doi: 10.1126/science.1227289 – ident: e_1_3_3_45_2 doi: 10.1128/JB.187.14.4875-4883.2005 – ident: e_1_3_3_27_2 doi: 10.1021/cr00027a008 – ident: e_1_3_3_6_2 doi: 10.1038/35023079 – ident: e_1_3_3_3_2 doi: 10.1128/CMR.00040-09 – ident: e_1_3_3_25_2 doi: 10.1128/mmbr.61.4.533-616.1997 – ident: e_1_3_3_38_2 doi: 10.1016/j.jinorgbio.2008.02.008 – ident: e_1_3_3_39_2 doi: 10.1016/j.cels.2017.06.003 – ident: e_1_3_3_42_2 doi: 10.1021/acs.jproteome.7b00561 – ident: e_1_3_3_11_2 doi: 10.1016/j.jcf.2008.09.006 – ident: e_1_3_3_2_2 doi: 10.1128/CMR.15.2.194-222.2002 – ident: e_1_3_3_22_2 doi: 10.1074/jbc.271.5.2762 – ident: e_1_3_3_7_2 doi: 10.1128/JB.00393-19 – ident: e_1_3_3_21_2 doi: 10.1128/jb.177.12.3606-3609.1995 |
SSID | ssj0009580 |
Score | 2.5178013 |
Snippet | Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment.... strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the... Pseudomonas aeruginosa , a versatile bacterium that lives in environmental habitats and causes life-threatening opportunistic infections, uses quorum sensing... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3167 |
SubjectTerms | Affinity Bacterial Proteins - genetics Bacterial Proteins - metabolism Biofilms Biological Sciences Cell Hypoxia - genetics Clonal deletion Cytochrome Cytochrome-c oxidase Cytochromes Fitness Genes Genetic Fitness - genetics Hemerythrin - genetics Hemerythrin - metabolism Lysogeny Metabolism Metabolomics Mutants Mutation Oxygen Oxygen - metabolism Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Pseudomonas aeruginosa - physiology Reproductive fitness Sputum Trans-Activators - genetics Trans-Activators - metabolism Transcription factors |
Title | Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin |
URI | https://www.jstor.org/stable/26928765 https://www.ncbi.nlm.nih.gov/pubmed/31980538 https://www.proquest.com/docview/2354826549 https://search.proquest.com/docview/2345506876 https://pubmed.ncbi.nlm.nih.gov/PMC7022198 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SnHopTdq0TpOgQg_pwbtrSX4dQ2gIhZRQGsjN6Nk1dOXFD8j--478arf01KNt2RjNJ818aOYbgI_cijg1yoSKGRv69tqhNCbCS5uaTCmaU1_vfP81uXvkX57ipwOIp1qYPmlfyXLhfm4Wrlz3uZXbjVpOeWLLh_ubFB0PkuXlIRyi-50o-qy0mw11JxS3X075pOeTsuXWiWbhCQoG2VHk--8hADOEYbbnlYbExH-FnH9nTv7him5fwcsxhiTXw78ew4FxJ3A8rtKGXI1S0p9eQ_PQmE5XCDXREGHq7kfpqkYQDJm_kU3nOwgTW7Z-uyOlIxufnVc9l4KUDWm6bS96roncEeHItavDeuhcj_eq5x1Cz_Nq7_zI2tcZ79p1Xbo38Hj7-fvNXTi2WQgV56wNRW5ZpBXLhGDZyii9UkxTnGLJVGy1QRorEiuElVZhPJPIJGZGeYXPmCqqMnYKR65y5h0QI1b5iguR8ljyjHMpMi1zrXWqda4sC-BqmuZiO6hpFP0peMoKb5zit3ECOO3NMI-jSY7sLokDOJ_sUozrrSkoQ-ZFEyS7AXyYH-NK8ccfwpmq82N8BXeC3wjg7WDG-eMTDgJI9ww8D_Aq3PtPEJy9GvcIxrP_fvM9vKCexPsuM9E5HLV1Zy4w0mnlpfcz8WWP718X2AKn |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhUMBIHMohuxvbeR2rimqBblWhVuotcvxgI7HOKg-p--8Z5wWLOHFM7FiR57M9nzzzDcBHbkQYa6l9ybTxXXltP9c6wEcT60RKmlKX77y6ipa3_OtdeHcA4ZgL0wXty7yY2Z-bmS3WXWzldiPnY5zY_Hp1HuPBg2R5_gAehixOg5GkT1q7SZ95QnED5pSPij4xm2-tqGeOoqCbHQSuAh9CMEEgJnvnUh-a-C-n8-_YyT8Oo4un8GTwIslZ_7dHcKDtMzga1mlNTgcx6U_Pob6udatKBJuoidBV-6OwZS0IOs3fyaZ1NYSJKRq34ZHCko2LzyvvC0GKmtTttpM9VyTfEWHJma38qq9dj-_K-x2CzzFrd_yRtcs03jXrqrAv4Pbi88350h8KLfiSc9b4IjUsUJIlQrBkoaVaSKYoTnLOZGiURiIrIiOEyY1EjybKo5Bp6TQ-QyqpTNgxHNrS6ldAtFikCy5EzMOcJ5znIlF5qpSKlUqlYR6cjtOcbXs9jay7B49Z5oyT_TaOB8edGaZ-NEqR30WhByejXbJhxdUZZci9aIR014MPUzOuFXcBIqwuW9fH5XBHOIYHL3szToOPOPAg3jPw1MHpcO-3IDw7Pe4Bjq__-8v38Gh5s7rMLr9cfXsDj6mj9K7mTHACh03V6rfo9zT5uw7lvwC7OQUW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLokAhUMBIHMohm43tvI5VYVUerVaISr1FfnYjsU6Uh9T994zzoos4cUzsWJHnsz2fPPMNQh-Y4VGipfYl1cZ35bV9oXUIjybRqZQkIy7f-eIyPr9iX6-j6zulvvqgfSmKhf21Xdhi08dWVlsZTHFiwfriLIGDB8hyUCkT3EcPIgogm4j6rLebDtknBDZhRtik6pPQoLK8WTiaAq52GLoqfADDFMCY7p1NQ3jivxzPv-Mn7xxIqyfo8ehJ4tPhjw_RPW2fosNxrTb4ZBSU_vgMNetGd6oEwPEGc113N4UtG47Bcf6Bt52rI4xN0bpNDxcWb12MXnlbcFw0uOmqXvpcYbHD3OJTW_v1UL8e3pW3OwCgY9fuCMQbl228azd1YZ-jq9Xnn2fn_lhswZeM0dbnmaGhkjTlnKZLLdVSUkVgogWVkVEayCyPDedGGAleTSziiGrpdD4jIolM6RE6sKXVLxHWfJktGecJiwRLGRM8VSJTSiVKZdJQD51M05xXg6ZG3t-FJzR3xsn_GMdDR70Z5n4kzoDjxZGHjie75OOqa3JCgX-RGCivh97PzbBe3CUIt7rsXB-Xxx3DGB56MZhxHnzCgYeSPQPPHZwW934LQLTX5B4h-eq_v3yHHq4_rfLvXy6_vUaPiGP1ruxMeIwO2rrTb8D1acXbHuS_AW6oBik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudomonas+aeruginosa+lasR+mutant+fitness+in+microoxia+is+supported+by+an+Anr-regulated+oxygen-binding+hemerythrin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Clay%2C+Michelle+E&rft.au=Hammond%2C+John+H&rft.au=Zhong%2C+Fangfang&rft.au=Chen%2C+Xiaolei&rft.date=2020-02-11&rft.eissn=1091-6490&rft.volume=117&rft.issue=6&rft.spage=3167&rft_id=info:doi/10.1073%2Fpnas.1917576117&rft_id=info%3Apmid%2F31980538&rft.externalDocID=31980538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |