Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin

Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their La...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 6; pp. 3167 - 3173
Main Authors Clay, Michelle E., Hammond, John H., Zhong, Fangfang, Chen, Xiaolei, Kowalski, Caitlin H., Lee, Alexandra J., Porter, Monique S., Hampton, Thomas H., Greene, Casey S., Pletneva, Ekaterina V., Hogan, Deborah A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ~1 μM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
AbstractList Pseudomonas aeruginosa , a versatile bacterium that lives in environmental habitats and causes life-threatening opportunistic infections, uses quorum sensing to coordinate gene expression. The lasR gene, which encodes a quorum-sensing regulator, is often found to have loss-of-function mutations in clinical isolates. Interestingly, LasR− strains have high activity of the oxygen-sensitive transcription factor Anr in microoxic conditions. This report identifies and characterizes an Anr-regulated microoxic hemerythrin that binds oxygen. We show that both anr and mhr are critical to fitness in microoxia and that these genes uniquely benefit LasR− strains in biofilms grown in normoxia. Our data suggest that the success of P. aeruginosa in chronic infections is in part through its propensity to lose LasR functionality resulting in increased microoxic fitness. Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 ( PA1673 ), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent K d of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR + and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was ( ), which we named for microoxic hemerythrin. Purified Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent of ∼1 µM. Both Anr and Mhr were necessary for fitness in + and mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the mutant. Among genes in the Anr regulon, was most closely coregulated with the Anr-controlled high-affinity cytochrome oxidase genes. In the absence of high-affinity cytochrome oxidases, deletion of no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a mutant, expression of Anr-regulated leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to mutants in microoxic conditions.
Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ~1 μM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
Author Greene, Casey S.
Hammond, John H.
Zhong, Fangfang
Porter, Monique S.
Pletneva, Ekaterina V.
Clay, Michelle E.
Hampton, Thomas H.
Hogan, Deborah A.
Lee, Alexandra J.
Chen, Xiaolei
Kowalski, Caitlin H.
Author_xml – sequence: 1
  givenname: Michelle E.
  surname: Clay
  fullname: Clay, Michelle E.
– sequence: 2
  givenname: John H.
  surname: Hammond
  fullname: Hammond, John H.
– sequence: 3
  givenname: Fangfang
  surname: Zhong
  fullname: Zhong, Fangfang
– sequence: 4
  givenname: Xiaolei
  surname: Chen
  fullname: Chen, Xiaolei
– sequence: 5
  givenname: Caitlin H.
  surname: Kowalski
  fullname: Kowalski, Caitlin H.
– sequence: 6
  givenname: Alexandra J.
  surname: Lee
  fullname: Lee, Alexandra J.
– sequence: 7
  givenname: Monique S.
  surname: Porter
  fullname: Porter, Monique S.
– sequence: 8
  givenname: Thomas H.
  surname: Hampton
  fullname: Hampton, Thomas H.
– sequence: 9
  givenname: Casey S.
  surname: Greene
  fullname: Greene, Casey S.
– sequence: 10
  givenname: Ekaterina V.
  surname: Pletneva
  fullname: Pletneva, Ekaterina V.
– sequence: 11
  givenname: Deborah A.
  surname: Hogan
  fullname: Hogan, Deborah A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31980538$$D View this record in MEDLINE/PubMed
BookMark eNpdkctr3DAQxkVJaTZpzz21CHrpxYkelmxfCiH0BYGW0p7FWB57tdiSK9kh-99Xy6bbx2lA89M3M993Qc588EjIS86uOKvk9ewhXfGGV6rSnFdPyIazhhe6bNgZ2TAmqqIuRXlOLlLaMcYaVbNn5FzypmZK1huSviZcuzCFLEQB4zo4HxLQEdI3Oq0L-IX2bvGYEnWeTs7GEB4cUJdoWuc5xAU72u4peHrjYxFxWEc4vIWH_YC-aJ3vnB_oFieM-2UbnX9OnvYwJnzxWC_Jjw_vv99-Ku6-fPx8e3NX2LKUSwFNL3lnZQ0ga4a2Y1Z2ggnRSqv6DisuQfcAfdtbLRvdaiXRZiukElbYWl6Sd0fdeW0n7Cz6JcJo5ugmiHsTwJl_O95tzRDuTZWHZIeywNtHgRh-rpgWM7lkcRzBY1iTEbJUium60hl98x-6C2v0-bxMqbIWWpVNpq6PVHYxpYj9aRnOzCFQcwjU_Ak0_3j99w0n_neCGXh1BHZpCfHUF7oReS8lfwFYt6vH
CitedBy_id crossref_primary_10_1371_journal_ppat_1009375
crossref_primary_10_3390_pathogens9120980
crossref_primary_10_7554_eLife_76555
crossref_primary_10_1021_acssynbio_2c00527
crossref_primary_10_1080_1040841X_2023_2285995
crossref_primary_10_1016_j_csbj_2022_08_012
crossref_primary_10_3390_molecules27217584
crossref_primary_10_7554_eLife_81604
crossref_primary_10_1093_mtomcs_mfac009
crossref_primary_10_3389_fcimb_2023_1295063
crossref_primary_10_1128_jb_00114_23
crossref_primary_10_1128_spectrum_03157_23
crossref_primary_10_3389_fmicb_2022_821895
crossref_primary_10_1128_jb_00587_21
crossref_primary_10_1016_j_mib_2021_04_003
crossref_primary_10_1093_femsle_fnaa092
crossref_primary_10_1016_j_protis_2020_125791
crossref_primary_10_1128_mbio_01278_23
crossref_primary_10_1128_aem_00635_23
crossref_primary_10_1128_jb_00444_21
crossref_primary_10_1128_mBio_01865_20
crossref_primary_10_1128_msystems_00341_22
crossref_primary_10_1016_j_jmb_2020_07_021
crossref_primary_10_3389_fcimb_2022_904602
crossref_primary_10_1128_jb_00528_21
crossref_primary_10_3390_biom12030366
crossref_primary_10_3389_fmolb_2022_967059
crossref_primary_10_1021_acs_biochem_4c00174
crossref_primary_10_1093_nar_gkae187
crossref_primary_10_1128_mbio_02376_23
Cites_doi 10.1111/j.1365-2958.2007.05772.x
10.1073/pnas.0602138103
10.1128/mSphere.00140-16
10.1128/AEM.65.9.4085-4093.1999
10.1111/j.1365-2958.2007.05678.x
10.1371/journal.pone.0157904
10.1128/IAI.00437-16
10.1021/bi00851a012
10.1128/JB.01138-07
10.1016/0010-406X(60)90031-1
10.1007/s13238-014-0100-x
10.1073/pnas.0705653104
10.1111/1462-2920.12341
10.1099/mic.0.000393
10.1038/s41598-019-45541-0
10.1099/mic.0.081158-0
10.1016/S0167-4781(00)00312-2
10.1016/j.jinorgbio.2015.04.001
10.1002/ppul.10127
10.1111/j.1462-2920.2010.02252.x
10.1128/JB.02176-14
10.1128/mBio.01513-16
10.1128/JB.00289-07
10.1098/rsob.170029
10.1128/mBio.00992-14
10.1128/JB.00182-15
10.1016/j.jinorgbio.2012.02.019
10.1016/S1286-4579(00)01349-6
10.1111/j.1574-6968.2007.01011.x
10.1093/bioinformatics/btm404
10.1126/science.1227289
10.1128/JB.187.14.4875-4883.2005
10.1021/cr00027a008
10.1038/35023079
10.1128/CMR.00040-09
10.1128/mmbr.61.4.533-616.1997
10.1016/j.jinorgbio.2008.02.008
10.1016/j.cels.2017.06.003
10.1021/acs.jproteome.7b00561
10.1016/j.jcf.2008.09.006
10.1128/CMR.15.2.194-222.2002
10.1074/jbc.271.5.2762
10.1128/JB.00393-19
10.1128/jb.177.12.3606-3609.1995
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 11, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Feb 11, 2020
– notice: 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1917576117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3173
ExternalDocumentID 10_1073_pnas_1917576117
31980538
26928765
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM098502
– fundername: NIAID NIH HHS
  grantid: T32 AI007519
– fundername: NHLBI NIH HHS
  grantid: T32 HL134598
– fundername: NIDDK NIH HHS
  grantid: P30 DK117469
– fundername: NIGMS NIH HHS
  grantid: P20 GM113132
– fundername: NIAID NIH HHS
  grantid: R01 AI091702
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: P20GM113132
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM098502
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: T32HL134598
– fundername: Cystic Fibrosis Foundation (CF Foundation)
  grantid: HOGAN19G0
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: P30DK117469
– fundername: Cystic Fibrosis Foundation (CF Foundation)
  grantid: STANTO19R0
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI091702
– fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
  grantid: GBMF4552
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-a9f31dc38aa380ecd0c3d2022b3c5fde713a6faafbfc6396b653ec175352c2c83
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:07:08 EDT 2024
Thu Oct 24 23:07:20 EDT 2024
Thu Oct 10 18:29:07 EDT 2024
Fri Dec 06 02:30:20 EST 2024
Sat Sep 28 08:35:02 EDT 2024
Tue Dec 10 23:45:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords microoxic growth
Pseudomonas aeruginosa
Anr
lasR
hemerythrin
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-a9f31dc38aa380ecd0c3d2022b3c5fde713a6faafbfc6396b653ec175352c2c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: M.E.C., J.H.H., F.Z., E.V.P., and D.A.H. designed research; M.E.C., J.H.H., F.Z., X.C., and M.S.P. performed research; M.E.C., J.H.H., F.Z., and C.H.K. contributed new reagents/analytic tools; M.E.C., J.H.H., F.Z., X.C., C.H.K., A.J.L., T.H.H., C.S.G., E.V.P., and D.A.H. analyzed data; and M.E.C., J.H.H., F.Z., C.S.G., E.V.P., and D.A.H. wrote the paper.
1M.E.C. and J.H.H. contributed equally to this work.
Edited by Dianne K. Newman, California Institute of Technology, Pasadena, CA, and approved December 28, 2019 (received for review October 11, 2019)
ORCID 0000-0001-8713-9213
0000-0002-0377-5405
0000-0002-6366-2971
0000-0003-1380-2929
OpenAccessLink https://www.pnas.org/content/pnas/117/6/3167.full.pdf
PMID 31980538
PQID 2354826549
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022198
proquest_miscellaneous_2345506876
proquest_journals_2354826549
crossref_primary_10_1073_pnas_1917576117
pubmed_primary_31980538
jstor_primary_26928765
PublicationCentury 2000
PublicationDate 2020-02-11
PublicationDateYYYYMMDD 2020-02-11
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References Sabharwal N. (e_1_3_3_16_2) 2014; 5
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_8_2
  doi: 10.1111/j.1365-2958.2007.05772.x
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0602138103
– ident: e_1_3_3_17_2
  doi: 10.1128/mSphere.00140-16
– ident: e_1_3_3_23_2
  doi: 10.1128/AEM.65.9.4085-4093.1999
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-2958.2007.05678.x
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pone.0157904
– ident: e_1_3_3_43_2
  doi: 10.1128/IAI.00437-16
– ident: e_1_3_3_29_2
  doi: 10.1021/bi00851a012
– ident: e_1_3_3_40_2
  doi: 10.1128/JB.01138-07
– ident: e_1_3_3_44_2
  doi: 10.1016/0010-406X(60)90031-1
– ident: e_1_3_3_4_2
  doi: 10.1007/s13238-014-0100-x
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0705653104
– ident: e_1_3_3_32_2
  doi: 10.1111/1462-2920.12341
– ident: e_1_3_3_14_2
  doi: 10.1099/mic.0.000393
– ident: e_1_3_3_26_2
  doi: 10.1038/s41598-019-45541-0
– ident: e_1_3_3_35_2
  doi: 10.1099/mic.0.081158-0
– ident: e_1_3_3_30_2
  doi: 10.1016/S0167-4781(00)00312-2
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jinorgbio.2015.04.001
– ident: e_1_3_3_1_2
  doi: 10.1002/ppul.10127
– volume: 5
  start-page: 125
  year: 2014
  ident: e_1_3_3_16_2
  article-title: Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections
  publication-title: Int. J. Mol. Epidemiol. Genet.
  contributor:
    fullname: Sabharwal N.
– ident: e_1_3_3_34_2
  doi: 10.1111/j.1462-2920.2010.02252.x
– ident: e_1_3_3_24_2
  doi: 10.1128/JB.02176-14
– ident: e_1_3_3_12_2
  doi: 10.1128/mBio.01513-16
– ident: e_1_3_3_41_2
  doi: 10.1128/JB.00289-07
– ident: e_1_3_3_15_2
  doi: 10.1098/rsob.170029
– ident: e_1_3_3_9_2
  doi: 10.1128/mBio.00992-14
– ident: e_1_3_3_20_2
  doi: 10.1128/JB.00182-15
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jinorgbio.2012.02.019
– ident: e_1_3_3_5_2
  doi: 10.1016/S1286-4579(00)01349-6
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1574-6968.2007.01011.x
– ident: e_1_3_3_37_2
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1227289
– ident: e_1_3_3_45_2
  doi: 10.1128/JB.187.14.4875-4883.2005
– ident: e_1_3_3_27_2
  doi: 10.1021/cr00027a008
– ident: e_1_3_3_6_2
  doi: 10.1038/35023079
– ident: e_1_3_3_3_2
  doi: 10.1128/CMR.00040-09
– ident: e_1_3_3_25_2
  doi: 10.1128/mmbr.61.4.533-616.1997
– ident: e_1_3_3_38_2
  doi: 10.1016/j.jinorgbio.2008.02.008
– ident: e_1_3_3_39_2
  doi: 10.1016/j.cels.2017.06.003
– ident: e_1_3_3_42_2
  doi: 10.1021/acs.jproteome.7b00561
– ident: e_1_3_3_11_2
  doi: 10.1016/j.jcf.2008.09.006
– ident: e_1_3_3_2_2
  doi: 10.1128/CMR.15.2.194-222.2002
– ident: e_1_3_3_22_2
  doi: 10.1074/jbc.271.5.2762
– ident: e_1_3_3_7_2
  doi: 10.1128/JB.00393-19
– ident: e_1_3_3_21_2
  doi: 10.1128/jb.177.12.3606-3609.1995
SSID ssj0009580
Score 2.5178013
Snippet Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment....
strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the...
Pseudomonas aeruginosa , a versatile bacterium that lives in environmental habitats and causes life-threatening opportunistic infections, uses quorum sensing...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3167
SubjectTerms Affinity
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofilms
Biological Sciences
Cell Hypoxia - genetics
Clonal deletion
Cytochrome
Cytochrome-c oxidase
Cytochromes
Fitness
Genes
Genetic Fitness - genetics
Hemerythrin - genetics
Hemerythrin - metabolism
Lysogeny
Metabolism
Metabolomics
Mutants
Mutation
Oxygen
Oxygen - metabolism
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
Pseudomonas aeruginosa - physiology
Reproductive fitness
Sputum
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription factors
Title Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin
URI https://www.jstor.org/stable/26928765
https://www.ncbi.nlm.nih.gov/pubmed/31980538
https://www.proquest.com/docview/2354826549
https://search.proquest.com/docview/2345506876
https://pubmed.ncbi.nlm.nih.gov/PMC7022198
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SnHopTdq0TpOgQg_pwbtrSX4dQ2gIhZRQGsjN6Nk1dOXFD8j--478arf01KNt2RjNJ818aOYbgI_cijg1yoSKGRv69tqhNCbCS5uaTCmaU1_vfP81uXvkX57ipwOIp1qYPmlfyXLhfm4Wrlz3uZXbjVpOeWLLh_ubFB0PkuXlIRyi-50o-qy0mw11JxS3X075pOeTsuXWiWbhCQoG2VHk--8hADOEYbbnlYbExH-FnH9nTv7him5fwcsxhiTXw78ew4FxJ3A8rtKGXI1S0p9eQ_PQmE5XCDXREGHq7kfpqkYQDJm_kU3nOwgTW7Z-uyOlIxufnVc9l4KUDWm6bS96roncEeHItavDeuhcj_eq5x1Cz_Nq7_zI2tcZ79p1Xbo38Hj7-fvNXTi2WQgV56wNRW5ZpBXLhGDZyii9UkxTnGLJVGy1QRorEiuElVZhPJPIJGZGeYXPmCqqMnYKR65y5h0QI1b5iguR8ljyjHMpMi1zrXWqda4sC-BqmuZiO6hpFP0peMoKb5zit3ECOO3NMI-jSY7sLokDOJ_sUozrrSkoQ-ZFEyS7AXyYH-NK8ccfwpmq82N8BXeC3wjg7WDG-eMTDgJI9ww8D_Aq3PtPEJy9GvcIxrP_fvM9vKCexPsuM9E5HLV1Zy4w0mnlpfcz8WWP718X2AKn
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhUMBIHMohuxvbeR2rimqBblWhVuotcvxgI7HOKg-p--8Z5wWLOHFM7FiR57M9nzzzDcBHbkQYa6l9ybTxXXltP9c6wEcT60RKmlKX77y6ipa3_OtdeHcA4ZgL0wXty7yY2Z-bmS3WXWzldiPnY5zY_Hp1HuPBg2R5_gAehixOg5GkT1q7SZ95QnED5pSPij4xm2-tqGeOoqCbHQSuAh9CMEEgJnvnUh-a-C-n8-_YyT8Oo4un8GTwIslZ_7dHcKDtMzga1mlNTgcx6U_Pob6udatKBJuoidBV-6OwZS0IOs3fyaZ1NYSJKRq34ZHCko2LzyvvC0GKmtTttpM9VyTfEWHJma38qq9dj-_K-x2CzzFrd_yRtcs03jXrqrAv4Pbi88350h8KLfiSc9b4IjUsUJIlQrBkoaVaSKYoTnLOZGiURiIrIiOEyY1EjybKo5Bp6TQ-QyqpTNgxHNrS6ldAtFikCy5EzMOcJ5znIlF5qpSKlUqlYR6cjtOcbXs9jay7B49Z5oyT_TaOB8edGaZ-NEqR30WhByejXbJhxdUZZci9aIR014MPUzOuFXcBIqwuW9fH5XBHOIYHL3szToOPOPAg3jPw1MHpcO-3IDw7Pe4Bjq__-8v38Gh5s7rMLr9cfXsDj6mj9K7mTHACh03V6rfo9zT5uw7lvwC7OQUW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLokAhUMBIHMohm43tvI5VYVUerVaISr1FfnYjsU6Uh9T994zzoos4cUzsWJHnsz2fPPMNQh-Y4VGipfYl1cZ35bV9oXUIjybRqZQkIy7f-eIyPr9iX6-j6zulvvqgfSmKhf21Xdhi08dWVlsZTHFiwfriLIGDB8hyUCkT3EcPIgogm4j6rLebDtknBDZhRtik6pPQoLK8WTiaAq52GLoqfADDFMCY7p1NQ3jivxzPv-Mn7xxIqyfo8ehJ4tPhjw_RPW2fosNxrTb4ZBSU_vgMNetGd6oEwPEGc113N4UtG47Bcf6Bt52rI4xN0bpNDxcWb12MXnlbcFw0uOmqXvpcYbHD3OJTW_v1UL8e3pW3OwCgY9fuCMQbl228azd1YZ-jq9Xnn2fn_lhswZeM0dbnmaGhkjTlnKZLLdVSUkVgogWVkVEayCyPDedGGAleTSziiGrpdD4jIolM6RE6sKXVLxHWfJktGecJiwRLGRM8VSJTSiVKZdJQD51M05xXg6ZG3t-FJzR3xsn_GMdDR70Z5n4kzoDjxZGHjie75OOqa3JCgX-RGCivh97PzbBe3CUIt7rsXB-Xxx3DGB56MZhxHnzCgYeSPQPPHZwW934LQLTX5B4h-eq_v3yHHq4_rfLvXy6_vUaPiGP1ruxMeIwO2rrTb8D1acXbHuS_AW6oBik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudomonas+aeruginosa+lasR+mutant+fitness+in+microoxia+is+supported+by+an+Anr-regulated+oxygen-binding+hemerythrin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Clay%2C+Michelle+E&rft.au=Hammond%2C+John+H&rft.au=Zhong%2C+Fangfang&rft.au=Chen%2C+Xiaolei&rft.date=2020-02-11&rft.eissn=1091-6490&rft.volume=117&rft.issue=6&rft.spage=3167&rft_id=info:doi/10.1073%2Fpnas.1917576117&rft_id=info%3Apmid%2F31980538&rft.externalDocID=31980538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon