Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method
[Display omitted] •Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature i...
Saved in:
Published in | Superlattices and microstructures Vol. 64; pp. 118 - 131 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature increases.
Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV–Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15–43nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15–1.42eV). The magnetization showed an increasing trend with increasing Mg concentration (x=0.5), due to the rearrangement of cations at tetrahedral and octahedral sites. |
---|---|
AbstractList | [Display omitted]
•Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature increases.
Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV–Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15–43nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15–1.42eV). The magnetization showed an increasing trend with increasing Mg concentration (x=0.5), due to the rearrangement of cations at tetrahedral and octahedral sites. Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15-43 nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15-1.42 eV). The magnetization showed an increasing trend with increasing Mg concentration (x = 0.5), due to the rearrangement of cations at tetrahedral and octahedral sites. |
Author | Judith Vijaya, J. Meganathan, C. Sundararajan, M. Bououdina, M. Kennedy, L. John Manikandan, A. |
Author_xml | – sequence: 1 givenname: A. surname: Manikandan fullname: Manikandan, A. organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India – sequence: 2 givenname: J. surname: Judith Vijaya fullname: Judith Vijaya, J. email: jjvijayaloyola@yahoo.co.in organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India – sequence: 3 givenname: M. surname: Sundararajan fullname: Sundararajan, M. organization: Materials Division, School of Advanced Sciences, Vellore Institute of Technology University Chennai Campus, Chennai 600 127, India – sequence: 4 givenname: C. surname: Meganathan fullname: Meganathan, C. organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India – sequence: 5 givenname: L. John surname: Kennedy fullname: Kennedy, L. John organization: Materials Division, School of Advanced Sciences, Vellore Institute of Technology University Chennai Campus, Chennai 600 127, India – sequence: 6 givenname: M. surname: Bououdina fullname: Bououdina, M. organization: Department of Physics, College of Science, University of Bahrain, PO Box 32038, Bahrain |
BookMark | eNp9kDtv3DAQhInAAXJ28gdSsXQjZfmQZAJuDMOPAA6uSZo0BEWuHB4kUiZ5Nvzvw8OlSnHVYrDzLXbmnJyFGJCQrwxaBqz_tmvzuviWAxMtqBY4-0A2DFTfiH4YzsgGBqmaHkT_iZznvAMAJdmwIXG7Fm_NTE1wdDHPAauka4orpuIx0zjRH8-Nq9rR3-Ee-VbSYEJcTd3buTrWhFXU9fhOk1l9veNtim_mFamNy7jPxcdAFyx_ovtMPk5mzvjl37wgv-7vft4-Nk_bh--3N0-NlVKUxvRCCTeBZZI5JqGzynJphOs76EbXCT71o0FlFHI0ik1O1hqUg_GKT3yQ4oJcHu_WKC97zEUvPlucZxMw7rNmnWDAoVNQrVdHa30654STtr6Yw88lGT9rBvrQsd7pQ8f60LEGpWvHFeX_oWvyi0nvp6HrI4Q1_6vHpLP1GCw6n9AW7aI_hf8FiuuZbw |
CitedBy_id | crossref_primary_10_1016_j_jmmm_2017_06_104 crossref_primary_10_1063_1_4994015 crossref_primary_10_1016_j_molstruc_2019_127044 crossref_primary_10_3390_nano10112133 crossref_primary_10_1016_j_inoche_2023_110797 crossref_primary_10_1007_s41204_022_00304_7 crossref_primary_10_1016_j_jlumin_2017_07_050 crossref_primary_10_1007_s10904_018_0794_y crossref_primary_10_1016_j_jmmm_2017_12_053 crossref_primary_10_1016_j_ceramint_2020_03_287 crossref_primary_10_1016_j_jmmm_2016_10_049 crossref_primary_10_1134_S1063783424600705 crossref_primary_10_1098_rsos_181017 crossref_primary_10_1080_01932691_2023_2256383 crossref_primary_10_3389_fmats_2021_779837 crossref_primary_10_1007_s10948_020_05502_5 crossref_primary_10_1007_s10948_021_06124_1 crossref_primary_10_1007_s12010_023_04582_y crossref_primary_10_1007_s11664_017_5359_2 crossref_primary_10_1016_j_ceramint_2019_10_243 crossref_primary_10_21597_jist_1219411 crossref_primary_10_1016_j_mseb_2020_114513 crossref_primary_10_1088_1402_4896_aca5bc crossref_primary_10_1007_s10854_020_03551_z crossref_primary_10_1007_s11581_020_03899_6 crossref_primary_10_1007_s10948_025_06927_6 crossref_primary_10_1016_j_apcatb_2017_12_051 crossref_primary_10_1016_j_jallcom_2021_162124 crossref_primary_10_1021_acsami_4c17079 crossref_primary_10_1007_s10971_020_05408_7 crossref_primary_10_1016_j_ccr_2025_216537 crossref_primary_10_1016_j_ceramint_2016_09_081 crossref_primary_10_1016_j_jallcom_2016_05_200 crossref_primary_10_1016_j_matpr_2021_09_234 crossref_primary_10_1088_2053_1591_ad1774 crossref_primary_10_2139_ssrn_3919679 crossref_primary_10_1088_2053_1591_aac5bf crossref_primary_10_1109_LED_2018_2829926 crossref_primary_10_1002_adfm_202310179 crossref_primary_10_1016_j_jcis_2019_05_041 crossref_primary_10_1016_j_heliyon_2024_e33578 crossref_primary_10_1007_s00339_019_2454_7 crossref_primary_10_1016_j_solener_2014_12_034 crossref_primary_10_1021_acsomega_0c01641 crossref_primary_10_1016_j_matchemphys_2022_126791 crossref_primary_10_1016_j_physb_2018_01_033 crossref_primary_10_1016_j_jmmm_2024_171981 crossref_primary_10_1007_s10904_014_0153_6 crossref_primary_10_1080_24701556_2023_2240771 crossref_primary_10_1007_s10854_020_04323_5 crossref_primary_10_1016_j_jmmm_2023_170479 crossref_primary_10_1007_s10904_017_0691_9 crossref_primary_10_1016_j_jcis_2015_12_009 crossref_primary_10_1007_s10948_022_06334_1 crossref_primary_10_1016_j_ijhydene_2023_11_158 crossref_primary_10_1007_s10948_015_3312_2 crossref_primary_10_1016_j_ceramint_2017_03_031 crossref_primary_10_1016_j_jallcom_2024_174540 crossref_primary_10_1016_j_mseb_2020_114776 crossref_primary_10_1016_j_jmmm_2016_10_038 crossref_primary_10_1016_j_ceramint_2019_12_097 crossref_primary_10_1016_j_molliq_2020_114047 crossref_primary_10_1002_pssa_202300263 crossref_primary_10_1007_s13204_018_0655_6 crossref_primary_10_1016_j_mseb_2023_117029 crossref_primary_10_1016_j_jmmm_2022_169178 crossref_primary_10_1007_s10751_024_01930_0 crossref_primary_10_1007_s10854_021_07605_8 crossref_primary_10_1016_j_apcatb_2015_08_005 crossref_primary_10_1142_S0219581X18500205 crossref_primary_10_1016_j_rinp_2020_103487 crossref_primary_10_1016_j_ijleo_2017_01_018 crossref_primary_10_1080_10584587_2019_1674978 crossref_primary_10_1016_j_ceramint_2016_11_106 crossref_primary_10_1021_acsanm_8b00545 crossref_primary_10_1016_j_ceramint_2024_01_131 crossref_primary_10_1016_j_jallcom_2014_08_237 crossref_primary_10_1007_s10854_021_05457_w crossref_primary_10_1016_j_inoche_2024_112777 crossref_primary_10_1007_s10948_016_3435_0 crossref_primary_10_1088_1402_4896_ab7a39 crossref_primary_10_1016_j_mssp_2018_09_002 crossref_primary_10_1016_j_jallcom_2016_10_067 crossref_primary_10_1016_j_matchemphys_2021_125222 crossref_primary_10_1007_s00339_018_1936_3 crossref_primary_10_1134_S0020168521130033 crossref_primary_10_1016_j_spmi_2017_05_058 crossref_primary_10_1140_epjp_i2018_12063_5 crossref_primary_10_1016_j_jmmm_2021_168113 crossref_primary_10_1007_s00339_021_04607_5 crossref_primary_10_1016_j_jallcom_2015_07_269 crossref_primary_10_1016_j_arabjc_2023_105186 crossref_primary_10_1016_j_jmmm_2017_11_100 crossref_primary_10_1016_j_molstruc_2022_134807 crossref_primary_10_1016_j_heliyon_2024_e25511 crossref_primary_10_1016_j_inoche_2022_110246 crossref_primary_10_1016_j_jmmm_2020_166623 crossref_primary_10_1016_j_mtcomm_2021_102662 crossref_primary_10_1007_s10854_017_6891_9 crossref_primary_10_35848_1347_4065_abd86d crossref_primary_10_1016_j_arabjc_2017_11_016 crossref_primary_10_1016_j_molliq_2019_111574 crossref_primary_10_1016_j_matpr_2022_02_444 crossref_primary_10_1002_jctb_7168 crossref_primary_10_1016_j_physb_2020_412670 crossref_primary_10_1021_am502605s crossref_primary_10_1016_j_ceramint_2020_08_019 crossref_primary_10_1016_j_ceramint_2017_09_031 crossref_primary_10_1007_s11664_018_6543_8 crossref_primary_10_1016_j_jmmm_2016_06_080 crossref_primary_10_1016_j_jphotochem_2019_111942 crossref_primary_10_1016_j_physb_2017_08_060 crossref_primary_10_4236_anp_2020_92004 crossref_primary_10_1016_j_ceramint_2023_11_285 crossref_primary_10_1016_j_jpcs_2019_05_047 crossref_primary_10_1016_j_matchemphys_2017_10_033 crossref_primary_10_1016_j_jallcom_2018_10_082 crossref_primary_10_3390_ma12213582 crossref_primary_10_1016_j_jclepro_2020_125632 crossref_primary_10_1080_10667857_2020_1758481 crossref_primary_10_1002_aoc_4514 crossref_primary_10_1016_j_spmi_2015_07_062 crossref_primary_10_1016_j_jmmm_2018_05_071 crossref_primary_10_1016_j_mtcomm_2021_102769 crossref_primary_10_1016_j_jallcom_2018_01_217 crossref_primary_10_1016_j_matpr_2023_05_494 crossref_primary_10_1016_j_poly_2024_116826 crossref_primary_10_1016_j_ceramint_2017_07_217 crossref_primary_10_1007_s10854_017_8297_0 crossref_primary_10_1016_j_jallcom_2020_155681 crossref_primary_10_1016_j_physb_2018_11_052 crossref_primary_10_1007_s10904_019_01419_2 crossref_primary_10_1016_j_ceramint_2024_03_196 crossref_primary_10_1007_s00339_024_08107_0 crossref_primary_10_1016_j_solmat_2018_08_007 crossref_primary_10_4028_p_20h232 crossref_primary_10_1016_j_ceramint_2020_02_091 crossref_primary_10_1007_s10854_022_08178_w crossref_primary_10_1007_s10904_014_0119_8 crossref_primary_10_1557_s43578_024_01415_4 crossref_primary_10_1016_j_jenvman_2016_11_039 crossref_primary_10_1007_s10854_021_06562_6 crossref_primary_10_1021_acsanm_2c01062 crossref_primary_10_1016_j_ceramint_2016_12_081 crossref_primary_10_1016_j_jallcom_2017_02_021 crossref_primary_10_1016_j_matchemphys_2023_127322 crossref_primary_10_1016_j_matchemphys_2022_126732 crossref_primary_10_1016_j_apsusc_2020_145528 crossref_primary_10_1016_j_jallcom_2023_169049 crossref_primary_10_1007_s10854_020_04945_9 crossref_primary_10_1039_C5CE02553B crossref_primary_10_1016_j_jphotobiol_2017_10_009 crossref_primary_10_1039_D3RA02080K crossref_primary_10_4191_kcers_2019_56_5_06 crossref_primary_10_1016_j_mseb_2017_12_030 crossref_primary_10_1007_s10854_024_12024_6 crossref_primary_10_1016_j_jpcs_2022_110783 crossref_primary_10_1016_j_jece_2021_105812 crossref_primary_10_1016_j_jmmm_2020_167518 crossref_primary_10_1016_j_matchemphys_2022_127014 crossref_primary_10_1007_s10854_017_6486_5 crossref_primary_10_1007_s13369_021_06520_8 crossref_primary_10_1016_j_ceramint_2016_11_132 crossref_primary_10_1007_s11664_019_07288_2 crossref_primary_10_1016_j_jphotochem_2017_03_027 crossref_primary_10_1016_j_pnsc_2015_02_001 crossref_primary_10_1007_s11082_019_1913_x crossref_primary_10_1016_j_jallcom_2024_174951 crossref_primary_10_1016_j_physb_2019_05_037 crossref_primary_10_1007_s10876_022_02285_8 crossref_primary_10_1039_D1CP03657B crossref_primary_10_1007_s10854_020_03394_8 crossref_primary_10_1016_j_sna_2024_115971 crossref_primary_10_1016_j_vacuum_2019_109114 crossref_primary_10_1016_j_nexres_2025_100175 crossref_primary_10_1007_s11664_024_11639_z crossref_primary_10_1016_j_matchemphys_2023_127303 crossref_primary_10_1016_j_ceramint_2014_08_063 crossref_primary_10_1016_j_jpcs_2023_111671 crossref_primary_10_1016_j_jallcom_2023_170838 crossref_primary_10_1016_j_apt_2018_07_005 crossref_primary_10_1007_s11051_022_05582_5 crossref_primary_10_1016_j_nima_2014_09_003 crossref_primary_10_1039_C7DT02115A crossref_primary_10_1016_j_jscs_2023_101696 crossref_primary_10_1007_s10854_025_14517_4 crossref_primary_10_1016_j_powtec_2021_08_093 crossref_primary_10_1016_j_spmi_2014_02_014 crossref_primary_10_17485_ijst_2017_v10i15_113829 crossref_primary_10_1016_j_jmmm_2016_09_077 crossref_primary_10_1016_j_ccr_2024_216158 crossref_primary_10_1016_j_arabjc_2021_103261 crossref_primary_10_1007_s12649_024_02521_4 crossref_primary_10_1016_j_molstruc_2023_136094 crossref_primary_10_1007_s10948_016_3849_8 crossref_primary_10_1007_s10854_021_07443_8 crossref_primary_10_1016_j_ceramint_2019_03_086 crossref_primary_10_1016_j_spmi_2015_10_005 crossref_primary_10_1016_j_saa_2014_04_179 crossref_primary_10_1016_j_jallcom_2022_167527 crossref_primary_10_1007_s10904_024_03222_0 crossref_primary_10_1016_j_matchemphys_2021_125069 crossref_primary_10_1016_j_matpr_2018_05_032 crossref_primary_10_1016_j_molliq_2017_01_099 crossref_primary_10_1007_s10948_017_4061_1 crossref_primary_10_1080_14328917_2023_2181488 crossref_primary_10_1364_OME_9_003519 crossref_primary_10_1016_j_jallcom_2020_156907 crossref_primary_10_1016_j_physb_2024_416678 crossref_primary_10_1088_0964_1726_24_11_115002 crossref_primary_10_1016_j_matchemphys_2020_123825 crossref_primary_10_1016_j_cdc_2021_100825 crossref_primary_10_1007_s10948_016_3586_z crossref_primary_10_1007_s10854_020_04077_0 crossref_primary_10_1016_j_molstruc_2024_137479 crossref_primary_10_1016_j_apsusc_2022_154315 crossref_primary_10_1039_C9RA07569K crossref_primary_10_1007_s00339_019_2619_4 crossref_primary_10_1016_j_ssc_2024_115649 crossref_primary_10_1016_j_scriptamat_2023_115681 crossref_primary_10_1109_TMAG_2020_3024717 crossref_primary_10_1007_s10948_020_05473_7 crossref_primary_10_1016_j_optmat_2019_01_078 crossref_primary_10_13168_cs_2020_0006 crossref_primary_10_1007_s41779_018_0173_8 crossref_primary_10_1016_j_mseb_2022_116030 crossref_primary_10_1007_s10854_023_11596_z crossref_primary_10_1007_s10854_016_4936_0 crossref_primary_10_1016_j_physb_2019_04_031 crossref_primary_10_1007_s10904_014_0069_1 crossref_primary_10_1007_s10854_024_14179_8 crossref_primary_10_1007_s10854_024_13105_2 crossref_primary_10_1007_s00339_022_05480_6 crossref_primary_10_1016_j_jmmm_2023_171360 crossref_primary_10_1016_j_materresbull_2018_01_009 crossref_primary_10_1007_s11696_023_02664_z crossref_primary_10_1016_j_jmmm_2015_12_036 crossref_primary_10_1080_01411594_2020_1865535 crossref_primary_10_1007_s10948_021_05967_y crossref_primary_10_1063_1_5093221 crossref_primary_10_1002_pssa_202200424 crossref_primary_10_1016_j_ceramint_2019_11_144 crossref_primary_10_1016_j_ceramint_2019_11_265 crossref_primary_10_1039_D0RA04319B crossref_primary_10_1016_j_jmmm_2019_166054 crossref_primary_10_1016_j_mseb_2017_08_012 crossref_primary_10_1016_j_ceramint_2017_08_090 crossref_primary_10_1007_s11664_024_11204_8 crossref_primary_10_1016_j_jmmm_2023_170839 crossref_primary_10_1016_j_mtcomm_2023_106405 crossref_primary_10_1016_j_solidstatesciences_2017_08_012 crossref_primary_10_1016_j_ijbiomac_2020_03_069 crossref_primary_10_1016_j_mtcomm_2022_103632 crossref_primary_10_1007_s10854_015_3648_1 crossref_primary_10_1016_j_ceramint_2013_10_145 crossref_primary_10_1016_j_ceramint_2017_08_096 crossref_primary_10_1039_D0TA01554G crossref_primary_10_1016_j_catcom_2023_106719 crossref_primary_10_1186_s11671_023_03921_6 crossref_primary_10_1007_s13762_023_05393_8 crossref_primary_10_1016_j_ceramint_2017_03_078 |
Cites_doi | 10.1016/j.ceramint.2012.04.001 10.1016/j.jcis.2011.02.052 10.1016/0040-6031(79)85011-X 10.1016/j.jmmm.2011.10.017 10.1016/j.jmmm.2009.02.054 10.1016/S0304-8853(98)00845-2 10.1016/j.mseb.2008.10.032 10.1016/j.apcatb.2011.07.033 10.1021/jp037822d 10.1063/1.3374332 10.1016/j.matlet.2006.04.061 10.1016/j.jmmm.2004.02.017 10.1016/j.jallcom.2007.07.121 10.1016/j.jcis.2011.02.046 10.1016/j.jmmm.2012.02.112 10.1016/j.ceramint.2012.11.004 10.1016/j.materresbull.2012.05.036 10.1016/j.ceramint.2012.12.023 10.1016/j.apsusc.2003.09.022 10.1016/j.jmmm.2009.11.018 10.1016/j.jallcom.2012.11.185 10.1016/j.physb.2011.02.072 10.1016/j.jmmm.2006.10.737 10.1016/j.jallcom.2009.07.051 10.1016/j.ceramint.2012.01.001 10.1007/s11671-010-9640-z 10.1016/j.powtec.2010.05.027 10.1021/jp0732763 10.1016/j.jallcom.2012.06.018 10.1016/S0304-8853(98)00723-9 10.1016/j.cplett.2008.01.011 10.1016/j.poly.2009.06.061 10.1016/j.cej.2009.08.008 10.1016/j.mseb.2004.04.014 10.1016/S0921-5107(03)00063-1 10.1016/j.jallcom.2012.11.181 10.1016/j.jmmm.2008.06.012 10.1016/j.mseb.2004.04.012 10.1016/j.jallcom.2006.10.139 10.1016/j.jmmm.2012.10.023 10.1016/S0022-2313(99)00599-2 10.1016/j.ceramint.2013.01.012 10.1016/j.jallcom.2012.07.041 10.1016/j.jallcom.2009.03.027 10.1016/j.jallcom.2012.06.068 10.1016/S1359-6462(02)00600-0 10.1016/j.ssc.2005.10.019 10.1021/jp061835k 10.1016/j.jmmm.2006.05.015 10.1016/j.jmmm.2006.11.144 10.1016/j.molstruc.2012.11.007 10.1016/j.calphad.2012.03.005 10.1016/j.jallcom.2010.11.153 10.3938/jkps.55.1472 10.1063/1.2217253 10.1016/j.jallcom.2006.12.117 10.1021/jp055024c 10.1016/j.ssc.2006.03.023 10.1016/j.jallcom.2012.01.075 10.1016/S0925-8388(01)02011-4 10.1016/j.ceramint.2011.07.066 10.1021/es062753c 10.1016/S0925-4005(02)00429-X |
ContentType | Journal Article |
Copyright | 2013 The Authors |
Copyright_xml | – notice: 2013 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7QF 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.spmi.2013.09.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 131 |
ExternalDocumentID | 10_1016_j_spmi_2013_09_021 S0749603613003029 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7QF 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c443t-a6393df0c141d1405c9c24a3d6505bd532f6bae9a9e2ea91fd40169d0b82f2743 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Fri Jul 11 09:15:52 EDT 2025 Tue Jul 01 01:34:54 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 Fri Feb 23 02:23:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Ferrites X-ray diffraction Nanostructures Electron microscopy Optical properties Magnetic properties |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-a6393df0c141d1405c9c24a3d6505bd532f6bae9a9e2ea91fd40169d0b82f2743 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0749603613003029 |
PQID | 1531020590 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1531020590 crossref_citationtrail_10_1016_j_spmi_2013_09_021 crossref_primary_10_1016_j_spmi_2013_09_021 elsevier_sciencedirect_doi_10_1016_j_spmi_2013_09_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dijken, Meulenkamp, Vanmaekelbergh, Meijerink (b0195) 2000; 90 Sarangi, Vadera, Patra, Ghosh (b0255) 2010; 203 Manikandan, Judith Vijaya, Kennedy, Bououdina (b0105) 2013; 1035 Pradeep, Priyadharsini, Chandrasekaran (b0270) 2008; 320 Klas, Dubowski, Pritosiwi, Gerth, Calmano, Lahav (b0160) 2011; 358 Azam (b0120) 2012; 540 Ichiyanagi, Kubota, Moritake, Kanazawa, Yamada, Uehashi (b0280) 2007; 310 Sharifi, Shokrollahi, Amiri (b0020) 2012; 324 Li, Xie, Li, Mintz, Shang (b0170) 2007; 41 Yadoji, Peelamedu, Agrawal, Roy (b0250) 2003; 98 Ayyappan, Raja, Venkateswaran, Philip, Raj (b0225) 2010; 96 Hankare, Sanadi, Pandav, Patil, Garadkar, Mulla (b0330) 2012; 540 Tanaka, Shimazu, Nagai, Tada, Nakagawa, Sandhu, Handa, Abe (b0005) 2009; 321 Fitzner (b0165) 1979; 31 Thummer, Chhantbar, Modi, Baldha, Joshi (b0050) 2004; 280 Xue, Li, Wang, Fu (b0095) 2007; 61 Koseoglu, Baykal, Gozuak, Kavas (b0125) 2009; 28 Changwa, Qiaoshi, Goya, Torres, Jinfang, Haiping, Mingyuan, Yuewu, Youwen, Jiang (b0300) 2007; 111 Lemine, Bououdina, Sajieddine, Al-Saie, Shafi, Khatab, Alhilali, Henini (b0305) 2011; 406 Goya, Rechenberg (b0230) 1999; 196–197 Koseoglu, Alan, Tan, Yilgin, Ozturk (b0110) 2012; 38 Manikandan, Judith Vijaya, Kennedy, Bououdina (b0150) 2013; 39 Sertkol, Koseoglu, Baykal, Kavas, Toprak (b0115) 2010; 322 Bohra, Prasad, Kumar, Misra, Sahoo, Venkataramani, Krishnan (b0290) 2006; 88 Gupta, Verma, Kashyap, Dube (b0025) 2007; 308 Goldman (b0235) 2006 Salah, Moustafa, Farag (b0135) 2012; 38 Misra, Gubbala, Kale, Egelhoff (b0100) 2004; 111 Mittal, Chandramohan, Santanu, Srinivasan, Velmurugan, Narasimhan (b0140) 2006; 137 Hankare, Patil, Jadhav, Garadkar, Sasikala (b0315) 2011; 107 Nakashima, Fujita, Tanaka, Hirao, Yamamoto, Tanaka (b0295) 2007; 310 Azam, Jawad, Ahmed, Chaman, Naqvi (b0035) 2011; 509 Sivakumar, Takami, Ikuta, Towata, Yasui, Tuziuti, Kozuka, Bhattacharya, Iida (b0075) 2006; 110 Koseoglu (b0310) 2013; 39 Sepelak, Baabe, Mienert, Litterst, Becker (b0275) 2003; 48 Ng, Fan (b0185) 2006; 110 Hankare, Pandav, Patil, Vader, Garadkar (b0215) 2012; 544 Wu, Zhang, Mao, Li, Xia (b0240) 2013; 554 Erhardt, Campbell, Hofman (b0070) 2002; 339 Rahman, Nadeem, Rehman, Mumtaz, Naeem, Papst (b0045) 2013; 39 Koseoglu, Baykal, Toprak, Gozuak, Basaran, Aktas (b0055) 2008; 462 Jawada, Ahmed, Ashraf, Chaman, Azam (b0040) 2012; 530 Hajarpour, Gheisari, Raouf (b0030) 2013; 329 Kale, Lokhande (b0180) 2004; 223 Gimenes, Baldissera, Silva, Silveira, Soares, Perazolli, Silva, Zaghete (b0015) 2012; 38 Berkowitz, Kodama, Makhlouf, Parker, Spada, McNiff, Foner (b0320) 1999; 196–197 Yang, Yen (b0085) 2008; 450 Kislova, Srinivasan, Emirov, Stefanakos (b0175) 2008; 153 Qiu, Wang, Gu (b0060) 2004; 112 Sepelak, Wilde, Steinike, Becker (b0325) 2004; 865 Li, Hou, Zhao, Wang (b0130) 2011; 358 Borse, Jang, Hongand, Lee, Jung, Hong, Ahn, Jeong, Hong, Yoon, Kim (b0205) 2009; 55 Wu, Huang, Su, Peng, Wang, Liu (b0155) 2012; 38 Liu, Zeng (b0190) 2004; 108 Sozeri, Durmus, Baykal (b0245) 2012; 47 Rashad, Elsayed, Moharam, Shahba, Saba (b0285) 2009; 486 Srivastava, Ojha, Chaubey, Materny (b0010) 2009; 481 Jean, Nachbaur (b0090) 2008; 454 Thummer, Chhantbar, Modi, Baldha, Joshi (b0265) 2004; 280 Satyanarayana, Reddy, Manorama (b0065) 2003; 89 Gabal, El-Shishtawy, Al Angari (b0260) 2012; 324 Atif, Hasanain, Nadeem (b0080) 2006; 138 Fan, Gu, Yang, Li (b0210) 2009; 155 Luo, Yan (b0145) 2008; 452 Gao, Shi, Xu, Zhang, Yang, Zhang, Wang, Xue (b0200) 2010; 5 Hankare, Sanadi, Garadkar, Patil, Mulla (b0220) 2013; 553 Wu (10.1016/j.spmi.2013.09.021_b0155) 2012; 38 Borse (10.1016/j.spmi.2013.09.021_b0205) 2009; 55 Rahman (10.1016/j.spmi.2013.09.021_b0045) 2013; 39 Sozeri (10.1016/j.spmi.2013.09.021_b0245) 2012; 47 Sepelak (10.1016/j.spmi.2013.09.021_b0325) 2004; 865 Jean (10.1016/j.spmi.2013.09.021_b0090) 2008; 454 Hankare (10.1016/j.spmi.2013.09.021_b0215) 2012; 544 Yadoji (10.1016/j.spmi.2013.09.021_b0250) 2003; 98 Ayyappan (10.1016/j.spmi.2013.09.021_b0225) 2010; 96 Sarangi (10.1016/j.spmi.2013.09.021_b0255) 2010; 203 Atif (10.1016/j.spmi.2013.09.021_b0080) 2006; 138 Gimenes (10.1016/j.spmi.2013.09.021_b0015) 2012; 38 Rashad (10.1016/j.spmi.2013.09.021_b0285) 2009; 486 Koseoglu (10.1016/j.spmi.2013.09.021_b0110) 2012; 38 Erhardt (10.1016/j.spmi.2013.09.021_b0070) 2002; 339 Berkowitz (10.1016/j.spmi.2013.09.021_b0320) 1999; 196–197 Sivakumar (10.1016/j.spmi.2013.09.021_b0075) 2006; 110 Goldman (10.1016/j.spmi.2013.09.021_b0235) 2006 Dijken (10.1016/j.spmi.2013.09.021_b0195) 2000; 90 Sepelak (10.1016/j.spmi.2013.09.021_b0275) 2003; 48 Koseoglu (10.1016/j.spmi.2013.09.021_b0310) 2013; 39 Xue (10.1016/j.spmi.2013.09.021_b0095) 2007; 61 Gao (10.1016/j.spmi.2013.09.021_b0200) 2010; 5 Hankare (10.1016/j.spmi.2013.09.021_b0220) 2013; 553 Thummer (10.1016/j.spmi.2013.09.021_b0265) 2004; 280 Liu (10.1016/j.spmi.2013.09.021_b0190) 2004; 108 Azam (10.1016/j.spmi.2013.09.021_b0120) 2012; 540 Yang (10.1016/j.spmi.2013.09.021_b0085) 2008; 450 Satyanarayana (10.1016/j.spmi.2013.09.021_b0065) 2003; 89 Li (10.1016/j.spmi.2013.09.021_b0170) 2007; 41 Manikandan (10.1016/j.spmi.2013.09.021_b0105) 2013; 1035 Mittal (10.1016/j.spmi.2013.09.021_b0140) 2006; 137 Klas (10.1016/j.spmi.2013.09.021_b0160) 2011; 358 Wu (10.1016/j.spmi.2013.09.021_b0240) 2013; 554 Koseoglu (10.1016/j.spmi.2013.09.021_b0125) 2009; 28 Hankare (10.1016/j.spmi.2013.09.021_b0330) 2012; 540 Azam (10.1016/j.spmi.2013.09.021_b0035) 2011; 509 Hankare (10.1016/j.spmi.2013.09.021_b0315) 2011; 107 Sharifi (10.1016/j.spmi.2013.09.021_b0020) 2012; 324 Manikandan (10.1016/j.spmi.2013.09.021_b0150) 2013; 39 Li (10.1016/j.spmi.2013.09.021_b0130) 2011; 358 Fan (10.1016/j.spmi.2013.09.021_b0210) 2009; 155 Luo (10.1016/j.spmi.2013.09.021_b0145) 2008; 452 Changwa (10.1016/j.spmi.2013.09.021_b0300) 2007; 111 Hajarpour (10.1016/j.spmi.2013.09.021_b0030) 2013; 329 Gupta (10.1016/j.spmi.2013.09.021_b0025) 2007; 308 Qiu (10.1016/j.spmi.2013.09.021_b0060) 2004; 112 Pradeep (10.1016/j.spmi.2013.09.021_b0270) 2008; 320 Sertkol (10.1016/j.spmi.2013.09.021_b0115) 2010; 322 Koseoglu (10.1016/j.spmi.2013.09.021_b0055) 2008; 462 Fitzner (10.1016/j.spmi.2013.09.021_b0165) 1979; 31 Ichiyanagi (10.1016/j.spmi.2013.09.021_b0280) 2007; 310 Lemine (10.1016/j.spmi.2013.09.021_b0305) 2011; 406 Misra (10.1016/j.spmi.2013.09.021_b0100) 2004; 111 Salah (10.1016/j.spmi.2013.09.021_b0135) 2012; 38 Tanaka (10.1016/j.spmi.2013.09.021_b0005) 2009; 321 Gabal (10.1016/j.spmi.2013.09.021_b0260) 2012; 324 Thummer (10.1016/j.spmi.2013.09.021_b0050) 2004; 280 Bohra (10.1016/j.spmi.2013.09.021_b0290) 2006; 88 Kale (10.1016/j.spmi.2013.09.021_b0180) 2004; 223 Goya (10.1016/j.spmi.2013.09.021_b0230) 1999; 196–197 Ng (10.1016/j.spmi.2013.09.021_b0185) 2006; 110 Srivastava (10.1016/j.spmi.2013.09.021_b0010) 2009; 481 Kislova (10.1016/j.spmi.2013.09.021_b0175) 2008; 153 Jawada (10.1016/j.spmi.2013.09.021_b0040) 2012; 530 Nakashima (10.1016/j.spmi.2013.09.021_b0295) 2007; 310 |
References_xml | – volume: 110 start-page: 15234 year: 2006 end-page: 15243 ident: b0075 article-title: Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation–observation of magnetization and its relaxation at low temperature publication-title: J. Phys. Chem. B – volume: 111 start-page: 12274 year: 2007 end-page: 12278 ident: b0300 article-title: ZnFe publication-title: J. Phys. Chem. C – volume: 31 start-page: 227 year: 1979 end-page: 236 ident: b0165 article-title: Thermodynamic properties and cation distribution of the ZnFe publication-title: Thermochim. Acta – volume: 153 start-page: 70 year: 2008 end-page: 77 ident: b0175 article-title: Optical absorption red and blue shifts in ZnFe publication-title: Mater. Sci. Eng. B – volume: 324 start-page: 903 year: 2012 end-page: 915 ident: b0020 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. – volume: 308 start-page: 137 year: 2007 end-page: 142 ident: b0025 article-title: Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications publication-title: J. Magn. Magn. Mater. – volume: 48 start-page: 961 year: 2003 end-page: 966 ident: b0275 article-title: Enhanced magnetisation in nanocrystalline high-energy milled MgFe publication-title: Scripta Mater. – volume: 865 start-page: 375 year: 2004 end-page: 377 ident: b0325 article-title: Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite publication-title: Mater. Sci. Eng. A – volume: 155 start-page: 534 year: 2009 end-page: 541 ident: b0210 article-title: Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique publication-title: Chem. Eng. J. – volume: 107 start-page: 333 year: 2011 end-page: 339 ident: b0315 article-title: Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite publication-title: Appl. Catal B: Environ. – volume: 196–197 start-page: 191 year: 1999 end-page: 192 ident: b0230 article-title: Ionic disorder and Neel temperature in ZnFe publication-title: J. Magn. Magn. Mater. – volume: 454 start-page: 432 year: 2008 end-page: 436 ident: b0090 article-title: Determination of milling parameters to obtain mechanosynthesized ZnFe publication-title: J. Alloys Compd. – volume: 310 start-page: 2378 year: 2007 end-page: 2380 ident: b0280 article-title: Magnetic properties of Mg-ferrite nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 203 start-page: 348 year: 2010 end-page: 353 ident: b0255 article-title: Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method publication-title: Powder Technol. – volume: 108 start-page: 5867 year: 2004 end-page: 5874 ident: b0190 article-title: Salt-assisted deposition of SnO publication-title: J. Phys. Chem. B – year: 2006 ident: b0235 article-title: Modern Ferrite Technology – volume: 540 start-page: 145 year: 2012 end-page: 153 ident: b0120 article-title: Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles publication-title: J. Alloys Compd. – volume: 47 start-page: 2442 year: 2012 end-page: 2448 ident: b0245 article-title: Structural and magnetic properties of triethylene glycol stabilized Zn publication-title: Mater. Res. Bull. – volume: 280 start-page: 23 year: 2004 end-page: 30 ident: b0265 article-title: Localized canted spin behaviour in Zn publication-title: J. Magn. Magn. Mater. – volume: 110 start-page: 20801 year: 2006 end-page: 20807 ident: b0185 article-title: Shape evolution of Cu publication-title: J. Phys. Chem. B – volume: 38 start-page: 5605 year: 2012 end-page: 5611 ident: b0135 article-title: Structural characteristics and electrical properties of copper doped manganese ferrite publication-title: Ceram. Int. – volume: 322 start-page: 866 year: 2010 end-page: 871 ident: b0115 article-title: Synthesis and magnetic characterization of Zn publication-title: J. Magn. Magn. Mater. – volume: 138 start-page: 416 year: 2006 end-page: 421 ident: b0080 article-title: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size publication-title: Solid State Commun. – volume: 111 start-page: 164 year: 2004 end-page: 174 ident: b0100 article-title: A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique publication-title: Mater. Sci. Eng., B – volume: 324 start-page: 2258 year: 2012 end-page: 2264 ident: b0260 article-title: Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor publication-title: J. Magn. Magn. Mater. – volume: 321 start-page: 1417 year: 2009 end-page: 1420 ident: b0005 article-title: Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 publication-title: J. Magn. Magn. Mater. – volume: 28 start-page: 2887 year: 2009 end-page: 2892 ident: b0125 article-title: Structural and magnetic properties of Co publication-title: Polyhedron – volume: 39 start-page: 5909 year: 2013 end-page: 5917 ident: b0150 article-title: Microwave combustion synthesis, structural, optical and magnetic properties of Zn publication-title: Ceram. Int. – volume: 98 start-page: 269 year: 2003 end-page: 278 ident: b0250 article-title: Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering publication-title: Mater. Sci. Eng. B – volume: 196–197 start-page: 591 year: 1999 end-page: 594 ident: b0320 article-title: Anomalous properties of magnetic nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 89 start-page: 62 year: 2003 end-page: 67 ident: b0065 article-title: Synthesis of nanocrystalline Ni publication-title: Sens. Actuators, B – volume: 339 start-page: 255 year: 2002 end-page: 260 ident: b0070 article-title: Structural evolution of ball-milled ZnFe publication-title: J. Alloys Compd. – volume: 553 start-page: 383 year: 2013 end-page: 388 ident: b0220 article-title: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method publication-title: J. Alloys Compd. – volume: 481 start-page: 515 year: 2009 end-page: 519 ident: b0010 article-title: Synthesis and optical characterization of nanocrystalline NiFe publication-title: J. Alloys Compd. – volume: 5 start-page: 1289 year: 2010 end-page: 1294 ident: b0200 article-title: Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays publication-title: Nanoscale Res. Lett. – volume: 112 start-page: 1 year: 2004 end-page: 4 ident: b0060 article-title: Photocatalytic properties and optical absorption of zinc ferrite nanometer films publication-title: Mater. Sci. Eng., B – volume: 88 start-page: 262506 year: 2006 ident: b0290 article-title: Large room temperature magnetization in nanocrystalline zinc ferrite thin films publication-title: Appl. Phys. Lett. – volume: 406 start-page: 1989 year: 2011 end-page: 1994 ident: b0305 article-title: Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe publication-title: Physica B – volume: 358 start-page: 102 year: 2011 end-page: 108 ident: b0130 article-title: A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photo catalytic activity for dye degradation publication-title: J. Colloid Interf. Sci. – volume: 462 start-page: 209 year: 2008 end-page: 213 ident: b0055 article-title: Synthesis and characterization of ZnFe publication-title: J. Alloys Compd. – volume: 137 start-page: 6 year: 2006 end-page: 10 ident: b0140 article-title: Cation distribution in Ni publication-title: Solid State Commun. – volume: 452 start-page: 296 year: 2008 end-page: 300 ident: b0145 article-title: Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite publication-title: Chem. Phys. Lett. – volume: 486 start-page: 759 year: 2009 end-page: 767 ident: b0285 article-title: Structure and magnetic properties of Ni publication-title: J. Alloys Compd. – volume: 38 start-page: 1 year: 2012 end-page: 6 ident: b0155 article-title: Experimental investigation and thermodynamic calculation of the Al–Fe–P system at low phosphorus contents publication-title: CALPHAD – Comput. Coupling Phase Diagr. Thermochem. – volume: 358 start-page: 129 year: 2011 end-page: 135 ident: b0160 article-title: Extent and mechanism of metal ion incorporation into precipitated ferrites publication-title: J. Colloid Interf. Sci. – volume: 90 start-page: 123 year: 2000 end-page: 128 ident: b0195 article-title: Identification of the transition responsible for the visible emission in ZnO using quantum size effects publication-title: J. Lumin. – volume: 38 start-page: 741 year: 2012 end-page: 746 ident: b0015 article-title: Structural and magnetic characterization of Mn publication-title: Ceram. Int. – volume: 540 start-page: 290 year: 2012 end-page: 296 ident: b0330 article-title: Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method publication-title: J. Alloys Compd. – volume: 96 start-page: 143106 year: 2010 ident: b0225 article-title: Room temperature ferromagnetism in vacuum publication-title: Appl. Phys. Lett. – volume: 554 start-page: 132 year: 2013 end-page: 137 ident: b0240 article-title: Controlled synthesis and magnetic properties of monodisperse Ni publication-title: J. Alloys Compd. – volume: 1035 start-page: 332 year: 2013 end-page: 340 ident: b0105 article-title: Structural, optical and magnetic properties of Zn publication-title: J. Mol. Struct. – volume: 223 start-page: 343 year: 2004 end-page: 351 ident: b0180 article-title: Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites publication-title: Appl. Surf. Sci. – volume: 55 start-page: 1472 year: 2009 end-page: 1477 ident: b0205 article-title: Photocatalytic hydrogen generation from water–methanol mixtures using nanocrystalline ZnFe publication-title: J. Korean Phys. Soc. – volume: 310 start-page: 2543 year: 2007 end-page: 2545 ident: b0295 article-title: Thermal annealing effect on magnetism and cation distribution in disordered ZnFe publication-title: J. Magn. Magn. Mater. – volume: 39 start-page: 4221 year: 2013 end-page: 4230 ident: b0310 article-title: Structural, magnetic, electrical and dielectric properties of Mn publication-title: Ceram. Int. – volume: 530 start-page: 63 year: 2012 end-page: 70 ident: b0040 article-title: Exploring the dielectric behaviour of nano-structured Al publication-title: J. Alloys Compd. – volume: 39 start-page: 5235 year: 2013 end-page: 5239 ident: b0045 article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method publication-title: Ceram. Int. – volume: 329 start-page: 165 year: 2013 end-page: 169 ident: b0030 article-title: Characterization of nanocrystalline Mg publication-title: J. Magn. Magn. Mater. – volume: 280 start-page: 23 year: 2004 end-page: 30 ident: b0050 article-title: Localized canted spin behaviour in Zn publication-title: J. Magn. Magn. Mater. – volume: 41 start-page: 5050 year: 2007 end-page: 5056 ident: b0170 article-title: Enhanced visible light induced photocatalytic disinfection of publication-title: Environ. Sci. Technol. – volume: 450 start-page: 387 year: 2008 end-page: 394 ident: b0085 article-title: Evolution of intermediate phases in the synthesis of zinc ferrite nanopowders prepared by the tartrate precursor method publication-title: J. Alloys Compd. – volume: 38 start-page: 3625 year: 2012 end-page: 3634 ident: b0110 article-title: Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles publication-title: Ceram. Int. – volume: 61 start-page: 347 year: 2007 end-page: 350 ident: b0095 article-title: Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method publication-title: Mater. Lett. – volume: 544 start-page: 197 year: 2012 end-page: 202 ident: b0215 article-title: Synthesis, structural and magnetic properties of copper substituted nickel manganite publication-title: J. Alloys Compd. – volume: 320 start-page: 2774 year: 2008 end-page: 2779 ident: b0270 article-title: Sol–gel route of synthesis of nanoparticles of MgFe publication-title: J. Magn. Magn. Mater. – volume: 509 start-page: 2909 year: 2011 end-page: 2913 ident: b0035 article-title: Structural, optical and transport properties of Al publication-title: J. Alloys Compd. – volume: 38 start-page: 5605 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0135 article-title: Structural characteristics and electrical properties of copper doped manganese ferrite publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.04.001 – volume: 358 start-page: 102 year: 2011 ident: 10.1016/j.spmi.2013.09.021_b0130 article-title: A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photo catalytic activity for dye degradation publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.02.052 – volume: 31 start-page: 227 year: 1979 ident: 10.1016/j.spmi.2013.09.021_b0165 article-title: Thermodynamic properties and cation distribution of the ZnFe2O4–Fe3O4 spinel solid solutions at 900°C publication-title: Thermochim. Acta doi: 10.1016/0040-6031(79)85011-X – volume: 324 start-page: 903 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0020 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.10.017 – volume: 321 start-page: 1417 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0005 article-title: Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150nm for biomedical applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.02.054 – volume: 196–197 start-page: 591 year: 1999 ident: 10.1016/j.spmi.2013.09.021_b0320 article-title: Anomalous properties of magnetic nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00845-2 – volume: 153 start-page: 70 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0175 article-title: Optical absorption red and blue shifts in ZnFe2O4 nanoparticles publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2008.10.032 – volume: 107 start-page: 333 year: 2011 ident: 10.1016/j.spmi.2013.09.021_b0315 article-title: Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite publication-title: Appl. Catal B: Environ. doi: 10.1016/j.apcatb.2011.07.033 – volume: 108 start-page: 5867 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0190 article-title: Salt-assisted deposition of SnO2 on α-MoO3 nanorods and fabrication of polycrystalline SnO2 nanotubes publication-title: J. Phys. Chem. B doi: 10.1021/jp037822d – volume: 96 start-page: 143106 year: 2010 ident: 10.1016/j.spmi.2013.09.021_b0225 article-title: Room temperature ferromagnetism in vacuumannealed ZnFe2O4 nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.3374332 – volume: 61 start-page: 347 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0095 article-title: Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.04.061 – volume: 280 start-page: 23 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0050 article-title: Localized canted spin behaviour in ZnxMg1.5−xMn0.5FeO4 spinel ferrite system publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.02.017 – volume: 462 start-page: 209 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0055 article-title: Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.07.121 – volume: 358 start-page: 129 year: 2011 ident: 10.1016/j.spmi.2013.09.021_b0160 article-title: Extent and mechanism of metal ion incorporation into precipitated ferrites publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.02.046 – volume: 324 start-page: 2258 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0260 article-title: Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.02.112 – volume: 39 start-page: 4221 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0310 article-title: Structural, magnetic, electrical and dielectric properties of MnxNi1−xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.11.004 – volume: 47 start-page: 2442 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0245 article-title: Structural and magnetic properties of triethylene glycol stabilized ZnxCo1−xFe2O4 nanoparticles publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.05.036 – volume: 39 start-page: 5235 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0045 article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.023 – volume: 223 start-page: 343 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0180 article-title: Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2003.09.022 – volume: 322 start-page: 866 year: 2010 ident: 10.1016/j.spmi.2013.09.021_b0115 article-title: Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.11.018 – volume: 554 start-page: 132 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0240 article-title: Controlled synthesis and magnetic properties of monodisperse Ni1−xZnxFe2O4/MWCNT nanocomposites via microwave-assisted polyol process publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.11.185 – volume: 406 start-page: 1989 year: 2011 ident: 10.1016/j.spmi.2013.09.021_b0305 article-title: Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4 publication-title: Physica B doi: 10.1016/j.physb.2011.02.072 – volume: 310 start-page: 2378 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0280 article-title: Magnetic properties of Mg-ferrite nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.737 – volume: 486 start-page: 759 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0285 article-title: Structure and magnetic properties of NixZn1−xFe2O4 nanoparticles prepared through co-precipitation method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.07.051 – volume: 38 start-page: 3625 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0110 article-title: Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.01.001 – volume: 5 start-page: 1289 year: 2010 ident: 10.1016/j.spmi.2013.09.021_b0200 article-title: Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9640-z – volume: 203 start-page: 348 year: 2010 ident: 10.1016/j.spmi.2013.09.021_b0255 article-title: Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.05.027 – volume: 111 start-page: 12274 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0300 article-title: ZnFe2O4 nanocrystals: synthesis and magnetic properties publication-title: J. Phys. Chem. C doi: 10.1021/jp0732763 – volume: 540 start-page: 290 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0330 article-title: Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.06.018 – volume: 196–197 start-page: 191 year: 1999 ident: 10.1016/j.spmi.2013.09.021_b0230 article-title: Ionic disorder and Neel temperature in ZnFe2O4 nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00723-9 – volume: 452 start-page: 296 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0145 article-title: Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.01.011 – volume: 28 start-page: 2887 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0125 article-title: Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method publication-title: Polyhedron doi: 10.1016/j.poly.2009.06.061 – volume: 155 start-page: 534 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0210 article-title: Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.08.008 – volume: 111 start-page: 164 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0100 article-title: A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2004.04.014 – volume: 98 start-page: 269 year: 2003 ident: 10.1016/j.spmi.2013.09.021_b0250 article-title: Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(03)00063-1 – volume: 553 start-page: 383 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0220 article-title: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.11.181 – volume: 320 start-page: 2774 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0270 article-title: Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.06.012 – volume: 112 start-page: 1 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0060 article-title: Photocatalytic properties and optical absorption of zinc ferrite nanometer films publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2004.04.012 – volume: 450 start-page: 387 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0085 article-title: Evolution of intermediate phases in the synthesis of zinc ferrite nanopowders prepared by the tartrate precursor method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.10.139 – volume: 329 start-page: 165 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0030 article-title: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine–nitrate combustion process publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.10.023 – volume: 90 start-page: 123 year: 2000 ident: 10.1016/j.spmi.2013.09.021_b0195 article-title: Identification of the transition responsible for the visible emission in ZnO using quantum size effects publication-title: J. Lumin. doi: 10.1016/S0022-2313(99)00599-2 – volume: 39 start-page: 5909 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0150 article-title: Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.01.012 – volume: 544 start-page: 197 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0215 article-title: Synthesis, structural and magnetic properties of copper substituted nickel manganite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.07.041 – volume: 280 start-page: 23 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0265 article-title: Localized canted spin behaviour in ZnxMg1.5−xMn0.5Fe2O4 spinel ferrite system publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.02.017 – volume: 481 start-page: 515 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0010 article-title: Synthesis and optical characterization of nanocrystalline NiFe2O4 structures publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.03.027 – volume: 540 start-page: 145 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0120 article-title: Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.06.068 – volume: 48 start-page: 961 year: 2003 ident: 10.1016/j.spmi.2013.09.021_b0275 article-title: Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4 publication-title: Scripta Mater. doi: 10.1016/S1359-6462(02)00600-0 – volume: 137 start-page: 6 year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0140 article-title: Cation distribution in NixMg1−xFe2O4 studied by XPS and mossbauer spectroscopy publication-title: Solid State Commun. doi: 10.1016/j.ssc.2005.10.019 – volume: 110 start-page: 20801 year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0185 article-title: Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth publication-title: J. Phys. Chem. B doi: 10.1021/jp061835k – volume: 308 start-page: 137 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0025 article-title: Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.05.015 – volume: 310 start-page: 2543 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0295 article-title: Thermal annealing effect on magnetism and cation distribution in disordered ZnFe2O4 thin films deposited on glass substrates publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.11.144 – volume: 1035 start-page: 332 year: 2013 ident: 10.1016/j.spmi.2013.09.021_b0105 article-title: Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2012.11.007 – volume: 38 start-page: 1 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0155 article-title: Experimental investigation and thermodynamic calculation of the Al–Fe–P system at low phosphorus contents publication-title: CALPHAD – Comput. Coupling Phase Diagr. Thermochem. doi: 10.1016/j.calphad.2012.03.005 – volume: 509 start-page: 2909 year: 2011 ident: 10.1016/j.spmi.2013.09.021_b0035 article-title: Structural, optical and transport properties of Al3+ doped BiFeO3 nano-powder synthesized by solution combustion method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.11.153 – volume: 55 start-page: 1472 issue: 4 year: 2009 ident: 10.1016/j.spmi.2013.09.021_b0205 article-title: Photocatalytic hydrogen generation from water–methanol mixtures using nanocrystalline ZnFe2O4 under visible light irradiation publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.55.1472 – volume: 88 start-page: 262506 year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0290 article-title: Large room temperature magnetization in nanocrystalline zinc ferrite thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2217253 – volume: 454 start-page: 432 year: 2008 ident: 10.1016/j.spmi.2013.09.021_b0090 article-title: Determination of milling parameters to obtain mechanosynthesized ZnFe2O4 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.12.117 – volume: 110 start-page: 15234 year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0075 article-title: Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation–observation of magnetization and its relaxation at low temperature publication-title: J. Phys. Chem. B doi: 10.1021/jp055024c – volume: 138 start-page: 416 year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0080 article-title: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.03.023 – volume: 530 start-page: 63 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0040 article-title: Exploring the dielectric behaviour of nano-structured Al3+ doped BiFeO3 ceramics synthesized by auto ignition process publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.01.075 – volume: 339 start-page: 255 year: 2002 ident: 10.1016/j.spmi.2013.09.021_b0070 article-title: Structural evolution of ball-milled ZnFe2O4 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(01)02011-4 – volume: 865 start-page: 375 year: 2004 ident: 10.1016/j.spmi.2013.09.021_b0325 article-title: Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite publication-title: Mater. Sci. Eng. A – volume: 38 start-page: 741 year: 2012 ident: 10.1016/j.spmi.2013.09.021_b0015 article-title: Structural and magnetic characterization of MnxZn1−xFe2O4 (x=0.2, 0.35, 0.65, 0.8, 1.0) ferrites obtained by the citrate precursor method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.07.066 – volume: 41 start-page: 5050 year: 2007 ident: 10.1016/j.spmi.2013.09.021_b0170 article-title: Enhanced visible light induced photocatalytic disinfection of E. coli by nitrogen doped titanium oxide publication-title: Environ. Sci. Technol. doi: 10.1021/es062753c – volume: 89 start-page: 62 year: 2003 ident: 10.1016/j.spmi.2013.09.021_b0065 article-title: Synthesis of nanocrystalline Ni1−xCoxMnxFe2−xO4: a material for liquefied petroleum gas sensing publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(02)00429-X – year: 2006 ident: 10.1016/j.spmi.2013.09.021_b0235 |
SSID | ssj0009417 |
Score | 2.169227 |
Snippet | [Display omitted]
•Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic... Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118 |
SubjectTerms | Cations Combustion Crystallites Electron microscopy Ferrites Magnesium Magnetic properties Magnetization Microwaves Nanostructures Optical properties Spectra X-ray diffraction X-rays |
Title | Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method |
URI | https://dx.doi.org/10.1016/j.spmi.2013.09.021 https://www.proquest.com/docview/1531020590 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-ilPoiVlv8aCWFvkl6t_nY2308jh7XFvWhCuJLyNfKiWaXu1Pxxb-9M9ndlhbqQx8TJmHJDDO_ZH8zQ8gnmZIDRoZxU3gmAcEz6yRneZk7A_blC4u5wyen-exCfrtUl2tk0ufCIK2y8_2tT0_eupsZdKc5aObzwQ8IfgC_BQJgsFSOSXxSjtDKPz__pnmUMnXdRWGG0l3iTMvxWjZ3c6R3iVTrlGf_Ck5_uekUe6bbZKsDjXTcftcbshbiDnk96Xu17ZBXicjplrukPmvS6zQ10dM7cx0xSZE2-OS-wNqptK7oyTXzMPb0Kk4DP5M0mgh3544iB8Ih0dKpfaIL08xhH2TtPZqHQOGYLPb_qiNte0-_JRfTL-eTGeuaKjAnpVgxA5BE-GroMpl5uF0pVzoujfAA1ZT1SvAqtyaUpgw8mDKrvMSCLX5oC17BFVa8I-uxjmGPUJ_nQ1NxJ0BGeuWsDEEpoQoIiiYv_D7J-tPUrqs4jo0vbnVPLbvRqAGNGtDDUoMG9snxrzVNW2_jRWnVK0n_YTUaAsKL6z72GtWgKfxHYmKo75caAgBALszIPfjPvQ_JJo5ayst7sr5a3IcPAFxW9ihZ5hHZGH_9Pjv9CSGn7YQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQuCAqI8jQSN2R240dIjmjFaoFue6CVKi6WX6kWUSfa3YK48NuZcRIQSPTAMcnYijyTmc_ONzMAL1RODnhtubBV4AoRPHdeCV7WpbdoX6FylDu8PCoXp-r9mT7bgdmYC0O0ysH39z49e-vhzmRYzUm3Wk0-YvBD-C0JAKOlivoaXFf4-VIbg1c_fvM8apXb7pI0J_Ehc6YneW26ixXxu2QudiqKf0Wnv_x0Dj7z23BrQI3sTf9id2Anpn3Ym43N2vbhRmZy-s1daI-7fDzNbArswp4nylJkHZ25r6l4KmsbtjznAa8D-5TmURwrlmzCzfPAkUPhmHnpzH1na9utcB6i7X2zXyPDdXLUAKxNrG8-fQ9O529PZgs-dFXgXim55RYxiQzN1BeqCLi90r72QlkZEKtpF7QUTelsrG0dRbR10QRFFVvC1FWiwT2svA-7qU3xAbBQllPbCC9RRgXtnYpRa6krjIq2rMIBFONqGj-UHKfOF1_MyC37bEgDhjRgprVBDRzAy19jur7gxpXSelSS-cNsDEaEK8c9HzVqUFP0k8Sm2F5uDEYAxFyUkvvwP-d-BnuLk-WhOXx39OER3KQnPf_lMexu15fxCaKYrXuarfQnlvDvEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+magnetic+properties+of+Mg-doped+ZnFe2O4+nanoparticles+prepared+by+rapid+microwave+combustion+method&rft.jtitle=Superlattices+and+microstructures&rft.au=Manikandan%2C+A&rft.au=Vijaya%2C+J&rft.au=Sundararajan%2C+M&rft.au=Meganathan%2C+C&rft.date=2013-12-01&rft.issn=0749-6036&rft.volume=64&rft.spage=118&rft.epage=131&rft_id=info:doi/10.1016%2Fj.spmi.2013.09.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |