A translational study of circulating cell-free microRNA-1 in acute myocardial infarction
miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determin...
Saved in:
Published in | Clinical science (1979) Vol. 119; no. 2; pp. 87 - 95 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
20.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determining the absolute amount of an miRNA in blood and to determine the potential applications of circulating cell-free miR-1 (microRNA-1) in AMI (acute myocardial infarction). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart- and muscle-specific miRNA. In a cardiac cell necrosis model induced by Triton X-100 in vitro, we found that cardiac miR-1 can be released into the culture medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with a peak at 6 h, in which an increase in miR-1 of over 200-fold was demonstrated. The miR-1 level returned to basal levels at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI had a strong positive correlation with myocardial infarct size. To verify further the relationship between myocardial size and miR-1 level, an IP (ischaemic preconditioning) model was used. The results showed that IP significantly reduced circulating miR-1 levels and myocardial infract size induced by I/R (ischaemia/reperfusion) injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB (creatine kinase-MB) levels. In conclusion, the results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI. |
---|---|
AbstractList | miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determining the absolute amount of an miRNA in blood and to determine the potential applications of circulating cell-free miR-1 (microRNA-1) in AMI (acute myocardial infarction). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart- and muscle-specific miRNA. In a cardiac cell necrosis model induced by Triton X-100 in vitro, we found that cardiac miR-1 can be released into the culture medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with a peak at 6 h, in which an increase in miR-1 of over 200-fold was demonstrated. The miR-1 level returned to basal levels at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI had a strong positive correlation with myocardial infarct size. To verify further the relationship between myocardial size and miR-1 level, an IP (ischaemic preconditioning) model was used. The results showed that IP significantly reduced circulating miR-1 levels and myocardial infract size induced by I/R (ischaemia/reperfusion) injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB (creatine kinase-MB) levels. In conclusion, the results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI.miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determining the absolute amount of an miRNA in blood and to determine the potential applications of circulating cell-free miR-1 (microRNA-1) in AMI (acute myocardial infarction). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart- and muscle-specific miRNA. In a cardiac cell necrosis model induced by Triton X-100 in vitro, we found that cardiac miR-1 can be released into the culture medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with a peak at 6 h, in which an increase in miR-1 of over 200-fold was demonstrated. The miR-1 level returned to basal levels at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI had a strong positive correlation with myocardial infarct size. To verify further the relationship between myocardial size and miR-1 level, an IP (ischaemic preconditioning) model was used. The results showed that IP significantly reduced circulating miR-1 levels and myocardial infract size induced by I/R (ischaemia/reperfusion) injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB (creatine kinase-MB) levels. In conclusion, the results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI. miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determining the absolute amount of an miRNA in blood and to determine the potential applications of circulating cell-free miR-1 (microRNA-1) in AMI (acute myocardial infarction). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart- and muscle-specific miRNA. In a cardiac cell necrosis model induced by Triton X-100 in vitro, we found that cardiac miR-1 can be released into the culture medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with a peak at 6 h, in which an increase in miR-1 of over 200-fold was demonstrated. The miR-1 level returned to basal levels at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI had a strong positive correlation with myocardial infarct size. To verify further the relationship between myocardial size and miR-1 level, an IP (ischaemic preconditioning) model was used. The results showed that IP significantly reduced circulating miR-1 levels and myocardial infract size induced by I/R (ischaemia/reperfusion) injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB (creatine kinase-MB) levels. In conclusion, the results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI. MicroRNAs (miRNAs) precipitate in many diseases including cardiovascular disease. In contrast to our original thought, miRNAs exist in circulating blood and they are relatively stable due to binding with other materials. The current translational study is to establish a method to determine the absolute amount of a miRNA in blood and to determine the potential applications of circulating cell-free microRNA-1 (miR-1) in acute myocardial infarction (AMI). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart and muscle specific miRNA. In a cardiac cell necrosis model induced by Triton-100 in vitro , we found that cardiac miR-1 can be released into cultured medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with the peak at 6h, in which an over 200-fold increased miR-1 was demonstrated. The miR-1 level was returned to basal level at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI has a strong positive correlation with the myocardial size. To further verify the relationship between myocardial size and miR-1 level, an ischemic preconditioning model was applied. The result showed that ischemic preconditioning significantly reduced the circulating miR-1 and the myocardial size induced by ischemia-reperfusion injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB levels. The results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI. miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood and are relatively stable due to binding with other materials. The aim of the present translational study is to establish a method of determining the absolute amount of an miRNA in blood and to determine the potential applications of circulating cell-free miR-1 (microRNA-1) in AMI (acute myocardial infarction). The results revealed that miR-1 is the most abundant miRNA in the heart and is also a heart- and muscle-specific miRNA. In a cardiac cell necrosis model induced by Triton X-100 in vitro, we found that cardiac miR-1 can be released into the culture medium and is stable at least for 24 h. In a rat model of AMI induced by coronary ligation, we found that serum miR-1 is quickly increased after AMI with a peak at 6 h, in which an increase in miR-1 of over 200-fold was demonstrated. The miR-1 level returned to basal levels at 3 days after AMI. Moreover, the serum miR-1 level in rats with AMI had a strong positive correlation with myocardial infarct size. To verify further the relationship between myocardial size and miR-1 level, an IP (ischaemic preconditioning) model was used. The results showed that IP significantly reduced circulating miR-1 levels and myocardial infract size induced by I/R (ischaemia/reperfusion) injury. Finally, the levels of circulating cell-free miR-1 were significantly increased in patients with AMI and had a positive correlation with serum CK-MB (creatine kinase-MB) levels. In conclusion, the results suggest that serum miR-1 could be a novel sensitive diagnostic biomarker for AMI. |
Author | He, Pengcheng Cheng, Yunhui Cao, Xiaopei Yang, Jian Liu, Xiaojun Tan, Ning Qin, Shanshan Zhang, Chunxiang Dong, Xiaoli |
AuthorAffiliation | 4 Sino-American Institute for Translational Medicine, The affiliated hospital of Luzhou Medical College, Luzhou, 646000. China 3 Department of Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China 1 RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA 2 Department of Cardiology, Guangdong Cardiovascular Institute & Guangdong Provincial People's Hospital, Guangzhou, 510100, China |
AuthorAffiliation_xml | – name: 1 RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA – name: 3 Department of Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China – name: 2 Department of Cardiology, Guangdong Cardiovascular Institute & Guangdong Provincial People's Hospital, Guangzhou, 510100, China – name: 4 Sino-American Institute for Translational Medicine, The affiliated hospital of Luzhou Medical College, Luzhou, 646000. China |
Author_xml | – sequence: 1 givenname: Yunhui surname: Cheng fullname: Cheng, Yunhui organization: RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, U.S.A – sequence: 2 givenname: Ning surname: Tan fullname: Tan, Ning organization: RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, U.S.A., Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China – sequence: 3 givenname: Jian surname: Yang fullname: Yang, Jian organization: RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, U.S.A – sequence: 4 givenname: Xiaojun surname: Liu fullname: Liu, Xiaojun organization: RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, U.S.A – sequence: 5 givenname: Xiaopei surname: Cao fullname: Cao, Xiaopei organization: Department of Endocrinology, First Affiliated Hospital, Sun yat-sen University, Guangzhou, 510080, China – sequence: 6 givenname: Pengcheng surname: He fullname: He, Pengcheng organization: Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China – sequence: 7 givenname: Xiaoli surname: Dong fullname: Dong, Xiaoli organization: Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China – sequence: 8 givenname: Shanshan surname: Qin fullname: Qin, Shanshan organization: Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China – sequence: 9 givenname: Chunxiang surname: Zhang fullname: Zhang, Chunxiang organization: RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, U.S.A., Sino-American Institute for Translational Medicine, The Affiliated Hospital of Luzhou Medical College, Luzhou 646000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20218970$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUlLAzEUDlKxi178ATI3QRjNMlsuQiluUBRcwFvIJJkamUlqMiP035uxrRu-HB68fAvve2MwMNYoAA4RPEUwwWezBwwhhVmS7oARSnIYFznJBmAEUULiFGM0BGPvXyHEJLw9MMQQo4LmcASep1HruPE1b7U1vI5828lVZKtIaCe6fmwWkVB1HVdOqajRwtn722mMIm0iLro2zFZWcCd1YGtTcSd6qX2wW_Haq4NNn4Cny4vH2XU8v7u6mU3nsUgS0sY8qWRW5FmGZCGlwmUqJMVEUiJJKJpVtMCK4lKmBKYZKkuBIBaElBylXBRkAs7XusuubJQUyoR9arZ0uuFuxSzX7PeP0S9sYd8ZSSkpUBoEjjcCzr51yres0b5fmBtlO89yQkJUFOGAPPpp9eWxTTMA4BoQMvLeqYoJ3X4GG5x1zRBk_cHY98EC5eQPZav6D_gDREeV8Q |
CitedBy_id | crossref_primary_10_3390_jcm12155010 crossref_primary_10_1016_j_ijcard_2017_06_054 crossref_primary_10_1016_j_biopha_2019_108883 crossref_primary_10_1016_j_ijcard_2012_01_075 crossref_primary_10_3390_cancers12030704 crossref_primary_10_4244_EIJV9I5A88 crossref_primary_10_1186_s10020_019_0086_1 crossref_primary_10_1016_j_isci_2019_08_035 crossref_primary_10_1155_2014_259131 crossref_primary_10_3390_ijms25031673 crossref_primary_10_1016_j_canep_2011_02_016 crossref_primary_10_1093_eurheartj_ehv236 crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_06_002 crossref_primary_10_1371_journal_pone_0052442 crossref_primary_10_1016_j_yjmcc_2012_08_010 crossref_primary_10_1097_HCO_0000000000000107 crossref_primary_10_3389_fimmu_2025_1486961 crossref_primary_10_1186_s12872_018_0987_x crossref_primary_10_1371_journal_pone_0062245 crossref_primary_10_1002_emmm_201201749 crossref_primary_10_1016_j_trsl_2010_12_013 crossref_primary_10_1016_j_jchf_2013_10_002 crossref_primary_10_1155_2013_751341 crossref_primary_10_3389_fcvm_2022_879351 crossref_primary_10_1186_1746_6148_9_12 crossref_primary_10_3390_antiox9121292 crossref_primary_10_1021_acs_analchem_4c01904 crossref_primary_10_1128_JVI_00955_15 crossref_primary_10_1111_sms_14000 crossref_primary_10_1134_S199075081601008X crossref_primary_10_1152_physiolgenomics_00130_2010 crossref_primary_10_1186_1472_6890_13_11 crossref_primary_10_3390_ijms19051467 crossref_primary_10_1155_2015_730535 crossref_primary_10_1007_s11906_012_0310_7 crossref_primary_10_1039_C6MB00824K crossref_primary_10_1177_2050312114524952 crossref_primary_10_2217_bmm_15_86 crossref_primary_10_1038_s41598_017_09709_w crossref_primary_10_1093_cvr_cvr266 crossref_primary_10_1515_jce_2016_0025 crossref_primary_10_1159_000499834 crossref_primary_10_1016_j_biopha_2018_04_191 crossref_primary_10_3389_fphys_2021_669590 crossref_primary_10_1371_journal_pone_0216363 crossref_primary_10_1093_cvr_cvw174 crossref_primary_10_38109_2225_1685_2023_2_64_71 crossref_primary_10_1017_S1047951113000048 crossref_primary_10_1016_j_neuroscience_2015_04_061 crossref_primary_10_1007_s11739_020_02422_z crossref_primary_10_1002_jcp_28291 crossref_primary_10_2217_bmm_13_8 crossref_primary_10_1177_0300060513497560 crossref_primary_10_3390_nu16162587 crossref_primary_10_1186_s40364_024_00690_x crossref_primary_10_1253_circj_CJ_14_0086 crossref_primary_10_1161_CIRCGENETICS_110_958363 crossref_primary_10_3390_nu9090966 crossref_primary_10_1177_0192623311432289 crossref_primary_10_3390_life11101057 crossref_primary_10_1007_s00204_018_2356_z crossref_primary_10_1080_14728222_2018_1439015 crossref_primary_10_1017_S2040174418000387 crossref_primary_10_1371_journal_pone_0050515 crossref_primary_10_1016_j_ijcard_2012_09_108 crossref_primary_10_1097_FJC_0b013e3181f8d173 crossref_primary_10_1016_j_ncrna_2017_06_001 crossref_primary_10_1371_journal_pone_0088566 crossref_primary_10_1007_s11883_012_0238_z crossref_primary_10_1007_s12265_016_9705_1 crossref_primary_10_1016_j_bios_2020_112751 crossref_primary_10_1155_2015_602597 crossref_primary_10_1371_journal_pone_0142904 crossref_primary_10_1016_j_drudis_2023_103695 crossref_primary_10_1186_1477_5956_12_12 crossref_primary_10_1586_14779072_2014_953483 crossref_primary_10_1152_ajpheart_00191_2012 crossref_primary_10_1002_jcla_23099 crossref_primary_10_1155_2015_821823 crossref_primary_10_1097_SHK_0000000000001156 crossref_primary_10_1373_clinchem_2011_173823 crossref_primary_10_3389_fphys_2014_00341 crossref_primary_10_3389_fphar_2021_743945 crossref_primary_10_1016_j_drudis_2014_10_004 crossref_primary_10_1016_j_ijcard_2019_09_050 crossref_primary_10_1007_s00204_020_02952_7 crossref_primary_10_1016_j_biosx_2024_100484 crossref_primary_10_1016_j_vph_2011_08_001 crossref_primary_10_4196_kjpp_2014_18_5_359 crossref_primary_10_3109_08941939_2011_618523 crossref_primary_10_1161_CIRCRESAHA_113_300226 crossref_primary_10_1016_j_jacc_2014_01_050 crossref_primary_10_1016_j_yjmcc_2018_05_009 crossref_primary_10_3390_ijms14034934 crossref_primary_10_3389_fphys_2018_00664 crossref_primary_10_1016_j_carpath_2021_107346 crossref_primary_10_1007_s00018_023_04793_w crossref_primary_10_1007_s12033_011_9414_6 crossref_primary_10_1186_s12920_019_0570_z crossref_primary_10_2478_jce_2018_0008 crossref_primary_10_1371_journal_pone_0093222 crossref_primary_10_18097_PBMC20166204403 crossref_primary_10_2217_bmm_15_50 crossref_primary_10_1038_aps_2017_205 crossref_primary_10_1016_j_bbrc_2011_01_111 crossref_primary_10_1016_j_clinbiochem_2012_04_013 crossref_primary_10_3389_fonc_2022_827259 crossref_primary_10_3390_jcm11010005 crossref_primary_10_1097_FJC_0b013e318203759b crossref_primary_10_1016_j_yjmcc_2015_01_011 crossref_primary_10_1161_ATVBAHA_112_300141 crossref_primary_10_1161_CIRCRESAHA_111_247452 crossref_primary_10_1161_CIRCGENETICS_110_958975 crossref_primary_10_1007_s12265_013_9493_9 crossref_primary_10_1152_ajpcell_00310_2017 crossref_primary_10_1161_CIRCULATIONAHA_111_062117 crossref_primary_10_3390_ijms25158004 crossref_primary_10_1016_j_thromres_2019_07_024 crossref_primary_10_1586_erm_10_103 crossref_primary_10_1002_jcp_27800 crossref_primary_10_1111_acel_12225 crossref_primary_10_1172_jci_insight_165568 crossref_primary_10_1016_j_atherosclerosis_2015_06_037 crossref_primary_10_3390_biomedicines10030718 crossref_primary_10_1039_C5MB00064E crossref_primary_10_4103_aian_AIAN_224_20 crossref_primary_10_1093_cvr_cvs196 crossref_primary_10_1080_13543776_2018_1503650 crossref_primary_10_1007_s11684_014_0379_2 crossref_primary_10_3389_fphys_2020_00691 crossref_primary_10_1371_journal_pone_0138383 crossref_primary_10_1016_j_dmpk_2020_11_007 crossref_primary_10_1016_j_molmed_2020_02_001 crossref_primary_10_1161_CIRCGENETICS_110_957415 crossref_primary_10_1093_ckj_sfaa143 crossref_primary_10_1007_s13205_019_1812_7 crossref_primary_10_1016_j_freeradbiomed_2013_06_044 crossref_primary_10_2174_0929867325666180926161427 crossref_primary_10_1016_j_atherosclerosis_2024_118584 crossref_primary_10_1038_srep24498 crossref_primary_10_18632_oncotarget_23203 crossref_primary_10_1002_jcp_25174 crossref_primary_10_1253_circj_CJ_16_0568 crossref_primary_10_1124_mol_111_073528 crossref_primary_10_1051_bioconf_20225501014 crossref_primary_10_1371_journal_pone_0103079 crossref_primary_10_1042_CS20100297 crossref_primary_10_1186_2001_1326_1_15 crossref_primary_10_1016_j_mrfmmm_2011_03_004 crossref_primary_10_1002_jcb_28723 crossref_primary_10_1007_s12265_015_9640_6 crossref_primary_10_1016_j_mam_2012_08_001 crossref_primary_10_1016_j_yebeh_2013_08_009 crossref_primary_10_1038_srep22384 crossref_primary_10_1016_j_lfs_2023_122038 crossref_primary_10_1016_j_yjmcc_2016_03_015 crossref_primary_10_1186_s13148_024_01722_x crossref_primary_10_1097_HCO_0b013e328345983d crossref_primary_10_1016_j_biopha_2018_12_109 crossref_primary_10_3109_0886022X_2015_1055697 crossref_primary_10_4161_rna_20378 crossref_primary_10_1093_eurheartj_ehw047 crossref_primary_10_1016_j_ijcard_2014_07_068 crossref_primary_10_1111_jcmm_12236 crossref_primary_10_1111_jcmm_14534 crossref_primary_10_3389_fphys_2020_01088 crossref_primary_10_1007_s11886_014_0539_7 crossref_primary_10_1016_j_ijcard_2016_09_016 crossref_primary_10_1038_s41390_020_1049_5 crossref_primary_10_1155_2018_8617314 crossref_primary_10_15406_atroa_2017_02_00043 crossref_primary_10_1161_JAHA_120_017000 crossref_primary_10_2217_bmm_2017_0386 crossref_primary_10_1007_s00109_011_0840_5 crossref_primary_10_3390_cells11060983 crossref_primary_10_1371_journal_pone_0206727 crossref_primary_10_1016_j_atherosclerosis_2016_09_067 crossref_primary_10_3109_1354750X_2013_833294 crossref_primary_10_3390_ijms21020561 crossref_primary_10_1007_s12265_013_9466_z crossref_primary_10_3390_ijms17081232 crossref_primary_10_3389_fbioe_2022_767985 crossref_primary_10_1186_1755_8794_6_16 crossref_primary_10_1111_jcmm_14463 crossref_primary_10_1155_2013_217948 crossref_primary_10_1161_CIRCRESAHA_114_302751 crossref_primary_10_1042_CS20220056 crossref_primary_10_1016_j_hlc_2014_01_001 crossref_primary_10_1186_s43042_024_00622_2 crossref_primary_10_1021_acs_analchem_9b03001 crossref_primary_10_4236_ajmb_2016_61001 crossref_primary_10_1002_joa3_12252 crossref_primary_10_1007_s11010_012_1546_x crossref_primary_10_1186_s12964_018_0303_5 crossref_primary_10_1007_s11239_017_1537_6 crossref_primary_10_1161_CIRCULATIONAHA_111_037572 crossref_primary_10_1016_j_ab_2016_02_019 crossref_primary_10_1038_ncomms11106 crossref_primary_10_1039_D2TB01987F crossref_primary_10_3389_fphys_2021_717119 crossref_primary_10_1155_2014_987285 crossref_primary_10_1002_anse_202100012 crossref_primary_10_3892_ijmm_2014_1739 crossref_primary_10_1161_CIRCRESAHA_115_306300 crossref_primary_10_1016_j_jgg_2014_07_003 crossref_primary_10_1016_j_hjc_2020_03_003 crossref_primary_10_1016_j_molmed_2014_10_006 crossref_primary_10_1038_s41401_020_0471_x crossref_primary_10_1111_jcmm_12148 crossref_primary_10_3390_ijms25126620 crossref_primary_10_1016_j_jacc_2012_04_018 crossref_primary_10_1042_CS20120620 crossref_primary_10_1007_s40291_013_0065_0 crossref_primary_10_3390_molecules19056080 crossref_primary_10_1515_jim_2017_0074 crossref_primary_10_1161_CIRCRESAHA_116_308434 crossref_primary_10_1042_BST20120019 crossref_primary_10_1097_MD_0000000000026627 crossref_primary_10_1111_j_1742_4658_2011_08090_x crossref_primary_10_1016_j_addr_2015_04_011 crossref_primary_10_1038_aps_2018_30 crossref_primary_10_1177_2516865720988567 crossref_primary_10_1111_eci_12475 crossref_primary_10_1152_japplphysiol_00075_2013 crossref_primary_10_1161_JAHA_116_004878 crossref_primary_10_1016_j_ajpath_2016_01_007 crossref_primary_10_1155_2014_985408 crossref_primary_10_1161_ATVBAHA_111_226696 crossref_primary_10_1016_j_ijcard_2014_02_008 crossref_primary_10_1007_s11427_011_4257_8 crossref_primary_10_1016_j_yhbeh_2012_06_002 crossref_primary_10_1371_journal_pone_0106318 crossref_primary_10_3390_ijms22094799 crossref_primary_10_1517_17425255_2013_827170 crossref_primary_10_3109_1354750X_2014_952663 crossref_primary_10_1016_j_jacc_2015_03_570 crossref_primary_10_1038_bjc_2013_8 crossref_primary_10_1016_j_pharmthera_2021_108025 crossref_primary_10_1016_j_tcm_2017_12_012 |
Cites_doi | 10.1126/science.3941911 10.2353/ajpath.2007.061170 10.1016/j.yjmcc.2009.01.008 10.1590/S0074-02762004000700006 10.1016/0092-8674(93)90529-Y 10.1373/clinchem.2009.125310 10.1016/0092-8674(93)90530-4 10.1038/ng1590 10.1074/jbc.M109.027896 10.1038/cr.2008.290 10.1042/CS20070211 10.1101/gad.1356105 10.1016/j.cell.2004.12.035 10.1073/pnas.0804549105 10.1016/S0960-9822(02)00809-6 10.1073/pnas.0813371106 10.1159/000268088 10.1016/j.bbrc.2009.02.097 10.1146/annurev.med.59.053006.104707 10.1517/14712590902932889 10.1161/CIRCRESAHA.106.141986 10.1186/1756-0500-2-89 10.1093/eurheartj/ehq013 10.1074/jbc.M801035200 10.1161/CIRCRESAHA.109.197517 10.1128/MCB.01222-08 10.1038/nature03817 10.1016/j.bbrc.2009.11.005 10.1161/CIRCRESAHA.109.200451 10.1126/science.1064921 10.1016/S1672-0229(05)03011-1 10.1074/jbc.M806920200 10.1038/ncb1596 10.1038/nrg1990 10.1152/physiolgenomics.00034.2008 10.1016/j.cell.2007.04.040 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1042/CS20090645 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1470-8736 |
EndPage | 95 |
ExternalDocumentID | PMC3593815 20218970 10_1042_CS20090645 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL095707 – fundername: NHLBI NIH HHS grantid: R01 HL080133 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL080133-05 || HL |
GroupedDBID | --- 0R~ 0VX 29B 2WC 4.4 5GY 5RE 5VS 6J9 AAYXX ABCQX ABJNI ACGFO ACGFS ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DU5 E3Z EBD EBS EJD EMOBN F5P GX1 H13 HZ~ L7B MV1 O9- P2P P6G RHI RPO SV3 TR2 WH7 AABGO CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c443t-a4fd687661d8dde2b5cd923d93d333396f982e92bd530561bbc102c33ba15ac83 |
ISSN | 0143-5221 1470-8736 |
IngestDate | Thu Aug 21 18:19:37 EDT 2025 Fri Jul 11 02:19:03 EDT 2025 Sat May 31 02:11:18 EDT 2025 Tue Jul 01 03:56:48 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-a4fd687661d8dde2b5cd923d93d333396f982e92bd530561bbc102c33ba15ac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://portlandpress.com/clinsci/article-pdf/119/2/87/440692/cs1190087.pdf |
PMID | 20218970 |
PQID | 733897912 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3593815 proquest_miscellaneous_733897912 pubmed_primary_20218970 crossref_citationtrail_10_1042_CS20090645 crossref_primary_10_1042_CS20090645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100420 |
PublicationDateYYYYMMDD | 2010-04-20 |
PublicationDate_xml | – month: 4 year: 2010 text: 20100420 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Clinical science (1979) |
PublicationTitleAlternate | Clin Sci (Lond) |
PublicationYear | 2010 |
References | Chin (2021113010131991500_B25) 2008; 18 Zaug (2021113010131991500_B1a) 1986; 231 Cheng (2021113010131991500_B18) 2009; 47 Sokol (2021113010131991500_B33) 2005; 19 Ji (2021113010131991500_B34) 2009; 55 Lagos-Quintana (2021113010131991500_B11) 2002; 12 Valadi (2021113010131991500_B24) 2007; 9 Wang (2021113010131991500_B27) 2009; 106 Shan (2021113010131991500_B30) 2009; 381 Kong (2021113010131991500_B2) 2005; 3 Wightman (2021113010131991500_B4) 1993; 75 Chua (2021113010131991500_B1) 2009; 11 Landgraf (2021113010131991500_B20) 2007; 129 Garzon (2021113010131991500_B23) 2009; 60 Luo (2021113010131991500_B28) 2008; 283 Zhao (2021113010131991500_B21) 2005; 436 Dong. (2021113010131991500_B14) 2009; 284 Wang (2021113010131991500_B36) 2010; 31 Lee (2021113010131991500_B3) 1993; 75 Chen (2021113010131991500_B7) 2007; 8 Bentwich (2021113010131991500_B6) 2005; 37 Cortez (2021113010131991500_B13) 2009; 9 Lin (2021113010131991500_B17) 2009; 284 Bostjancic (2021113010131991500_B31) 2009; 115 Zhang (2021113010131991500_B9) 2008; 114 Cheng (2021113010131991500_B12) 2009; 105 Zhang (2021113010131991500_B10) 2008; 33 Zhu (2021113010131991500_B26) 2009; 2 Mitchell (2021113010131991500_B32) 2008; 105 Lagos-Quintana (2021113010131991500_B5) 2001; 294 Souza (2021113010131991500_B19) 2004; 299 Ji (2021113010131991500_B15) 2007; 100 Cheng (2021113010131991500_B16) 2007; 170 Ikeda (2021113010131991500_B29) 2009; 29 Lewis (2021113010131991500_B8) 2005; 120 Rao (2021113010131991500_B22) 2009; 105 Ai (2021113010131991500_B35) 2010; 391 |
References_xml | – volume: 231 start-page: 470 year: 1986 ident: 2021113010131991500_B1a article-title: The intervening sequence RNA of Tetrahymena is an enzyme publication-title: Science doi: 10.1126/science.3941911 – volume: 170 start-page: 1831 year: 2007 ident: 2021113010131991500_B16 article-title: MiroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2007.061170 – volume: 47 start-page: 5 year: 2009 ident: 2021113010131991500_B18 article-title: MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4 publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2009.01.008 – volume: 299 start-page: 697 year: 2004 ident: 2021113010131991500_B19 article-title: In vitro measurement of enzymatic markers as a tool to detect mouse cardiomyocytes injury publication-title: Mem. Inst. Oswaldo Cruz doi: 10.1590/S0074-02762004000700006 – volume: 75 start-page: 843 year: 1993 ident: 2021113010131991500_B3 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 55 start-page: 1944 year: 2009 ident: 2021113010131991500_B34 article-title: Plasma miR-208 as a biomarker of myocardial injury publication-title: Clin. Chem. doi: 10.1373/clinchem.2009.125310 – volume: 75 start-page: 855 year: 1993 ident: 2021113010131991500_B4 article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 37 start-page: 766 year: 2005 ident: 2021113010131991500_B6 article-title: Identification of hundreds of conserved and nonconserved human microRNAs publication-title: Nat. Genet. doi: 10.1038/ng1590 – volume: 284 start-page: 29514 year: 2009 ident: 2021113010131991500_B14 article-title: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.027896 – volume: 18 start-page: 983 year: 2008 ident: 2021113010131991500_B25 article-title: A truth serum for cancer: microRNAs have major potential as cancer biomarkers publication-title: Cell Res. doi: 10.1038/cr.2008.290 – volume: 114 start-page: 699 year: 2008 ident: 2021113010131991500_B9 article-title: MicroRNAs: role in cardiovascular biology and disease publication-title: Clin. Sci. doi: 10.1042/CS20070211 – volume: 19 start-page: 2343 year: 2005 ident: 2021113010131991500_B33 article-title: Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth publication-title: Genes Dev. doi: 10.1101/gad.1356105 – volume: 120 start-page: 15 year: 2005 ident: 2021113010131991500_B8 article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 105 start-page: 10513 year: 2008 ident: 2021113010131991500_B32 article-title: Circulating microRNAs as stable blood-based markers for cancer detection publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0804549105 – volume: 12 start-page: 735 year: 2002 ident: 2021113010131991500_B11 article-title: Identification of tissue-specific microRNAs from mouse publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00809-6 – volume: 106 start-page: 4402 year: 2009 ident: 2021113010131991500_B27 article-title: Circulating microRNAs, potential biomarkers for drug-induced liver injury publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0813371106 – volume: 115 start-page: 163 year: 2009 ident: 2021113010131991500_B31 article-title: MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction publication-title: Cardiology doi: 10.1159/000268088 – volume: 381 start-page: 597 year: 2009 ident: 2021113010131991500_B30 article-title: Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.02.097 – volume: 60 start-page: 167 year: 2009 ident: 2021113010131991500_B23 article-title: MicroRNAs in cancer publication-title: Annu. Rev. Med. doi: 10.1146/annurev.med.59.053006.104707 – volume: 9 start-page: 703 year: 2009 ident: 2021113010131991500_B13 article-title: MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712590902932889 – volume: 100 start-page: 1579 year: 2007 ident: 2021113010131991500_B15 article-title: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.106.141986 – volume: 2 start-page: 89 year: 2009 ident: 2021113010131991500_B26 article-title: Circulating microRNAs in breast cancer and healthy subjects publication-title: BMC Res. Notes doi: 10.1186/1756-0500-2-89 – volume: 31 start-page: 656 year: 2010 ident: 2021113010131991500_B36 article-title: Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehq013 – volume: 11 start-page: 189 year: 2009 ident: 2021113010131991500_B1 article-title: MicroRNAs: biogenesis, function and applications publication-title: Curr. Opin. Mol. Ther. – volume: 283 start-page: 2045 year: 2008 ident: 2021113010131991500_B28 article-title: Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801035200 – volume: 105 start-page: 158 year: 2009 ident: 2021113010131991500_B12 article-title: MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.197517 – volume: 29 start-page: 2193 year: 2009 ident: 2021113010131991500_B29 article-title: MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01222-08 – volume: 436 start-page: 214 year: 2005 ident: 2021113010131991500_B21 article-title: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis publication-title: Nature doi: 10.1038/nature03817 – volume: 391 start-page: 73 year: 2010 ident: 2021113010131991500_B35 article-title: Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.11.005 – volume: 105 start-page: 585 year: 2009 ident: 2021113010131991500_B22 article-title: Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.200451 – volume: 294 start-page: 853 year: 2001 ident: 2021113010131991500_B5 article-title: Identification of novel genes coding for small expressed RNAs publication-title: Science doi: 10.1126/science.1064921 – volume: 3 start-page: 62 year: 2005 ident: 2021113010131991500_B2 article-title: MicroRNA: biological and computational perspective publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/S1672-0229(05)03011-1 – volume: 284 start-page: 7903 year: 2009 ident: 2021113010131991500_B17 article-title: Involvement of microRNAs in hydrogen peroxidemediated gene regulation and cellular injury response in vascular smooth muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806920200 – volume: 9 start-page: 654 year: 2007 ident: 2021113010131991500_B24 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 – volume: 8 start-page: 93 year: 2007 ident: 2021113010131991500_B7 article-title: The evolution of gene regulation by transcription factors and microRNAs publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1990 – volume: 33 start-page: 139 year: 2008 ident: 2021113010131991500_B10 article-title: MicroRNomics: a newly emerging approach for disease publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00034.2008 – volume: 129 start-page: 1401 year: 2007 ident: 2021113010131991500_B20 article-title: A mammalian microRNA expression atlas based on small RNA library sequencing publication-title: Cell doi: 10.1016/j.cell.2007.04.040 |
SSID | ssj0023232 |
Score | 2.46022 |
Snippet | miRNAs (microRNAs) participate in many diseases including cardiovascular disease. In contrast with our original hypothesis, miRNAs exist in circulating blood... MicroRNAs (miRNAs) precipitate in many diseases including cardiovascular disease. In contrast to our original thought, miRNAs exist in circulating blood and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 87 |
SubjectTerms | Aged Animals Biomarkers - blood Cells, Cultured Female Humans Ischemic Preconditioning, Myocardial Male MicroRNAs - blood MicroRNAs - metabolism Middle Aged Myocardial Infarction - blood Myocardial Infarction - etiology Myocardial Infarction - pathology Myocardial Infarction - prevention & control Myocardial Reperfusion Injury - complications Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Necrosis Rats Rats, Sprague-Dawley |
Title | A translational study of circulating cell-free microRNA-1 in acute myocardial infarction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20218970 https://www.proquest.com/docview/733897912 https://pubmed.ncbi.nlm.nih.gov/PMC3593815 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB2MvY_dlNwTbyxjqYl1s6zGEjVKWMrYWvCdjSzJxSZySxA_rr--R5Gvbh615MEFRbMffl3OTzjkIfVLUUGV4QaJQgoMCFjzJqWYk5ibUAdegE21y8uIkPDrjx4lI-uUCl12yzw_V5a15JXdBFcYAV5sl-x_IdieFAXgP-MIREIbjP2E8sx0eqt2qDejt2grRqtwq15fLZtSa1YoUW2O-rO3mu18nMxLYKEem7BaB9V9QZluXPQJ3BKzvgGrLF4xSJ5UzSQMZyUEIYb40XmL8qatlXfbBAJ_L1SpHK1ua6PTxgJQ_ytoOJWW2Oa-rYRTCLqBzQqejwCQDp9ZnOx8aL0x5NAVp6wucdNK2kZDlwOvdDRWv18K-8-YN-Q4ixtYN_m3XdGylveEkwOZi7ZCm1nCRviHJtWraPxdzJiSYKeI-ekDBtXAJ4km3LQgMTNfUrvs9bUlbTr_2l7UlpJtrjO2ZG07K9b22A-Pl9Al63HgdeOYp9BTdM9Uz9HDR7Kt4jpIZHjEJOybhTYEHTMIdk3DPJFxW2DEJ90zCPZNeoLPv307nR6TpuUEU52xPMl7oEDRkGOgYNB_NhdLgA2jJNIOXDAsZUyNproVzPvNcgYmqGMuzQGQqZi_RQbWpzGuE4zgDX7XQMlAZF0LHUSbyqTTSTAthmJ6gz-2TS1VTkN72RVmlbmMEp2n_wCfoYzf3wpdhuXUWbgFIQUrap5JVZlPv0oiBYR7JgE7QK49Hd5oWyAmKRkh1E2wB9vEnVbl0hdgbJr258zffokf9n-kdOthva_MejNx9_sGx8gqMsaZL |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+translational+study+of+circulating+cell-free+microRNA-1+in+acute+myocardial+infarction&rft.jtitle=Clinical+science+%281979%29&rft.au=Cheng%2C+Yunhui&rft.au=Tan%2C+Ning&rft.au=Yang%2C+Jian&rft.au=Liu%2C+Xiaojun&rft.date=2010-04-20&rft.issn=0143-5221&rft.eissn=1470-8736&rft.volume=119&rft.issue=2&rft.spage=87&rft.epage=95&rft_id=info:doi/10.1042%2FCS20090645&rft_id=info%3Apmid%2F20218970&rft.externalDocID=PMC3593815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-5221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-5221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-5221&client=summon |