Anti-CD20 therapy depletes activated myelin-specific CD8⁺ T cells in multiple sclerosis

CD8⁺ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8⁺ T cells in MS have relied on in vitro stimulation,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 51; pp. 25800 - 25807
Main Authors Sabatino, Joseph J., Wilson, Michael R., Calabresi, Peter A., Hauser, Stephen L., Schneck, Jonathan P., Zamvil, Scott S.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.12.2019
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD8⁺ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8⁺ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8⁺ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8⁺ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8⁺ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8⁺ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8⁺ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8⁺ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20⁺ CD8⁺ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8⁺ T cells in MS, indicates these cells may be attractive targets in MS therapy.
AbstractList CD8 T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8 T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8 T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8 T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8 T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8 T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8 T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8 T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20 CD8 T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8 T cells in MS, indicates these cells may be attractive targets in MS therapy.
CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+ CD8+ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+ T cells in MS, indicates these cells may be attractive targets in MS therapy.CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+ CD8+ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+ T cells in MS, indicates these cells may be attractive targets in MS therapy.
CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+ CD8+ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+ T cells in MS, indicates these cells may be attractive targets in MS therapy.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. CD8 + T cells have been strongly implicated in MS pathogenesis, but it is unclear whether myelin is a CD8 + T cell autoantigenic target in MS. This study demonstrated that while myelin-specific CD8 + T cells are present at similar frequencies in untreated MS patients and healthy subjects, the proportion of memory and CD20-expressing myelin-specific CD8 + T cells was increased in MS patients, suggesting prior antigen encounter. This activated phenotype was reversible as the memory and CD20-expressing populations of certain myelin-specific CD8 + T cells were reduced following anti-CD20 treatment. CD8 + T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8 + T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8 + T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8 + T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8 + T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8 + T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8 + T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8 + T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20 + CD8 + T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8 + T cells in MS, indicates these cells may be attractive targets in MS therapy.
CD8⁺ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8⁺ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8⁺ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8⁺ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8⁺ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8⁺ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8⁺ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8⁺ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20⁺ CD8⁺ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8⁺ T cells in MS, indicates these cells may be attractive targets in MS therapy.
Author Schneck, Jonathan P.
Sabatino, Joseph J.
Hauser, Stephen L.
Zamvil, Scott S.
Wilson, Michael R.
Calabresi, Peter A.
Author_xml – sequence: 1
  givenname: Joseph J.
  surname: Sabatino
  fullname: Sabatino, Joseph J.
– sequence: 2
  givenname: Michael R.
  surname: Wilson
  fullname: Wilson, Michael R.
– sequence: 3
  givenname: Peter A.
  surname: Calabresi
  fullname: Calabresi, Peter A.
– sequence: 4
  givenname: Stephen L.
  surname: Hauser
  fullname: Hauser, Stephen L.
– sequence: 5
  givenname: Jonathan P.
  surname: Schneck
  fullname: Schneck, Jonathan P.
– sequence: 6
  givenname: Scott S.
  surname: Zamvil
  fullname: Zamvil, Scott S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31748274$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEYhYNU7G117UoJdONm2nzNJNkI5VatUHBTF65CJsnYXDLJOMkU7tK_5c_xl5jL7YcWXOWFPOdwzvsegYOYogPgNUanGHF6NkWdT7HELUUS4-4ZWOE6NB2T6ACsECK8EYywQ3CU8wYhJFuBXoBDijkThLMV-HYei2_WFwTBcuNmPW2hdVNwxWWoTfG3ujgLx60LPjZ5csYP3sD1hfj98xe8hsaFkKGPcFxC8VUHswluTtnnl-D5oEN2r-7eY_D144fr9WVz9eXT5_X5VWMYo6XR2Goq-t7VPNbIwfbWIC6RQQNnmPFW8EESjgYmhp60WuNe95YhwS2T2PX0GLzf-05LPzprXCyzDmqa_ajnrUraq39_or9R39Ot6iTpUMurwbs7gzn9WFwuavR5V0xHl5asCMUdF1RIXNGTJ-gmLXOs9SpF67oxE6xSb_9O9BDlfusVaPeAqZvKsxuU8UUXn3YBfVAYqd111e666vG6VXf2RHdv_X_Fm71ik0uaH3DSiY7W-vQPUXiycA
CitedBy_id crossref_primary_10_1073_pnas_2207291120
crossref_primary_10_3390_cells11121959
crossref_primary_10_1002_med_21754
crossref_primary_10_1038_s41586_024_07722_4
crossref_primary_10_3389_fimmu_2023_1071623
crossref_primary_10_3389_fneur_2023_1158487
crossref_primary_10_1172_jci_insight_156978
crossref_primary_10_1177_17562864211007687
crossref_primary_10_1017_cjn_2022_60
crossref_primary_10_1016_j_ncl_2023_06_001
crossref_primary_10_1177_20552173241301011
crossref_primary_10_3389_fimmu_2021_665718
crossref_primary_10_1212_NXI_0000000000200140
crossref_primary_10_1515_teb_2024_0037
crossref_primary_10_1212_NXI_0000000000200104
crossref_primary_10_1016_j_jneuroim_2021_577627
crossref_primary_10_1097_WCO_0000000000000813
crossref_primary_10_1111_ene_14578
crossref_primary_10_3389_fimmu_2022_996469
crossref_primary_10_1097_WCO_0000000000000938
crossref_primary_10_3389_fimmu_2020_586012
crossref_primary_10_1016_j_jtauto_2022_100173
crossref_primary_10_1212_NXI_0000000000200083
crossref_primary_10_4049_immunohorizons_2400069
crossref_primary_10_1038_s41573_020_00092_2
crossref_primary_10_1001_jamaneurol_2022_5332
crossref_primary_10_3389_fneur_2021_664664
crossref_primary_10_3389_fimmu_2024_1346671
crossref_primary_10_4049_jimmunol_2200721
crossref_primary_10_1007_s13311_020_00950_2
crossref_primary_10_3390_cells9030531
crossref_primary_10_2147_JIR_S243514
crossref_primary_10_1016_j_jneuroim_2021_577676
crossref_primary_10_1212_NXI_0000000000200118
crossref_primary_10_1073_pnas_1919044116
crossref_primary_10_1007_s00011_022_01622_x
crossref_primary_10_1007_s00415_022_11197_6
crossref_primary_10_1080_08923973_2024_2330642
crossref_primary_10_1073_pnas_2300648120
crossref_primary_10_1007_s00281_022_00926_8
crossref_primary_10_1016_j_msard_2024_105886
crossref_primary_10_1177_13524585211005657
crossref_primary_10_1007_s13311_022_01196_w
crossref_primary_10_1177_13524585231168043
crossref_primary_10_1016_j_celrep_2020_107892
crossref_primary_10_1212_NXI_0000000000200091
crossref_primary_10_3390_biomedicines12020464
crossref_primary_10_1002_acn3_51241
crossref_primary_10_4049_jimmunol_2000797
crossref_primary_10_1177_11795735241249644
crossref_primary_10_3389_fncel_2024_1426231
crossref_primary_10_3389_fimmu_2023_1254128
crossref_primary_10_1111_imr_13217
crossref_primary_10_1126_sciadv_abn1823
crossref_primary_10_1186_s12974_020_01847_9
crossref_primary_10_1212_NXI_0000000000200084
crossref_primary_10_1002_ana_25927
crossref_primary_10_1002_iid3_1178
crossref_primary_10_3390_jpm14010029
crossref_primary_10_1002_adhm_202202238
crossref_primary_10_1002_ana_26232
crossref_primary_10_1038_s41582_024_01046_7
crossref_primary_10_1016_j_msard_2020_102174
crossref_primary_10_1016_S1474_4422_21_00063_6
crossref_primary_10_1212_NXI_0000000000200004
crossref_primary_10_1016_j_omtm_2024_101267
crossref_primary_10_1002_iid3_1213
crossref_primary_10_1177_13524585241284846
crossref_primary_10_3389_fneur_2020_591894
crossref_primary_10_1002_cti2_1316
crossref_primary_10_3389_fimmu_2023_1304281
crossref_primary_10_3389_fimmu_2023_1004795
crossref_primary_10_3390_antib9030041
crossref_primary_10_3390_ijms25168987
crossref_primary_10_1186_s40478_020_01086_2
crossref_primary_10_1212_NXI_0000000000200250
crossref_primary_10_1126_scitranslmed_abi4632
crossref_primary_10_1016_j_bbi_2024_12_017
crossref_primary_10_1007_s13311_021_01008_7
crossref_primary_10_1177_13524585211003301
crossref_primary_10_3390_ijms25137354
crossref_primary_10_1073_pnas_2221544120
crossref_primary_10_1111_ene_15809
Cites_doi 10.1080/2162402X.2014.999536
10.1016/j.jaut.2010.12.003
10.1007/s00401-017-1744-4
10.1038/nm.1881
10.1093/brain/120.8.1461
10.1034/j.1399-0039.2000.550205.x
10.1007/s11481-013-9466-4
10.1016/j.jneuroim.2017.06.001
10.1016/j.vaccine.2015.10.108
10.3390/cells8010012
10.1002/eji.200838023
10.1073/pnas.91.23.10859
10.1093/brain/awy151
10.1073/pnas.0308689100
10.1016/j.immuni.2007.07.007
10.1172/JCI82416
10.1093/brain/awy301
10.1016/j.immuni.2004.11.015
10.1056/NEJMoa1100648
10.1038/nri2550
10.1111/j.1750-3639.2004.tb00496.x
10.4049/jimmunol.1400118
10.1016/j.immuni.2015.05.001
10.1016/0022-510X(83)90201-0
10.1084/jem.194.5.669
10.1038/nprot.2009.9
10.1146/annurev.immunol.23.021704.115707
10.4049/jimmunol.172.8.5120
10.1074/jbc.M111.289488
10.1038/s41467-018-07053-9
10.1038/80516
10.1016/j.msard.2014.06.001
10.1016/j.jns.2005.02.013
10.1056/NEJMoa0706383
10.1093/brain/awf059
10.1084/jem.192.3.393
10.1038/nmeth.1344
10.1038/nature10251
10.1126/science.6217550
10.1016/j.clim.2012.05.009
10.4049/jimmunol.1600089
10.1002/ana.21939
10.1093/brain/awm214
10.1126/scitranslmed.aat4301
10.1016/S0165-5728(96)00161-0
10.1182/blood-2009-10-251124
10.1038/nprot.2006.121
10.4049/jimmunol.179.8.5090
10.1038/nprot.2012.037
10.1038/s41586-019-1467-x
10.1182/blood-2003-11-4025
10.1056/NEJMoa1601277
10.1016/j.jneuroim.2009.05.017
10.2337/db14-0332
10.4049/jimmunol.159.10.4943
10.1002/eji.200425660
10.1212/NXI.0000000000000170
10.1016/j.cell.2018.08.011
10.1002/ana.410190610
10.1111/j.1365-2567.2006.02518.x
10.1007/s00109-019-01812-x
10.1016/j.jneuroim.2006.06.029
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Dec 17, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Dec 17, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1915309116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 25807
ExternalDocumentID PMC6926057
31748274
10_1073_pnas_1915309116
26863926
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R35 NS111644
– fundername: NCRR NIH HHS
  grantid: S10 RR028962
– fundername: NIAID NIH HHS
  grantid: R01 AI131624
– fundername: NIAID NIH HHS
  grantid: R21 AI142186
– fundername: NINDS NIH HHS
  grantid: R01 NS092835
– fundername: NINDS NIH HHS
  grantid: K08 NS107619
– fundername: Maisin Foundation
  grantid: N/A
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: 1K08NS107619-01A1
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R25 NS070680
– fundername: Debbie and Andy Rachleff Foundation
  grantid: N/A
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01 NS092835-01
– fundername: National Multiple Sclerosis Society (National MS Society)
  grantid: RG1701-26628
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01 NS092835
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01 NS036799
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R21 NS108159-01
– fundername: National Multiple Sclerosis Society (National MS Society)
  grantid: FAN-1506-04555
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-a1da38bbe827dc9fdbdc0790c0f74147587f9270f48fb25aa1babd4087d491eb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:04:40 EDT 2025
Thu Jul 10 19:01:05 EDT 2025
Sat Aug 23 12:26:29 EDT 2025
Wed Feb 19 02:31:08 EST 2025
Thu Apr 24 23:04:39 EDT 2025
Tue Jul 01 03:40:11 EDT 2025
Thu May 29 14:19:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords CD8+ T cells
anti-CD20 therapy
multiple sclerosis
myelin antigen
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-a1da38bbe827dc9fdbdc0790c0f74147587f9270f48fb25aa1babd4087d491eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved October 24, 2019 (received for review September 5, 2019)
Author contributions: J.J.S., M.R.W., P.A.C., S.L.H., J.P.S., and S.S.Z. designed research; J.J.S. performed research; J.P.S. contributed new reagents/analytic tools; J.J.S., M.R.W., P.A.C., S.L.H., J.P.S., and S.S.Z. analyzed data; and J.J.S., M.R.W., P.A.C., S.L.H., J.P.S., and S.S.Z. wrote the paper.
ORCID 0000-0002-6804-7441
0000-0002-8705-5084
0000-0003-2720-9915
0000-0002-7776-6472
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6926057
PMID 31748274
PQID 2330021484
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6926057
proquest_miscellaneous_2316783891
proquest_journals_2330021484
pubmed_primary_31748274
crossref_citationtrail_10_1073_pnas_1915309116
crossref_primary_10_1073_pnas_1915309116
jstor_primary_26863926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-17
PublicationDateYYYYMMDD 2019-12-17
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Dressel A. (e_1_3_3_26_2) 1997; 159
Beltrán E. (e_1_3_3_47_2) 2019
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
31792182 - Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25376-25377
References_xml – ident: e_1_3_3_51_2
  doi: 10.1080/2162402X.2014.999536
– ident: e_1_3_3_57_2
  doi: 10.1016/j.jaut.2010.12.003
– ident: e_1_3_3_8_2
  doi: 10.1007/s00401-017-1744-4
– ident: e_1_3_3_22_2
  doi: 10.1038/nm.1881
– ident: e_1_3_3_4_2
  doi: 10.1093/brain/120.8.1461
– ident: e_1_3_3_15_2
  doi: 10.1034/j.1399-0039.2000.550205.x
– ident: e_1_3_3_50_2
  doi: 10.1007/s11481-013-9466-4
– ident: e_1_3_3_41_2
  doi: 10.1016/j.jneuroim.2017.06.001
– ident: e_1_3_3_61_2
  doi: 10.1016/j.vaccine.2015.10.108
– ident: e_1_3_3_44_2
  doi: 10.3390/cells8010012
– ident: e_1_3_3_30_2
  doi: 10.1002/eji.200838023
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.91.23.10859
– ident: e_1_3_3_7_2
  doi: 10.1093/brain/awy151
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0308689100
– ident: e_1_3_3_34_2
  doi: 10.1016/j.immuni.2007.07.007
– ident: e_1_3_3_37_2
  doi: 10.1172/JCI82416
– ident: e_1_3_3_36_2
  doi: 10.1093/brain/awy301
– ident: e_1_3_3_54_2
  doi: 10.1016/j.immuni.2004.11.015
– ident: e_1_3_3_10_2
  doi: 10.1056/NEJMoa1100648
– ident: e_1_3_3_2_2
  doi: 10.1038/nri2550
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1750-3639.2004.tb00496.x
– ident: e_1_3_3_35_2
  doi: 10.4049/jimmunol.1400118
– ident: e_1_3_3_39_2
  doi: 10.1016/j.immuni.2015.05.001
– ident: e_1_3_3_5_2
  doi: 10.1016/0022-510X(83)90201-0
– ident: e_1_3_3_19_2
  doi: 10.1084/jem.194.5.669
– ident: e_1_3_3_63_2
  doi: 10.1038/nprot.2009.9
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.immunol.23.021704.115707
– ident: e_1_3_3_27_2
  doi: 10.4049/jimmunol.172.8.5120
– ident: e_1_3_3_55_2
  doi: 10.1074/jbc.M111.289488
– start-page: 128475
  year: 2019
  ident: e_1_3_3_47_2
  article-title: Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis
  publication-title: J. Clin. Invest.
– ident: e_1_3_3_9_2
  doi: 10.1038/s41467-018-07053-9
– ident: e_1_3_3_18_2
  doi: 10.1038/80516
– ident: e_1_3_3_43_2
  doi: 10.1016/j.msard.2014.06.001
– ident: e_1_3_3_40_2
  doi: 10.1016/j.jns.2005.02.013
– ident: e_1_3_3_45_2
  doi: 10.1056/NEJMoa0706383
– ident: e_1_3_3_12_2
  doi: 10.1093/brain/awf059
– ident: e_1_3_3_11_2
  doi: 10.1084/jem.192.3.393
– ident: e_1_3_3_32_2
  doi: 10.1038/nmeth.1344
– ident: e_1_3_3_16_2
  doi: 10.1038/nature10251
– ident: e_1_3_3_3_2
  doi: 10.1126/science.6217550
– ident: e_1_3_3_38_2
  doi: 10.1016/j.clim.2012.05.009
– ident: e_1_3_3_42_2
  doi: 10.4049/jimmunol.1600089
– ident: e_1_3_3_53_2
  doi: 10.1002/ana.21939
– ident: e_1_3_3_14_2
  doi: 10.1093/brain/awm214
– ident: e_1_3_3_56_2
  doi: 10.1126/scitranslmed.aat4301
– ident: e_1_3_3_25_2
  doi: 10.1016/S0165-5728(96)00161-0
– ident: e_1_3_3_31_2
  doi: 10.1182/blood-2009-10-251124
– ident: e_1_3_3_62_2
  doi: 10.1038/nprot.2006.121
– ident: e_1_3_3_21_2
  doi: 10.4049/jimmunol.179.8.5090
– ident: e_1_3_3_33_2
  doi: 10.1038/nprot.2012.037
– ident: e_1_3_3_59_2
  doi: 10.1038/s41586-019-1467-x
– ident: e_1_3_3_28_2
  doi: 10.1182/blood-2003-11-4025
– ident: e_1_3_3_46_2
  doi: 10.1056/NEJMoa1601277
– ident: e_1_3_3_23_2
  doi: 10.1016/j.jneuroim.2009.05.017
– ident: e_1_3_3_49_2
  doi: 10.2337/db14-0332
– volume: 159
  start-page: 4943
  year: 1997
  ident: e_1_3_3_26_2
  article-title: Autoantigen recognition by human CD8 T cell clones: Enhanced agonist response induced by altered peptide ligands
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.159.10.4943
– ident: e_1_3_3_20_2
  doi: 10.1002/eji.200425660
– ident: e_1_3_3_58_2
  doi: 10.1212/NXI.0000000000000170
– ident: e_1_3_3_60_2
  doi: 10.1016/j.cell.2018.08.011
– ident: e_1_3_3_6_2
  doi: 10.1002/ana.410190610
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1365-2567.2006.02518.x
– ident: e_1_3_3_48_2
  doi: 10.1007/s00109-019-01812-x
– ident: e_1_3_3_52_2
  doi: 10.1016/j.jneuroim.2006.06.029
– reference: 31792182 - Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25376-25377
SSID ssj0009580
Score 2.5748355
Snippet CD8⁺ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin...
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. CD8 + T cells have been strongly implicated in MS pathogenesis,...
CD8 T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin...
CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25800
SubjectTerms Adolescent
Adult
Antibodies, Monoclonal - metabolism
Antigens, CD20 - immunology
Antigens, CD20 - metabolism
Biological Sciences
CD20 antigen
CD8 antigen
CD8-Positive T-Lymphocytes - cytology
CD8-Positive T-Lymphocytes - metabolism
Cells, Cultured
Epitopes
Female
Histocompatibility antigen HLA
Humans
Immunological memory
Immunotherapy
Influenza
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Male
Memory cells
Middle Aged
Monoclonal antibodies
Multiple sclerosis
Multiple Sclerosis - immunology
Multiple Sclerosis - metabolism
Myelin
Myelin Proteins - metabolism
Pathogenesis
Peripheral blood
Phenotypes
Precursors
Therapy
Young Adult
Title Anti-CD20 therapy depletes activated myelin-specific CD8⁺ T cells in multiple sclerosis
URI https://www.jstor.org/stable/26863926
https://www.ncbi.nlm.nih.gov/pubmed/31748274
https://www.proquest.com/docview/2330021484
https://www.proquest.com/docview/2316783891
https://pubmed.ncbi.nlm.nih.gov/PMC6926057
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKuHBBDBgUBjISSENRQmI7sXssHTBNUE3QSeMUOYmtVRopWlqkceNvceWf8Et4dhInrToJuERt4jiR39fn59fvfUboucpjkrNI-4xo5rMklr5MKPGpUJxyrSm1YtUfpsnRKTs-i88Gg1891tJqmQX59611Jf9jVTgHdjVVsv9gWdcpnIDPYF84goXh-Fc2HpfLuT85JKFXl1FdGWLrhU2lmnqFb9KEk1-uTMm5b0oqDS3ImxwKy3CIXrweezPPZO4tJ9ZRCyt4Csyd86ofuJ64ia5qaQXTNo847qpSGldReb53Mu32OP4kM2hcLrr_HLzjoJfyqdY4_N5Hd20iAaWXqpo7LrE3DjqvaVIsPa6a9z7oZzEiuwVDXbTZFwHf-sZ9901gSmV10XWgao8NAY-fsHrPUefS6_rNBruNom3joWMRhr3p3nznW-cScH5mA-RSVgEsamMKD4o2VLttHEASAWEeSW6gmwTWKmYbjXdnUU_5WdR1UM27t_pSnL7a6HstNKrZsdvWPZv03V48NLuDbjcLGTyuUbmLBqq8i3bb0cQHjZ75y3vos4MpbmCKW5hiB1O8AVMMMP394yeeYQtQPC9xC1DsAHofnb59M5sc-c2OHn7OGF36MiokFVmmBOFFPtJFVuQhH4V5qCGyZbB25XpEeKiZ0BmJpYwymRUsFLxgo0hldA_tlItSPUQYVgJaJJyqMIMQWucyjzlNFEkKIowu2hAF7WCmeSN3b3ZduUgt7YLT1Ix-2o3-EB24G77WSi_XN92z1nHtWggM0X5rrrTxE1VKKLXKhIIN0TN3Gby4GT9ZqsXKtIkgajScgSF6UFvXdQ4RvtHqhbv5mt1dA6MQv36lnJ9bpfhkZNIV_NF17_sY3ep-jPtoZ3m5Uk8gyF5mTy2I_wAhjtDx
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-CD20+therapy+depletes+activated+myelin-specific+CD8%E2%81%BA+T+cells+in+multiple+sclerosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sabatino%2C+Joseph+J.&rft.au=Wilson%2C+Michael+R.&rft.au=Calabresi%2C+Peter+A.&rft.au=Hauser%2C+Stephen+L.&rft.date=2019-12-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=51&rft.spage=25800&rft.epage=25807&rft_id=info:doi/10.1073%2Fpnas.1915309116&rft.externalDocID=26863926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon