Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method

[Display omitted] •Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature i...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 64; pp. 118 - 131
Main Authors Manikandan, A., Judith Vijaya, J., Sundararajan, M., Meganathan, C., Kennedy, L. John, Bououdina, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature increases. Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV–Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15–43nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15–1.42eV). The magnetization showed an increasing trend with increasing Mg concentration (x=0.5), due to the rearrangement of cations at tetrahedral and octahedral sites.
AbstractList [Display omitted] •Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic properties.•Investigated the effect of Mg-doping on ZnFe2O4 systematically.•Mg concentration increases in ZnFe2O4, the ferromagnetic nature increases. Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV–Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15–43nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15–1.42eV). The magnetization showed an increasing trend with increasing Mg concentration (x=0.5), due to the rearrangement of cations at tetrahedral and octahedral sites.
Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results confirm the formation of cubic spinel-type structure with an average crystallite size in the range of 15-43 nm. Lattice parameter decreases with increasing Mg concentration, due to the smaller ionic radius of Mg2+ ion. The HR-SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The broad visible emission band is observed in the entire PL spectrum. The estimated band gap energy is found to decrease with increasing Mg content (2.15-1.42 eV). The magnetization showed an increasing trend with increasing Mg concentration (x = 0.5), due to the rearrangement of cations at tetrahedral and octahedral sites.
Author Judith Vijaya, J.
Meganathan, C.
Sundararajan, M.
Bououdina, M.
Kennedy, L. John
Manikandan, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Manikandan
  fullname: Manikandan, A.
  organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India
– sequence: 2
  givenname: J.
  surname: Judith Vijaya
  fullname: Judith Vijaya, J.
  email: jjvijayaloyola@yahoo.co.in
  organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India
– sequence: 3
  givenname: M.
  surname: Sundararajan
  fullname: Sundararajan, M.
  organization: Materials Division, School of Advanced Sciences, Vellore Institute of Technology University Chennai Campus, Chennai 600 127, India
– sequence: 4
  givenname: C.
  surname: Meganathan
  fullname: Meganathan, C.
  organization: Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034, India
– sequence: 5
  givenname: L. John
  surname: Kennedy
  fullname: Kennedy, L. John
  organization: Materials Division, School of Advanced Sciences, Vellore Institute of Technology University Chennai Campus, Chennai 600 127, India
– sequence: 6
  givenname: M.
  surname: Bououdina
  fullname: Bououdina, M.
  organization: Department of Physics, College of Science, University of Bahrain, PO Box 32038, Bahrain
BookMark eNp9kDtv3DAQhInAAXJ28gdSsXQjZfmQZAJuDMOPAA6uSZo0BEWuHB4kUiZ5Nvzvw8OlSnHVYrDzLXbmnJyFGJCQrwxaBqz_tmvzuviWAxMtqBY4-0A2DFTfiH4YzsgGBqmaHkT_iZznvAMAJdmwIXG7Fm_NTE1wdDHPAauka4orpuIx0zjRH8-Nq9rR3-Ee-VbSYEJcTd3buTrWhFXU9fhOk1l9veNtim_mFamNy7jPxcdAFyx_ovtMPk5mzvjl37wgv-7vft4-Nk_bh--3N0-NlVKUxvRCCTeBZZI5JqGzynJphOs76EbXCT71o0FlFHI0ik1O1hqUg_GKT3yQ4oJcHu_WKC97zEUvPlucZxMw7rNmnWDAoVNQrVdHa30654STtr6Yw88lGT9rBvrQsd7pQ8f60LEGpWvHFeX_oWvyi0nvp6HrI4Q1_6vHpLP1GCw6n9AW7aI_hf8FiuuZbw
CitedBy_id crossref_primary_10_1016_j_jmmm_2017_06_104
crossref_primary_10_1063_1_4994015
crossref_primary_10_1016_j_molstruc_2019_127044
crossref_primary_10_3390_nano10112133
crossref_primary_10_1016_j_inoche_2023_110797
crossref_primary_10_1007_s41204_022_00304_7
crossref_primary_10_1016_j_jlumin_2017_07_050
crossref_primary_10_1007_s10904_018_0794_y
crossref_primary_10_1016_j_jmmm_2017_12_053
crossref_primary_10_1016_j_ceramint_2020_03_287
crossref_primary_10_1016_j_jmmm_2016_10_049
crossref_primary_10_1134_S1063783424600705
crossref_primary_10_1098_rsos_181017
crossref_primary_10_1080_01932691_2023_2256383
crossref_primary_10_3389_fmats_2021_779837
crossref_primary_10_1007_s10948_020_05502_5
crossref_primary_10_1007_s10948_021_06124_1
crossref_primary_10_1007_s12010_023_04582_y
crossref_primary_10_1007_s11664_017_5359_2
crossref_primary_10_1016_j_ceramint_2019_10_243
crossref_primary_10_21597_jist_1219411
crossref_primary_10_1016_j_mseb_2020_114513
crossref_primary_10_1088_1402_4896_aca5bc
crossref_primary_10_1007_s10854_020_03551_z
crossref_primary_10_1007_s11581_020_03899_6
crossref_primary_10_1007_s10948_025_06927_6
crossref_primary_10_1016_j_apcatb_2017_12_051
crossref_primary_10_1016_j_jallcom_2021_162124
crossref_primary_10_1021_acsami_4c17079
crossref_primary_10_1007_s10971_020_05408_7
crossref_primary_10_1016_j_ccr_2025_216537
crossref_primary_10_1016_j_ceramint_2016_09_081
crossref_primary_10_1016_j_jallcom_2016_05_200
crossref_primary_10_1016_j_matpr_2021_09_234
crossref_primary_10_1088_2053_1591_ad1774
crossref_primary_10_2139_ssrn_3919679
crossref_primary_10_1088_2053_1591_aac5bf
crossref_primary_10_1109_LED_2018_2829926
crossref_primary_10_1002_adfm_202310179
crossref_primary_10_1016_j_jcis_2019_05_041
crossref_primary_10_1016_j_heliyon_2024_e33578
crossref_primary_10_1007_s00339_019_2454_7
crossref_primary_10_1016_j_solener_2014_12_034
crossref_primary_10_1021_acsomega_0c01641
crossref_primary_10_1016_j_matchemphys_2022_126791
crossref_primary_10_1016_j_physb_2018_01_033
crossref_primary_10_1016_j_jmmm_2024_171981
crossref_primary_10_1007_s10904_014_0153_6
crossref_primary_10_1080_24701556_2023_2240771
crossref_primary_10_1007_s10854_020_04323_5
crossref_primary_10_1016_j_jmmm_2023_170479
crossref_primary_10_1007_s10904_017_0691_9
crossref_primary_10_1016_j_jcis_2015_12_009
crossref_primary_10_1007_s10948_022_06334_1
crossref_primary_10_1016_j_ijhydene_2023_11_158
crossref_primary_10_1007_s10948_015_3312_2
crossref_primary_10_1016_j_ceramint_2017_03_031
crossref_primary_10_1016_j_jallcom_2024_174540
crossref_primary_10_1016_j_mseb_2020_114776
crossref_primary_10_1016_j_jmmm_2016_10_038
crossref_primary_10_1016_j_ceramint_2019_12_097
crossref_primary_10_1016_j_molliq_2020_114047
crossref_primary_10_1002_pssa_202300263
crossref_primary_10_1007_s13204_018_0655_6
crossref_primary_10_1016_j_mseb_2023_117029
crossref_primary_10_1016_j_jmmm_2022_169178
crossref_primary_10_1007_s10751_024_01930_0
crossref_primary_10_1007_s10854_021_07605_8
crossref_primary_10_1016_j_apcatb_2015_08_005
crossref_primary_10_1142_S0219581X18500205
crossref_primary_10_1016_j_rinp_2020_103487
crossref_primary_10_1016_j_ijleo_2017_01_018
crossref_primary_10_1080_10584587_2019_1674978
crossref_primary_10_1016_j_ceramint_2016_11_106
crossref_primary_10_1021_acsanm_8b00545
crossref_primary_10_1016_j_ceramint_2024_01_131
crossref_primary_10_1016_j_jallcom_2014_08_237
crossref_primary_10_1007_s10854_021_05457_w
crossref_primary_10_1016_j_inoche_2024_112777
crossref_primary_10_1007_s10948_016_3435_0
crossref_primary_10_1088_1402_4896_ab7a39
crossref_primary_10_1016_j_mssp_2018_09_002
crossref_primary_10_1016_j_jallcom_2016_10_067
crossref_primary_10_1016_j_matchemphys_2021_125222
crossref_primary_10_1007_s00339_018_1936_3
crossref_primary_10_1134_S0020168521130033
crossref_primary_10_1016_j_spmi_2017_05_058
crossref_primary_10_1140_epjp_i2018_12063_5
crossref_primary_10_1016_j_jmmm_2021_168113
crossref_primary_10_1007_s00339_021_04607_5
crossref_primary_10_1016_j_jallcom_2015_07_269
crossref_primary_10_1016_j_arabjc_2023_105186
crossref_primary_10_1016_j_jmmm_2017_11_100
crossref_primary_10_1016_j_molstruc_2022_134807
crossref_primary_10_1016_j_heliyon_2024_e25511
crossref_primary_10_1016_j_inoche_2022_110246
crossref_primary_10_1016_j_jmmm_2020_166623
crossref_primary_10_1016_j_mtcomm_2021_102662
crossref_primary_10_1007_s10854_017_6891_9
crossref_primary_10_35848_1347_4065_abd86d
crossref_primary_10_1016_j_arabjc_2017_11_016
crossref_primary_10_1016_j_molliq_2019_111574
crossref_primary_10_1016_j_matpr_2022_02_444
crossref_primary_10_1002_jctb_7168
crossref_primary_10_1016_j_physb_2020_412670
crossref_primary_10_1021_am502605s
crossref_primary_10_1016_j_ceramint_2020_08_019
crossref_primary_10_1016_j_ceramint_2017_09_031
crossref_primary_10_1007_s11664_018_6543_8
crossref_primary_10_1016_j_jmmm_2016_06_080
crossref_primary_10_1016_j_jphotochem_2019_111942
crossref_primary_10_1016_j_physb_2017_08_060
crossref_primary_10_4236_anp_2020_92004
crossref_primary_10_1016_j_ceramint_2023_11_285
crossref_primary_10_1016_j_jpcs_2019_05_047
crossref_primary_10_1016_j_matchemphys_2017_10_033
crossref_primary_10_1016_j_jallcom_2018_10_082
crossref_primary_10_3390_ma12213582
crossref_primary_10_1016_j_jclepro_2020_125632
crossref_primary_10_1080_10667857_2020_1758481
crossref_primary_10_1002_aoc_4514
crossref_primary_10_1016_j_spmi_2015_07_062
crossref_primary_10_1016_j_jmmm_2018_05_071
crossref_primary_10_1016_j_mtcomm_2021_102769
crossref_primary_10_1016_j_jallcom_2018_01_217
crossref_primary_10_1016_j_matpr_2023_05_494
crossref_primary_10_1016_j_poly_2024_116826
crossref_primary_10_1016_j_ceramint_2017_07_217
crossref_primary_10_1007_s10854_017_8297_0
crossref_primary_10_1016_j_jallcom_2020_155681
crossref_primary_10_1016_j_physb_2018_11_052
crossref_primary_10_1007_s10904_019_01419_2
crossref_primary_10_1016_j_ceramint_2024_03_196
crossref_primary_10_1007_s00339_024_08107_0
crossref_primary_10_1016_j_solmat_2018_08_007
crossref_primary_10_4028_p_20h232
crossref_primary_10_1016_j_ceramint_2020_02_091
crossref_primary_10_1007_s10854_022_08178_w
crossref_primary_10_1007_s10904_014_0119_8
crossref_primary_10_1557_s43578_024_01415_4
crossref_primary_10_1016_j_jenvman_2016_11_039
crossref_primary_10_1007_s10854_021_06562_6
crossref_primary_10_1021_acsanm_2c01062
crossref_primary_10_1016_j_ceramint_2016_12_081
crossref_primary_10_1016_j_jallcom_2017_02_021
crossref_primary_10_1016_j_matchemphys_2023_127322
crossref_primary_10_1016_j_matchemphys_2022_126732
crossref_primary_10_1016_j_apsusc_2020_145528
crossref_primary_10_1016_j_jallcom_2023_169049
crossref_primary_10_1007_s10854_020_04945_9
crossref_primary_10_1039_C5CE02553B
crossref_primary_10_1016_j_jphotobiol_2017_10_009
crossref_primary_10_1039_D3RA02080K
crossref_primary_10_4191_kcers_2019_56_5_06
crossref_primary_10_1016_j_mseb_2017_12_030
crossref_primary_10_1007_s10854_024_12024_6
crossref_primary_10_1016_j_jpcs_2022_110783
crossref_primary_10_1016_j_jece_2021_105812
crossref_primary_10_1016_j_jmmm_2020_167518
crossref_primary_10_1016_j_matchemphys_2022_127014
crossref_primary_10_1007_s10854_017_6486_5
crossref_primary_10_1007_s13369_021_06520_8
crossref_primary_10_1016_j_ceramint_2016_11_132
crossref_primary_10_1007_s11664_019_07288_2
crossref_primary_10_1016_j_jphotochem_2017_03_027
crossref_primary_10_1016_j_pnsc_2015_02_001
crossref_primary_10_1007_s11082_019_1913_x
crossref_primary_10_1016_j_jallcom_2024_174951
crossref_primary_10_1016_j_physb_2019_05_037
crossref_primary_10_1007_s10876_022_02285_8
crossref_primary_10_1039_D1CP03657B
crossref_primary_10_1007_s10854_020_03394_8
crossref_primary_10_1016_j_sna_2024_115971
crossref_primary_10_1016_j_vacuum_2019_109114
crossref_primary_10_1016_j_nexres_2025_100175
crossref_primary_10_1007_s11664_024_11639_z
crossref_primary_10_1016_j_matchemphys_2023_127303
crossref_primary_10_1016_j_ceramint_2014_08_063
crossref_primary_10_1016_j_jpcs_2023_111671
crossref_primary_10_1016_j_jallcom_2023_170838
crossref_primary_10_1016_j_apt_2018_07_005
crossref_primary_10_1007_s11051_022_05582_5
crossref_primary_10_1016_j_nima_2014_09_003
crossref_primary_10_1039_C7DT02115A
crossref_primary_10_1016_j_jscs_2023_101696
crossref_primary_10_1007_s10854_025_14517_4
crossref_primary_10_1016_j_powtec_2021_08_093
crossref_primary_10_1016_j_spmi_2014_02_014
crossref_primary_10_17485_ijst_2017_v10i15_113829
crossref_primary_10_1016_j_jmmm_2016_09_077
crossref_primary_10_1016_j_ccr_2024_216158
crossref_primary_10_1016_j_arabjc_2021_103261
crossref_primary_10_1007_s12649_024_02521_4
crossref_primary_10_1016_j_molstruc_2023_136094
crossref_primary_10_1007_s10948_016_3849_8
crossref_primary_10_1007_s10854_021_07443_8
crossref_primary_10_1016_j_ceramint_2019_03_086
crossref_primary_10_1016_j_spmi_2015_10_005
crossref_primary_10_1016_j_saa_2014_04_179
crossref_primary_10_1016_j_jallcom_2022_167527
crossref_primary_10_1007_s10904_024_03222_0
crossref_primary_10_1016_j_matchemphys_2021_125069
crossref_primary_10_1016_j_matpr_2018_05_032
crossref_primary_10_1016_j_molliq_2017_01_099
crossref_primary_10_1007_s10948_017_4061_1
crossref_primary_10_1080_14328917_2023_2181488
crossref_primary_10_1364_OME_9_003519
crossref_primary_10_1016_j_jallcom_2020_156907
crossref_primary_10_1016_j_physb_2024_416678
crossref_primary_10_1088_0964_1726_24_11_115002
crossref_primary_10_1016_j_matchemphys_2020_123825
crossref_primary_10_1016_j_cdc_2021_100825
crossref_primary_10_1007_s10948_016_3586_z
crossref_primary_10_1007_s10854_020_04077_0
crossref_primary_10_1016_j_molstruc_2024_137479
crossref_primary_10_1016_j_apsusc_2022_154315
crossref_primary_10_1039_C9RA07569K
crossref_primary_10_1007_s00339_019_2619_4
crossref_primary_10_1016_j_ssc_2024_115649
crossref_primary_10_1016_j_scriptamat_2023_115681
crossref_primary_10_1109_TMAG_2020_3024717
crossref_primary_10_1007_s10948_020_05473_7
crossref_primary_10_1016_j_optmat_2019_01_078
crossref_primary_10_13168_cs_2020_0006
crossref_primary_10_1007_s41779_018_0173_8
crossref_primary_10_1016_j_mseb_2022_116030
crossref_primary_10_1007_s10854_023_11596_z
crossref_primary_10_1007_s10854_016_4936_0
crossref_primary_10_1016_j_physb_2019_04_031
crossref_primary_10_1007_s10904_014_0069_1
crossref_primary_10_1007_s10854_024_14179_8
crossref_primary_10_1007_s10854_024_13105_2
crossref_primary_10_1007_s00339_022_05480_6
crossref_primary_10_1016_j_jmmm_2023_171360
crossref_primary_10_1016_j_materresbull_2018_01_009
crossref_primary_10_1007_s11696_023_02664_z
crossref_primary_10_1016_j_jmmm_2015_12_036
crossref_primary_10_1080_01411594_2020_1865535
crossref_primary_10_1007_s10948_021_05967_y
crossref_primary_10_1063_1_5093221
crossref_primary_10_1002_pssa_202200424
crossref_primary_10_1016_j_ceramint_2019_11_144
crossref_primary_10_1016_j_ceramint_2019_11_265
crossref_primary_10_1039_D0RA04319B
crossref_primary_10_1016_j_jmmm_2019_166054
crossref_primary_10_1016_j_mseb_2017_08_012
crossref_primary_10_1016_j_ceramint_2017_08_090
crossref_primary_10_1007_s11664_024_11204_8
crossref_primary_10_1016_j_jmmm_2023_170839
crossref_primary_10_1016_j_mtcomm_2023_106405
crossref_primary_10_1016_j_solidstatesciences_2017_08_012
crossref_primary_10_1016_j_ijbiomac_2020_03_069
crossref_primary_10_1016_j_mtcomm_2022_103632
crossref_primary_10_1007_s10854_015_3648_1
crossref_primary_10_1016_j_ceramint_2013_10_145
crossref_primary_10_1016_j_ceramint_2017_08_096
crossref_primary_10_1039_D0TA01554G
crossref_primary_10_1016_j_catcom_2023_106719
crossref_primary_10_1186_s11671_023_03921_6
crossref_primary_10_1007_s13762_023_05393_8
crossref_primary_10_1016_j_ceramint_2017_03_078
Cites_doi 10.1016/j.ceramint.2012.04.001
10.1016/j.jcis.2011.02.052
10.1016/0040-6031(79)85011-X
10.1016/j.jmmm.2011.10.017
10.1016/j.jmmm.2009.02.054
10.1016/S0304-8853(98)00845-2
10.1016/j.mseb.2008.10.032
10.1016/j.apcatb.2011.07.033
10.1021/jp037822d
10.1063/1.3374332
10.1016/j.matlet.2006.04.061
10.1016/j.jmmm.2004.02.017
10.1016/j.jallcom.2007.07.121
10.1016/j.jcis.2011.02.046
10.1016/j.jmmm.2012.02.112
10.1016/j.ceramint.2012.11.004
10.1016/j.materresbull.2012.05.036
10.1016/j.ceramint.2012.12.023
10.1016/j.apsusc.2003.09.022
10.1016/j.jmmm.2009.11.018
10.1016/j.jallcom.2012.11.185
10.1016/j.physb.2011.02.072
10.1016/j.jmmm.2006.10.737
10.1016/j.jallcom.2009.07.051
10.1016/j.ceramint.2012.01.001
10.1007/s11671-010-9640-z
10.1016/j.powtec.2010.05.027
10.1021/jp0732763
10.1016/j.jallcom.2012.06.018
10.1016/S0304-8853(98)00723-9
10.1016/j.cplett.2008.01.011
10.1016/j.poly.2009.06.061
10.1016/j.cej.2009.08.008
10.1016/j.mseb.2004.04.014
10.1016/S0921-5107(03)00063-1
10.1016/j.jallcom.2012.11.181
10.1016/j.jmmm.2008.06.012
10.1016/j.mseb.2004.04.012
10.1016/j.jallcom.2006.10.139
10.1016/j.jmmm.2012.10.023
10.1016/S0022-2313(99)00599-2
10.1016/j.ceramint.2013.01.012
10.1016/j.jallcom.2012.07.041
10.1016/j.jallcom.2009.03.027
10.1016/j.jallcom.2012.06.068
10.1016/S1359-6462(02)00600-0
10.1016/j.ssc.2005.10.019
10.1021/jp061835k
10.1016/j.jmmm.2006.05.015
10.1016/j.jmmm.2006.11.144
10.1016/j.molstruc.2012.11.007
10.1016/j.calphad.2012.03.005
10.1016/j.jallcom.2010.11.153
10.3938/jkps.55.1472
10.1063/1.2217253
10.1016/j.jallcom.2006.12.117
10.1021/jp055024c
10.1016/j.ssc.2006.03.023
10.1016/j.jallcom.2012.01.075
10.1016/S0925-8388(01)02011-4
10.1016/j.ceramint.2011.07.066
10.1021/es062753c
10.1016/S0925-4005(02)00429-X
ContentType Journal Article
Copyright 2013 The Authors
Copyright_xml – notice: 2013 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.spmi.2013.09.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 131
ExternalDocumentID 10_1016_j_spmi_2013_09_021
S0749603613003029
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7QF
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c443t-a6393df0c141d1405c9c24a3d6505bd532f6bae9a9e2ea91fd40169d0b82f2743
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Fri Jul 11 09:15:52 EDT 2025
Tue Jul 01 01:34:54 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
Fri Feb 23 02:23:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Ferrites
X-ray diffraction
Nanostructures
Electron microscopy
Optical properties
Magnetic properties
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-a6393df0c141d1405c9c24a3d6505bd532f6bae9a9e2ea91fd40169d0b82f2743
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0749603613003029
PQID 1531020590
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1531020590
crossref_citationtrail_10_1016_j_spmi_2013_09_021
crossref_primary_10_1016_j_spmi_2013_09_021
elsevier_sciencedirect_doi_10_1016_j_spmi_2013_09_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dijken, Meulenkamp, Vanmaekelbergh, Meijerink (b0195) 2000; 90
Sarangi, Vadera, Patra, Ghosh (b0255) 2010; 203
Manikandan, Judith Vijaya, Kennedy, Bououdina (b0105) 2013; 1035
Pradeep, Priyadharsini, Chandrasekaran (b0270) 2008; 320
Klas, Dubowski, Pritosiwi, Gerth, Calmano, Lahav (b0160) 2011; 358
Azam (b0120) 2012; 540
Ichiyanagi, Kubota, Moritake, Kanazawa, Yamada, Uehashi (b0280) 2007; 310
Sharifi, Shokrollahi, Amiri (b0020) 2012; 324
Li, Xie, Li, Mintz, Shang (b0170) 2007; 41
Yadoji, Peelamedu, Agrawal, Roy (b0250) 2003; 98
Ayyappan, Raja, Venkateswaran, Philip, Raj (b0225) 2010; 96
Hankare, Sanadi, Pandav, Patil, Garadkar, Mulla (b0330) 2012; 540
Tanaka, Shimazu, Nagai, Tada, Nakagawa, Sandhu, Handa, Abe (b0005) 2009; 321
Fitzner (b0165) 1979; 31
Thummer, Chhantbar, Modi, Baldha, Joshi (b0050) 2004; 280
Xue, Li, Wang, Fu (b0095) 2007; 61
Koseoglu, Baykal, Gozuak, Kavas (b0125) 2009; 28
Changwa, Qiaoshi, Goya, Torres, Jinfang, Haiping, Mingyuan, Yuewu, Youwen, Jiang (b0300) 2007; 111
Lemine, Bououdina, Sajieddine, Al-Saie, Shafi, Khatab, Alhilali, Henini (b0305) 2011; 406
Goya, Rechenberg (b0230) 1999; 196–197
Koseoglu, Alan, Tan, Yilgin, Ozturk (b0110) 2012; 38
Manikandan, Judith Vijaya, Kennedy, Bououdina (b0150) 2013; 39
Sertkol, Koseoglu, Baykal, Kavas, Toprak (b0115) 2010; 322
Bohra, Prasad, Kumar, Misra, Sahoo, Venkataramani, Krishnan (b0290) 2006; 88
Gupta, Verma, Kashyap, Dube (b0025) 2007; 308
Goldman (b0235) 2006
Salah, Moustafa, Farag (b0135) 2012; 38
Misra, Gubbala, Kale, Egelhoff (b0100) 2004; 111
Mittal, Chandramohan, Santanu, Srinivasan, Velmurugan, Narasimhan (b0140) 2006; 137
Hankare, Patil, Jadhav, Garadkar, Sasikala (b0315) 2011; 107
Nakashima, Fujita, Tanaka, Hirao, Yamamoto, Tanaka (b0295) 2007; 310
Azam, Jawad, Ahmed, Chaman, Naqvi (b0035) 2011; 509
Sivakumar, Takami, Ikuta, Towata, Yasui, Tuziuti, Kozuka, Bhattacharya, Iida (b0075) 2006; 110
Koseoglu (b0310) 2013; 39
Sepelak, Baabe, Mienert, Litterst, Becker (b0275) 2003; 48
Ng, Fan (b0185) 2006; 110
Hankare, Pandav, Patil, Vader, Garadkar (b0215) 2012; 544
Wu, Zhang, Mao, Li, Xia (b0240) 2013; 554
Erhardt, Campbell, Hofman (b0070) 2002; 339
Rahman, Nadeem, Rehman, Mumtaz, Naeem, Papst (b0045) 2013; 39
Koseoglu, Baykal, Toprak, Gozuak, Basaran, Aktas (b0055) 2008; 462
Jawada, Ahmed, Ashraf, Chaman, Azam (b0040) 2012; 530
Hajarpour, Gheisari, Raouf (b0030) 2013; 329
Kale, Lokhande (b0180) 2004; 223
Gimenes, Baldissera, Silva, Silveira, Soares, Perazolli, Silva, Zaghete (b0015) 2012; 38
Berkowitz, Kodama, Makhlouf, Parker, Spada, McNiff, Foner (b0320) 1999; 196–197
Yang, Yen (b0085) 2008; 450
Kislova, Srinivasan, Emirov, Stefanakos (b0175) 2008; 153
Qiu, Wang, Gu (b0060) 2004; 112
Sepelak, Wilde, Steinike, Becker (b0325) 2004; 865
Li, Hou, Zhao, Wang (b0130) 2011; 358
Borse, Jang, Hongand, Lee, Jung, Hong, Ahn, Jeong, Hong, Yoon, Kim (b0205) 2009; 55
Wu, Huang, Su, Peng, Wang, Liu (b0155) 2012; 38
Liu, Zeng (b0190) 2004; 108
Sozeri, Durmus, Baykal (b0245) 2012; 47
Rashad, Elsayed, Moharam, Shahba, Saba (b0285) 2009; 486
Srivastava, Ojha, Chaubey, Materny (b0010) 2009; 481
Jean, Nachbaur (b0090) 2008; 454
Thummer, Chhantbar, Modi, Baldha, Joshi (b0265) 2004; 280
Satyanarayana, Reddy, Manorama (b0065) 2003; 89
Gabal, El-Shishtawy, Al Angari (b0260) 2012; 324
Atif, Hasanain, Nadeem (b0080) 2006; 138
Fan, Gu, Yang, Li (b0210) 2009; 155
Luo, Yan (b0145) 2008; 452
Gao, Shi, Xu, Zhang, Yang, Zhang, Wang, Xue (b0200) 2010; 5
Hankare, Sanadi, Garadkar, Patil, Mulla (b0220) 2013; 553
Wu (10.1016/j.spmi.2013.09.021_b0155) 2012; 38
Borse (10.1016/j.spmi.2013.09.021_b0205) 2009; 55
Rahman (10.1016/j.spmi.2013.09.021_b0045) 2013; 39
Sozeri (10.1016/j.spmi.2013.09.021_b0245) 2012; 47
Sepelak (10.1016/j.spmi.2013.09.021_b0325) 2004; 865
Jean (10.1016/j.spmi.2013.09.021_b0090) 2008; 454
Hankare (10.1016/j.spmi.2013.09.021_b0215) 2012; 544
Yadoji (10.1016/j.spmi.2013.09.021_b0250) 2003; 98
Ayyappan (10.1016/j.spmi.2013.09.021_b0225) 2010; 96
Sarangi (10.1016/j.spmi.2013.09.021_b0255) 2010; 203
Atif (10.1016/j.spmi.2013.09.021_b0080) 2006; 138
Gimenes (10.1016/j.spmi.2013.09.021_b0015) 2012; 38
Rashad (10.1016/j.spmi.2013.09.021_b0285) 2009; 486
Koseoglu (10.1016/j.spmi.2013.09.021_b0110) 2012; 38
Erhardt (10.1016/j.spmi.2013.09.021_b0070) 2002; 339
Berkowitz (10.1016/j.spmi.2013.09.021_b0320) 1999; 196–197
Sivakumar (10.1016/j.spmi.2013.09.021_b0075) 2006; 110
Goldman (10.1016/j.spmi.2013.09.021_b0235) 2006
Dijken (10.1016/j.spmi.2013.09.021_b0195) 2000; 90
Sepelak (10.1016/j.spmi.2013.09.021_b0275) 2003; 48
Koseoglu (10.1016/j.spmi.2013.09.021_b0310) 2013; 39
Xue (10.1016/j.spmi.2013.09.021_b0095) 2007; 61
Gao (10.1016/j.spmi.2013.09.021_b0200) 2010; 5
Hankare (10.1016/j.spmi.2013.09.021_b0220) 2013; 553
Thummer (10.1016/j.spmi.2013.09.021_b0265) 2004; 280
Liu (10.1016/j.spmi.2013.09.021_b0190) 2004; 108
Azam (10.1016/j.spmi.2013.09.021_b0120) 2012; 540
Yang (10.1016/j.spmi.2013.09.021_b0085) 2008; 450
Satyanarayana (10.1016/j.spmi.2013.09.021_b0065) 2003; 89
Li (10.1016/j.spmi.2013.09.021_b0170) 2007; 41
Manikandan (10.1016/j.spmi.2013.09.021_b0105) 2013; 1035
Mittal (10.1016/j.spmi.2013.09.021_b0140) 2006; 137
Klas (10.1016/j.spmi.2013.09.021_b0160) 2011; 358
Wu (10.1016/j.spmi.2013.09.021_b0240) 2013; 554
Koseoglu (10.1016/j.spmi.2013.09.021_b0125) 2009; 28
Hankare (10.1016/j.spmi.2013.09.021_b0330) 2012; 540
Azam (10.1016/j.spmi.2013.09.021_b0035) 2011; 509
Hankare (10.1016/j.spmi.2013.09.021_b0315) 2011; 107
Sharifi (10.1016/j.spmi.2013.09.021_b0020) 2012; 324
Manikandan (10.1016/j.spmi.2013.09.021_b0150) 2013; 39
Li (10.1016/j.spmi.2013.09.021_b0130) 2011; 358
Fan (10.1016/j.spmi.2013.09.021_b0210) 2009; 155
Luo (10.1016/j.spmi.2013.09.021_b0145) 2008; 452
Changwa (10.1016/j.spmi.2013.09.021_b0300) 2007; 111
Hajarpour (10.1016/j.spmi.2013.09.021_b0030) 2013; 329
Gupta (10.1016/j.spmi.2013.09.021_b0025) 2007; 308
Qiu (10.1016/j.spmi.2013.09.021_b0060) 2004; 112
Pradeep (10.1016/j.spmi.2013.09.021_b0270) 2008; 320
Sertkol (10.1016/j.spmi.2013.09.021_b0115) 2010; 322
Koseoglu (10.1016/j.spmi.2013.09.021_b0055) 2008; 462
Fitzner (10.1016/j.spmi.2013.09.021_b0165) 1979; 31
Ichiyanagi (10.1016/j.spmi.2013.09.021_b0280) 2007; 310
Lemine (10.1016/j.spmi.2013.09.021_b0305) 2011; 406
Misra (10.1016/j.spmi.2013.09.021_b0100) 2004; 111
Salah (10.1016/j.spmi.2013.09.021_b0135) 2012; 38
Tanaka (10.1016/j.spmi.2013.09.021_b0005) 2009; 321
Gabal (10.1016/j.spmi.2013.09.021_b0260) 2012; 324
Thummer (10.1016/j.spmi.2013.09.021_b0050) 2004; 280
Bohra (10.1016/j.spmi.2013.09.021_b0290) 2006; 88
Kale (10.1016/j.spmi.2013.09.021_b0180) 2004; 223
Goya (10.1016/j.spmi.2013.09.021_b0230) 1999; 196–197
Ng (10.1016/j.spmi.2013.09.021_b0185) 2006; 110
Srivastava (10.1016/j.spmi.2013.09.021_b0010) 2009; 481
Kislova (10.1016/j.spmi.2013.09.021_b0175) 2008; 153
Jawada (10.1016/j.spmi.2013.09.021_b0040) 2012; 530
Nakashima (10.1016/j.spmi.2013.09.021_b0295) 2007; 310
References_xml – volume: 110
  start-page: 15234
  year: 2006
  end-page: 15243
  ident: b0075
  article-title: Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation–observation of magnetization and its relaxation at low temperature
  publication-title: J. Phys. Chem. B
– volume: 111
  start-page: 12274
  year: 2007
  end-page: 12278
  ident: b0300
  article-title: ZnFe
  publication-title: J. Phys. Chem. C
– volume: 31
  start-page: 227
  year: 1979
  end-page: 236
  ident: b0165
  article-title: Thermodynamic properties and cation distribution of the ZnFe
  publication-title: Thermochim. Acta
– volume: 153
  start-page: 70
  year: 2008
  end-page: 77
  ident: b0175
  article-title: Optical absorption red and blue shifts in ZnFe
  publication-title: Mater. Sci. Eng. B
– volume: 324
  start-page: 903
  year: 2012
  end-page: 915
  ident: b0020
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
– volume: 308
  start-page: 137
  year: 2007
  end-page: 142
  ident: b0025
  article-title: Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications
  publication-title: J. Magn. Magn. Mater.
– volume: 48
  start-page: 961
  year: 2003
  end-page: 966
  ident: b0275
  article-title: Enhanced magnetisation in nanocrystalline high-energy milled MgFe
  publication-title: Scripta Mater.
– volume: 865
  start-page: 375
  year: 2004
  end-page: 377
  ident: b0325
  article-title: Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite
  publication-title: Mater. Sci. Eng. A
– volume: 155
  start-page: 534
  year: 2009
  end-page: 541
  ident: b0210
  article-title: Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique
  publication-title: Chem. Eng. J.
– volume: 107
  start-page: 333
  year: 2011
  end-page: 339
  ident: b0315
  article-title: Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite
  publication-title: Appl. Catal B: Environ.
– volume: 196–197
  start-page: 191
  year: 1999
  end-page: 192
  ident: b0230
  article-title: Ionic disorder and Neel temperature in ZnFe
  publication-title: J. Magn. Magn. Mater.
– volume: 454
  start-page: 432
  year: 2008
  end-page: 436
  ident: b0090
  article-title: Determination of milling parameters to obtain mechanosynthesized ZnFe
  publication-title: J. Alloys Compd.
– volume: 310
  start-page: 2378
  year: 2007
  end-page: 2380
  ident: b0280
  article-title: Magnetic properties of Mg-ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 203
  start-page: 348
  year: 2010
  end-page: 353
  ident: b0255
  article-title: Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method
  publication-title: Powder Technol.
– volume: 108
  start-page: 5867
  year: 2004
  end-page: 5874
  ident: b0190
  article-title: Salt-assisted deposition of SnO
  publication-title: J. Phys. Chem. B
– year: 2006
  ident: b0235
  article-title: Modern Ferrite Technology
– volume: 540
  start-page: 145
  year: 2012
  end-page: 153
  ident: b0120
  article-title: Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles
  publication-title: J. Alloys Compd.
– volume: 47
  start-page: 2442
  year: 2012
  end-page: 2448
  ident: b0245
  article-title: Structural and magnetic properties of triethylene glycol stabilized Zn
  publication-title: Mater. Res. Bull.
– volume: 280
  start-page: 23
  year: 2004
  end-page: 30
  ident: b0265
  article-title: Localized canted spin behaviour in Zn
  publication-title: J. Magn. Magn. Mater.
– volume: 110
  start-page: 20801
  year: 2006
  end-page: 20807
  ident: b0185
  article-title: Shape evolution of Cu
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 5605
  year: 2012
  end-page: 5611
  ident: b0135
  article-title: Structural characteristics and electrical properties of copper doped manganese ferrite
  publication-title: Ceram. Int.
– volume: 322
  start-page: 866
  year: 2010
  end-page: 871
  ident: b0115
  article-title: Synthesis and magnetic characterization of Zn
  publication-title: J. Magn. Magn. Mater.
– volume: 138
  start-page: 416
  year: 2006
  end-page: 421
  ident: b0080
  article-title: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size
  publication-title: Solid State Commun.
– volume: 111
  start-page: 164
  year: 2004
  end-page: 174
  ident: b0100
  article-title: A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique
  publication-title: Mater. Sci. Eng., B
– volume: 324
  start-page: 2258
  year: 2012
  end-page: 2264
  ident: b0260
  article-title: Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor
  publication-title: J. Magn. Magn. Mater.
– volume: 321
  start-page: 1417
  year: 2009
  end-page: 1420
  ident: b0005
  article-title: Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150
  publication-title: J. Magn. Magn. Mater.
– volume: 28
  start-page: 2887
  year: 2009
  end-page: 2892
  ident: b0125
  article-title: Structural and magnetic properties of Co
  publication-title: Polyhedron
– volume: 39
  start-page: 5909
  year: 2013
  end-page: 5917
  ident: b0150
  article-title: Microwave combustion synthesis, structural, optical and magnetic properties of Zn
  publication-title: Ceram. Int.
– volume: 98
  start-page: 269
  year: 2003
  end-page: 278
  ident: b0250
  article-title: Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering
  publication-title: Mater. Sci. Eng. B
– volume: 196–197
  start-page: 591
  year: 1999
  end-page: 594
  ident: b0320
  article-title: Anomalous properties of magnetic nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 89
  start-page: 62
  year: 2003
  end-page: 67
  ident: b0065
  article-title: Synthesis of nanocrystalline Ni
  publication-title: Sens. Actuators, B
– volume: 339
  start-page: 255
  year: 2002
  end-page: 260
  ident: b0070
  article-title: Structural evolution of ball-milled ZnFe
  publication-title: J. Alloys Compd.
– volume: 553
  start-page: 383
  year: 2013
  end-page: 388
  ident: b0220
  article-title: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method
  publication-title: J. Alloys Compd.
– volume: 481
  start-page: 515
  year: 2009
  end-page: 519
  ident: b0010
  article-title: Synthesis and optical characterization of nanocrystalline NiFe
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 1289
  year: 2010
  end-page: 1294
  ident: b0200
  article-title: Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays
  publication-title: Nanoscale Res. Lett.
– volume: 112
  start-page: 1
  year: 2004
  end-page: 4
  ident: b0060
  article-title: Photocatalytic properties and optical absorption of zinc ferrite nanometer films
  publication-title: Mater. Sci. Eng., B
– volume: 88
  start-page: 262506
  year: 2006
  ident: b0290
  article-title: Large room temperature magnetization in nanocrystalline zinc ferrite thin films
  publication-title: Appl. Phys. Lett.
– volume: 406
  start-page: 1989
  year: 2011
  end-page: 1994
  ident: b0305
  article-title: Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe
  publication-title: Physica B
– volume: 358
  start-page: 102
  year: 2011
  end-page: 108
  ident: b0130
  article-title: A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photo catalytic activity for dye degradation
  publication-title: J. Colloid Interf. Sci.
– volume: 462
  start-page: 209
  year: 2008
  end-page: 213
  ident: b0055
  article-title: Synthesis and characterization of ZnFe
  publication-title: J. Alloys Compd.
– volume: 137
  start-page: 6
  year: 2006
  end-page: 10
  ident: b0140
  article-title: Cation distribution in Ni
  publication-title: Solid State Commun.
– volume: 452
  start-page: 296
  year: 2008
  end-page: 300
  ident: b0145
  article-title: Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite
  publication-title: Chem. Phys. Lett.
– volume: 486
  start-page: 759
  year: 2009
  end-page: 767
  ident: b0285
  article-title: Structure and magnetic properties of Ni
  publication-title: J. Alloys Compd.
– volume: 38
  start-page: 1
  year: 2012
  end-page: 6
  ident: b0155
  article-title: Experimental investigation and thermodynamic calculation of the Al–Fe–P system at low phosphorus contents
  publication-title: CALPHAD – Comput. Coupling Phase Diagr. Thermochem.
– volume: 358
  start-page: 129
  year: 2011
  end-page: 135
  ident: b0160
  article-title: Extent and mechanism of metal ion incorporation into precipitated ferrites
  publication-title: J. Colloid Interf. Sci.
– volume: 90
  start-page: 123
  year: 2000
  end-page: 128
  ident: b0195
  article-title: Identification of the transition responsible for the visible emission in ZnO using quantum size effects
  publication-title: J. Lumin.
– volume: 38
  start-page: 741
  year: 2012
  end-page: 746
  ident: b0015
  article-title: Structural and magnetic characterization of Mn
  publication-title: Ceram. Int.
– volume: 540
  start-page: 290
  year: 2012
  end-page: 296
  ident: b0330
  article-title: Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method
  publication-title: J. Alloys Compd.
– volume: 96
  start-page: 143106
  year: 2010
  ident: b0225
  article-title: Room temperature ferromagnetism in vacuum
  publication-title: Appl. Phys. Lett.
– volume: 554
  start-page: 132
  year: 2013
  end-page: 137
  ident: b0240
  article-title: Controlled synthesis and magnetic properties of monodisperse Ni
  publication-title: J. Alloys Compd.
– volume: 1035
  start-page: 332
  year: 2013
  end-page: 340
  ident: b0105
  article-title: Structural, optical and magnetic properties of Zn
  publication-title: J. Mol. Struct.
– volume: 223
  start-page: 343
  year: 2004
  end-page: 351
  ident: b0180
  article-title: Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites
  publication-title: Appl. Surf. Sci.
– volume: 55
  start-page: 1472
  year: 2009
  end-page: 1477
  ident: b0205
  article-title: Photocatalytic hydrogen generation from water–methanol mixtures using nanocrystalline ZnFe
  publication-title: J. Korean Phys. Soc.
– volume: 310
  start-page: 2543
  year: 2007
  end-page: 2545
  ident: b0295
  article-title: Thermal annealing effect on magnetism and cation distribution in disordered ZnFe
  publication-title: J. Magn. Magn. Mater.
– volume: 39
  start-page: 4221
  year: 2013
  end-page: 4230
  ident: b0310
  article-title: Structural, magnetic, electrical and dielectric properties of Mn
  publication-title: Ceram. Int.
– volume: 530
  start-page: 63
  year: 2012
  end-page: 70
  ident: b0040
  article-title: Exploring the dielectric behaviour of nano-structured Al
  publication-title: J. Alloys Compd.
– volume: 39
  start-page: 5235
  year: 2013
  end-page: 5239
  ident: b0045
  article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method
  publication-title: Ceram. Int.
– volume: 329
  start-page: 165
  year: 2013
  end-page: 169
  ident: b0030
  article-title: Characterization of nanocrystalline Mg
  publication-title: J. Magn. Magn. Mater.
– volume: 280
  start-page: 23
  year: 2004
  end-page: 30
  ident: b0050
  article-title: Localized canted spin behaviour in Zn
  publication-title: J. Magn. Magn. Mater.
– volume: 41
  start-page: 5050
  year: 2007
  end-page: 5056
  ident: b0170
  article-title: Enhanced visible light induced photocatalytic disinfection of
  publication-title: Environ. Sci. Technol.
– volume: 450
  start-page: 387
  year: 2008
  end-page: 394
  ident: b0085
  article-title: Evolution of intermediate phases in the synthesis of zinc ferrite nanopowders prepared by the tartrate precursor method
  publication-title: J. Alloys Compd.
– volume: 38
  start-page: 3625
  year: 2012
  end-page: 3634
  ident: b0110
  article-title: Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles
  publication-title: Ceram. Int.
– volume: 61
  start-page: 347
  year: 2007
  end-page: 350
  ident: b0095
  article-title: Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method
  publication-title: Mater. Lett.
– volume: 544
  start-page: 197
  year: 2012
  end-page: 202
  ident: b0215
  article-title: Synthesis, structural and magnetic properties of copper substituted nickel manganite
  publication-title: J. Alloys Compd.
– volume: 320
  start-page: 2774
  year: 2008
  end-page: 2779
  ident: b0270
  article-title: Sol–gel route of synthesis of nanoparticles of MgFe
  publication-title: J. Magn. Magn. Mater.
– volume: 509
  start-page: 2909
  year: 2011
  end-page: 2913
  ident: b0035
  article-title: Structural, optical and transport properties of Al
  publication-title: J. Alloys Compd.
– volume: 38
  start-page: 5605
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0135
  article-title: Structural characteristics and electrical properties of copper doped manganese ferrite
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.04.001
– volume: 358
  start-page: 102
  year: 2011
  ident: 10.1016/j.spmi.2013.09.021_b0130
  article-title: A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photo catalytic activity for dye degradation
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.02.052
– volume: 31
  start-page: 227
  year: 1979
  ident: 10.1016/j.spmi.2013.09.021_b0165
  article-title: Thermodynamic properties and cation distribution of the ZnFe2O4–Fe3O4 spinel solid solutions at 900°C
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(79)85011-X
– volume: 324
  start-page: 903
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0020
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 321
  start-page: 1417
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0005
  article-title: Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150nm for biomedical applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.02.054
– volume: 196–197
  start-page: 591
  year: 1999
  ident: 10.1016/j.spmi.2013.09.021_b0320
  article-title: Anomalous properties of magnetic nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00845-2
– volume: 153
  start-page: 70
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0175
  article-title: Optical absorption red and blue shifts in ZnFe2O4 nanoparticles
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2008.10.032
– volume: 107
  start-page: 333
  year: 2011
  ident: 10.1016/j.spmi.2013.09.021_b0315
  article-title: Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite
  publication-title: Appl. Catal B: Environ.
  doi: 10.1016/j.apcatb.2011.07.033
– volume: 108
  start-page: 5867
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0190
  article-title: Salt-assisted deposition of SnO2 on α-MoO3 nanorods and fabrication of polycrystalline SnO2 nanotubes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037822d
– volume: 96
  start-page: 143106
  year: 2010
  ident: 10.1016/j.spmi.2013.09.021_b0225
  article-title: Room temperature ferromagnetism in vacuumannealed ZnFe2O4 nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3374332
– volume: 61
  start-page: 347
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0095
  article-title: Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.04.061
– volume: 280
  start-page: 23
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0050
  article-title: Localized canted spin behaviour in ZnxMg1.5−xMn0.5FeO4 spinel ferrite system
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.02.017
– volume: 462
  start-page: 209
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0055
  article-title: Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.07.121
– volume: 358
  start-page: 129
  year: 2011
  ident: 10.1016/j.spmi.2013.09.021_b0160
  article-title: Extent and mechanism of metal ion incorporation into precipitated ferrites
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.02.046
– volume: 324
  start-page: 2258
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0260
  article-title: Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.02.112
– volume: 39
  start-page: 4221
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0310
  article-title: Structural, magnetic, electrical and dielectric properties of MnxNi1−xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.11.004
– volume: 47
  start-page: 2442
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0245
  article-title: Structural and magnetic properties of triethylene glycol stabilized ZnxCo1−xFe2O4 nanoparticles
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.05.036
– volume: 39
  start-page: 5235
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0045
  article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.12.023
– volume: 223
  start-page: 343
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0180
  article-title: Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2003.09.022
– volume: 322
  start-page: 866
  year: 2010
  ident: 10.1016/j.spmi.2013.09.021_b0115
  article-title: Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.11.018
– volume: 554
  start-page: 132
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0240
  article-title: Controlled synthesis and magnetic properties of monodisperse Ni1−xZnxFe2O4/MWCNT nanocomposites via microwave-assisted polyol process
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.11.185
– volume: 406
  start-page: 1989
  year: 2011
  ident: 10.1016/j.spmi.2013.09.021_b0305
  article-title: Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.02.072
– volume: 310
  start-page: 2378
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0280
  article-title: Magnetic properties of Mg-ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.737
– volume: 486
  start-page: 759
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0285
  article-title: Structure and magnetic properties of NixZn1−xFe2O4 nanoparticles prepared through co-precipitation method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.07.051
– volume: 38
  start-page: 3625
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0110
  article-title: Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.01.001
– volume: 5
  start-page: 1289
  year: 2010
  ident: 10.1016/j.spmi.2013.09.021_b0200
  article-title: Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9640-z
– volume: 203
  start-page: 348
  year: 2010
  ident: 10.1016/j.spmi.2013.09.021_b0255
  article-title: Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.05.027
– volume: 111
  start-page: 12274
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0300
  article-title: ZnFe2O4 nanocrystals: synthesis and magnetic properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0732763
– volume: 540
  start-page: 290
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0330
  article-title: Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.06.018
– volume: 196–197
  start-page: 191
  year: 1999
  ident: 10.1016/j.spmi.2013.09.021_b0230
  article-title: Ionic disorder and Neel temperature in ZnFe2O4 nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00723-9
– volume: 452
  start-page: 296
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0145
  article-title: Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.01.011
– volume: 28
  start-page: 2887
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0125
  article-title: Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.06.061
– volume: 155
  start-page: 534
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0210
  article-title: Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.08.008
– volume: 111
  start-page: 164
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0100
  article-title: A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2004.04.014
– volume: 98
  start-page: 269
  year: 2003
  ident: 10.1016/j.spmi.2013.09.021_b0250
  article-title: Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(03)00063-1
– volume: 553
  start-page: 383
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0220
  article-title: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.11.181
– volume: 320
  start-page: 2774
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0270
  article-title: Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2008.06.012
– volume: 112
  start-page: 1
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0060
  article-title: Photocatalytic properties and optical absorption of zinc ferrite nanometer films
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2004.04.012
– volume: 450
  start-page: 387
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0085
  article-title: Evolution of intermediate phases in the synthesis of zinc ferrite nanopowders prepared by the tartrate precursor method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.10.139
– volume: 329
  start-page: 165
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0030
  article-title: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine–nitrate combustion process
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.10.023
– volume: 90
  start-page: 123
  year: 2000
  ident: 10.1016/j.spmi.2013.09.021_b0195
  article-title: Identification of the transition responsible for the visible emission in ZnO using quantum size effects
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(99)00599-2
– volume: 39
  start-page: 5909
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0150
  article-title: Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.01.012
– volume: 544
  start-page: 197
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0215
  article-title: Synthesis, structural and magnetic properties of copper substituted nickel manganite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.07.041
– volume: 280
  start-page: 23
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0265
  article-title: Localized canted spin behaviour in ZnxMg1.5−xMn0.5Fe2O4 spinel ferrite system
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.02.017
– volume: 481
  start-page: 515
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0010
  article-title: Synthesis and optical characterization of nanocrystalline NiFe2O4 structures
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.03.027
– volume: 540
  start-page: 145
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0120
  article-title: Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.06.068
– volume: 48
  start-page: 961
  year: 2003
  ident: 10.1016/j.spmi.2013.09.021_b0275
  article-title: Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(02)00600-0
– volume: 137
  start-page: 6
  year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0140
  article-title: Cation distribution in NixMg1−xFe2O4 studied by XPS and mossbauer spectroscopy
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2005.10.019
– volume: 110
  start-page: 20801
  year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0185
  article-title: Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061835k
– volume: 308
  start-page: 137
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0025
  article-title: Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.05.015
– volume: 310
  start-page: 2543
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0295
  article-title: Thermal annealing effect on magnetism and cation distribution in disordered ZnFe2O4 thin films deposited on glass substrates
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.11.144
– volume: 1035
  start-page: 332
  year: 2013
  ident: 10.1016/j.spmi.2013.09.021_b0105
  article-title: Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2012.11.007
– volume: 38
  start-page: 1
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0155
  article-title: Experimental investigation and thermodynamic calculation of the Al–Fe–P system at low phosphorus contents
  publication-title: CALPHAD – Comput. Coupling Phase Diagr. Thermochem.
  doi: 10.1016/j.calphad.2012.03.005
– volume: 509
  start-page: 2909
  year: 2011
  ident: 10.1016/j.spmi.2013.09.021_b0035
  article-title: Structural, optical and transport properties of Al3+ doped BiFeO3 nano-powder synthesized by solution combustion method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.11.153
– volume: 55
  start-page: 1472
  issue: 4
  year: 2009
  ident: 10.1016/j.spmi.2013.09.021_b0205
  article-title: Photocatalytic hydrogen generation from water–methanol mixtures using nanocrystalline ZnFe2O4 under visible light irradiation
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.55.1472
– volume: 88
  start-page: 262506
  year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0290
  article-title: Large room temperature magnetization in nanocrystalline zinc ferrite thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2217253
– volume: 454
  start-page: 432
  year: 2008
  ident: 10.1016/j.spmi.2013.09.021_b0090
  article-title: Determination of milling parameters to obtain mechanosynthesized ZnFe2O4
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.12.117
– volume: 110
  start-page: 15234
  year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0075
  article-title: Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation–observation of magnetization and its relaxation at low temperature
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp055024c
– volume: 138
  start-page: 416
  year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0080
  article-title: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2006.03.023
– volume: 530
  start-page: 63
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0040
  article-title: Exploring the dielectric behaviour of nano-structured Al3+ doped BiFeO3 ceramics synthesized by auto ignition process
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.01.075
– volume: 339
  start-page: 255
  year: 2002
  ident: 10.1016/j.spmi.2013.09.021_b0070
  article-title: Structural evolution of ball-milled ZnFe2O4
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)02011-4
– volume: 865
  start-page: 375
  year: 2004
  ident: 10.1016/j.spmi.2013.09.021_b0325
  article-title: Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite
  publication-title: Mater. Sci. Eng. A
– volume: 38
  start-page: 741
  year: 2012
  ident: 10.1016/j.spmi.2013.09.021_b0015
  article-title: Structural and magnetic characterization of MnxZn1−xFe2O4 (x=0.2, 0.35, 0.65, 0.8, 1.0) ferrites obtained by the citrate precursor method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.07.066
– volume: 41
  start-page: 5050
  year: 2007
  ident: 10.1016/j.spmi.2013.09.021_b0170
  article-title: Enhanced visible light induced photocatalytic disinfection of E. coli by nitrogen doped titanium oxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062753c
– volume: 89
  start-page: 62
  year: 2003
  ident: 10.1016/j.spmi.2013.09.021_b0065
  article-title: Synthesis of nanocrystalline Ni1−xCoxMnxFe2−xO4: a material for liquefied petroleum gas sensing
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(02)00429-X
– year: 2006
  ident: 10.1016/j.spmi.2013.09.021_b0235
SSID ssj0009417
Score 2.169227
Snippet [Display omitted] •Nano-sized Mg-doped ZnFe2O4 was synthesized by the microwave combustion method.•The as-synthesized samples showed good optical and magnetic...
Mg-doped ZnFe2O4 samples were prepared by a microwave combustion method. The obtained samples were characterized by powder X-ray diffraction (XRD), high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Cations
Combustion
Crystallites
Electron microscopy
Ferrites
Magnesium
Magnetic properties
Magnetization
Microwaves
Nanostructures
Optical properties
Spectra
X-ray diffraction
X-rays
Title Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method
URI https://dx.doi.org/10.1016/j.spmi.2013.09.021
https://www.proquest.com/docview/1531020590
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-ilPoiVlv8aCWFvkl6t_nY2308jh7XFvWhCuJLyNfKiWaXu1Pxxb-9M9ndlhbqQx8TJmHJDDO_ZH8zQ8gnmZIDRoZxU3gmAcEz6yRneZk7A_blC4u5wyen-exCfrtUl2tk0ufCIK2y8_2tT0_eupsZdKc5aObzwQ8IfgC_BQJgsFSOSXxSjtDKPz__pnmUMnXdRWGG0l3iTMvxWjZ3c6R3iVTrlGf_Ck5_uekUe6bbZKsDjXTcftcbshbiDnk96Xu17ZBXicjplrukPmvS6zQ10dM7cx0xSZE2-OS-wNqptK7oyTXzMPb0Kk4DP5M0mgh3544iB8Ih0dKpfaIL08xhH2TtPZqHQOGYLPb_qiNte0-_JRfTL-eTGeuaKjAnpVgxA5BE-GroMpl5uF0pVzoujfAA1ZT1SvAqtyaUpgw8mDKrvMSCLX5oC17BFVa8I-uxjmGPUJ_nQ1NxJ0BGeuWsDEEpoQoIiiYv_D7J-tPUrqs4jo0vbnVPLbvRqAGNGtDDUoMG9snxrzVNW2_jRWnVK0n_YTUaAsKL6z72GtWgKfxHYmKo75caAgBALszIPfjPvQ_JJo5ayst7sr5a3IcPAFxW9ihZ5hHZGH_9Pjv9CSGn7YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQuCAqI8jQSN2R240dIjmjFaoFue6CVKi6WX6kWUSfa3YK48NuZcRIQSPTAMcnYijyTmc_ONzMAL1RODnhtubBV4AoRPHdeCV7WpbdoX6FylDu8PCoXp-r9mT7bgdmYC0O0ysH39z49e-vhzmRYzUm3Wk0-YvBD-C0JAKOlivoaXFf4-VIbg1c_fvM8apXb7pI0J_Ehc6YneW26ixXxu2QudiqKf0Wnv_x0Dj7z23BrQI3sTf9id2Anpn3Ym43N2vbhRmZy-s1daI-7fDzNbArswp4nylJkHZ25r6l4KmsbtjznAa8D-5TmURwrlmzCzfPAkUPhmHnpzH1na9utcB6i7X2zXyPDdXLUAKxNrG8-fQ9O529PZgs-dFXgXim55RYxiQzN1BeqCLi90r72QlkZEKtpF7QUTelsrG0dRbR10QRFFVvC1FWiwT2svA-7qU3xAbBQllPbCC9RRgXtnYpRa6krjIq2rMIBFONqGj-UHKfOF1_MyC37bEgDhjRgprVBDRzAy19jur7gxpXSelSS-cNsDEaEK8c9HzVqUFP0k8Sm2F5uDEYAxFyUkvvwP-d-BnuLk-WhOXx39OER3KQnPf_lMexu15fxCaKYrXuarfQnlvDvEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+magnetic+properties+of+Mg-doped+ZnFe2O4+nanoparticles+prepared+by+rapid+microwave+combustion+method&rft.jtitle=Superlattices+and+microstructures&rft.au=Manikandan%2C+A&rft.au=Vijaya%2C+J&rft.au=Sundararajan%2C+M&rft.au=Meganathan%2C+C&rft.date=2013-12-01&rft.issn=0749-6036&rft.volume=64&rft.spage=118&rft.epage=131&rft_id=info:doi/10.1016%2Fj.spmi.2013.09.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon