Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host sur...
Saved in:
Published in | The Journal of biological chemistry Vol. 292; no. 21; pp. 8988 - 8997 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.05.2017
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1074/jbc.M117.777466 |
Cover
Loading…
Abstract | Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. |
---|---|
AbstractList | Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of
, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes , we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. |
Author | Fernández, Julio M. Echelman, Daniel J. Lee, Alex Q. |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Echelman fullname: Echelman, Daniel J. email: dje2122@columbia.edu – sequence: 2 givenname: Alex Q. surname: Lee fullname: Lee, Alex Q. – sequence: 3 givenname: Julio M. surname: Fernández fullname: Fernández, Julio M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28348083$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFPHCEUxomx0dX23Fszx15mhRkY4NKkMdU20XixSW-EgTfuM7Nggd3E_75s1prWRLkQHr_ve_C-E3IYYgBCPjK6ZFTys_vRLa8Zk0spJR-GA7JgVPVtL9ivQ7KgtGOt7oQ6Jic539O6uGZH5LhTPVcVXJDba3ArG9DZuZlicpCbBHeb2RZoygrqwbqCWyyPTZwaW2sYIRdIzRiDbzDU2lgRSFgdrF9BxvCevJvsnOHD035Kfl58uz3_3l7dXP44_3rVOs770kqQSvdWAXWCCwGTcJPwXmo9DgPzSivKnKXM08Fz6hjveiVkJx0dhdeT6E_Jl73vw2Zcg3cQSrKzeUi4tunRRIvm_5uAK3MXt0ZwrlhPq8HnJ4MUf2_qv8was4N5tgHiJhumFJOy04Ou6Kd_ez03-TvKCpztAZdizgmmZ4RRswvL1LDMLiyzD6sqxAuFw2ILxt1jcX5Dp_c6qLPdIiSTHUJw4DGBK8ZHfFX7B27trPc |
CitedBy_id | crossref_primary_10_1146_annurev_biophys_090420_083836 crossref_primary_10_3389_fmicb_2020_01457 crossref_primary_10_3390_gels8090577 crossref_primary_10_1038_s41570_017_0083 crossref_primary_10_1074_jbc_H117_777466 crossref_primary_10_1111_febs_15508 crossref_primary_10_1002_cbic_202200316 crossref_primary_10_1016_j_tibs_2020_03_002 crossref_primary_10_1172_JCI95823 crossref_primary_10_1016_j_xcrp_2025_102462 crossref_primary_10_1038_s41557_020_00586_x crossref_primary_10_1007_s12551_021_00822_9 crossref_primary_10_1038_s41467_021_25425_6 crossref_primary_10_1038_s41596_024_00965_5 crossref_primary_10_1016_j_anaerobe_2024_102873 crossref_primary_10_1021_acs_orglett_2c02601 crossref_primary_10_1039_C9CP03350E crossref_primary_10_1039_D0NR07492F crossref_primary_10_1002_pro_3478 crossref_primary_10_1002_asia_202201128 crossref_primary_10_1021_acsnano_2c07298 crossref_primary_10_1021_acsnano_7b07247 crossref_primary_10_1039_C9NA00582J crossref_primary_10_1016_j_sbi_2019_11_012 crossref_primary_10_1039_D0SM01106A crossref_primary_10_1021_acsnano_9b02587 crossref_primary_10_1039_C7CS00820A |
Cites_doi | 10.1073/pnas.1522946113 10.1038/ncomms5917 10.1021/ja903589t 10.1126/science.8079175 10.1016/j.cell.2014.01.056 10.7554/eLife.06638 10.1529/biophysj.106.091561 10.1016/j.sbi.2005.10.010 10.1067/mai.2003.120 10.1073/pnas.98.2.468 10.1073/pnas.0609791104 10.1016/S0021-9258(18)42483-0 10.1128/JB.00769-15 10.1073/pnas.0400033101 10.1074/jbc.M110.149385 10.1038/nprot.2013.056 10.1038/373081a0 10.1038/srep02884 10.1038/379177a0 10.1021/jacs.6b05429 10.1161/01.ATV.0000237606.90253.94 10.1128/JB.00071-10 10.1042/BST20150066 10.1074/jbc.M113.523761 10.1126/science.1139857 10.1073/pnas.1315203110 10.1042/bj1930115 10.1016/0956-5663(95)99227-C 10.1021/bi00366a027 10.1074/jbc.M110.102962 10.1073/pnas.96.7.3694 10.1002/pro.5560060201 10.1073/pnas.0511035103 10.1128/AEM.02083-09 10.1073/pnas.1506538112 10.1074/jbc.M115.646000 10.1021/bi300112e 10.1016/j.imbio.2012.07.008 10.1016/j.jaci.2009.11.017 10.1038/ncomms10738 10.1016/j.celrep.2016.01.025 10.1016/S0009-8981(01)00608-8 10.1038/nature04005 |
ContentType | Journal Article |
Copyright | 2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology 2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology – notice: 2017 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M117.777466 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Mechanochemistry of a thioester bond in a bacterial adhesin |
EISSN | 1083-351X |
EndPage | 8997 |
ExternalDocumentID | PMC5448130 28348083 10_1074_jbc_M117_777466 S0021925820427905 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: GM116122; HL061228 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NHLBI NIH HHS grantid: R01 HL061228 – fundername: NIGMS NIH HHS grantid: R01 GM116122 – fundername: ; grantid: HL061228; GM116122 |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c443t-7e7893a8e0c5455ef5cf5dd799b661d89801ca01d06d40c142385727c0b5d9f53 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:32:01 EDT 2025 Thu Jul 10 19:57:08 EDT 2025 Wed Feb 19 02:29:40 EST 2025 Tue Jul 01 00:48:43 EDT 2025 Thu Apr 24 23:00:33 EDT 2025 Fri Feb 23 02:44:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | single-molecule biophysics adhesin atomic force microscopy (AFM) thioester bond Gram-positive bacteria pilus mechanics bacterial adhesion |
Language | English |
License | This is an open access article under the CC BY license. 2017 by The American Society for Biochemistry and Molecular Biology, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-7e7893a8e0c5455ef5cf5dd799b661d89801ca01d06d40c142385727c0b5d9f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Chris Whitfield |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M117.777466 |
PMID | 28348083 |
PQID | 1881772969 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448130 proquest_miscellaneous_1881772969 pubmed_primary_28348083 crossref_primary_10_1074_jbc_M117_777466 crossref_citationtrail_10_1074_jbc_M117_777466 elsevier_sciencedirect_doi_10_1074_jbc_M117_777466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-26 |
PublicationDateYYYYMMDD | 2017-05-26 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2017 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Carrion-Vazquez, Oberhauser, Fowler, Marszalek, Broedel, Clarke, Fernandez (bib40) 1999; 96 Khan, Sekulski, Erickson (bib32) 1986; 25 Bhaumik, Koski, Glumoff, Hiltunen, Wierenga (bib2) 2005; 15 Schlierf, Li, Fernandez (bib26) 2004; 101 Peng, Li (bib22) 2009; 131 Sim, Twose, Paterson, Sim (bib8) 1981; 193 Schwartz, Kalas, Pinkner, Chen, Spaulding, Dodson, Hultgren (bib36) 2013; 110 Baker, Squire, Young (bib17) 2015; 43 Dodds, Ren, Willis, Law (bib7) 1996; 379 Florin, Rief, Lehmann, Ludwig, Dornmair, Moy, Gaub (bib42) 1995; 10 Linke-Winnebeck, Paterson, Young, Middleditch, Greenwood, Witte, Baker (bib9) 2014; 289 Law, Dodds (bib5) 1997; 6 Popa, Rivas-Pardo, Eckels, Echelman, Badilla, Valle-Orero, Fernández (bib29) 2016; 138 Nilsson, Nilsson Ekdahl (bib30) 2012; 217 Mitchell, Zhang (bib27) 2001; 312 Popa, Kosuri, Alegre-Cebollada, Garcia-Manyes, Fernandez (bib41) 2013; 8 Bustamante, Marko, Siggia, Smith (bib43) 1994; 265 Johnson, Tang, Carag, Speicher, Discher (bib14) 2007; 317 Mitchell, Shi, Aldrich, Gulick (bib3) 2012; 51 Prussin, Metcalfe (bib34) 2003; 111 Ding, Palmer, Cisar, Kolenbrander (bib39) 2010; 76 Nishida, Walz, Springer (bib31) 2006; 103 Smith, Pointon, Abbot, Kang, Baker, Hirst, Wilson, Banfield, Kehoe (bib20) 2010; 192 Alegre-Cebollada, Kosuri, Giganti, Eckels, Rivas-Pardo, Hamdani, Warren, Solaro, Linke, Fernández (bib15) 2014; 156 Sauer, Jakob, Eras, Baday, Eriş, Navarra, Bernèche, Ernst, Maier, Glockshuber (bib37) 2016; 7 Wiita, Ainavarapu, Huang, Fernandez (bib24) 2006; 103 Möller, Lühmann, Chabria, Hall, Vogel (bib13) 2013; 3 Walden, Edwards, Dziewulska, Bergmann, Saalbach, Kan, Miller, Weckener, Jackson, Shirran, Botting, Florence, Rohde, Banfield, Schwarz-Linek (bib11) 2015; 4 Stone, Prussin, Metcalfe (bib35) 2010; 125 Pointon, Smith, Saalbach, Crow, Kehoe, Banfield (bib10) 2010; 285 Wong, Dessen (bib6) 2014; 5 Alegre-Cebollada, Badilla, Fernández (bib21) 2010; 285 Janssen, Huizinga, Raaijmakers, Roos, Daha, Nilsson-Ekdahl, Nilsson, Gros (bib33) 2005; 437 Rivas-Pardo, Eckels, Popa, Kosuri, Linke, Fernández (bib12) 2016; 14 Garcia-Ferrer, Arêde, Gómez-Blanco, Luque, Duquerroy, Castón, Goulas, Gomis-Rüth (bib4) 2015; 112 Scheffner, Nuber, Huibregtse (bib1) 1995; 373 George, Wei, Shin, Konstantopoulos, Ross (bib38) 2006; 26 Kahn, Fernández, Perez-Jimenez (bib28) 2015; 290 Pangburn (bib23) 1992; 267 Oberhauser, Hansma, Carrion-Vazquez, Fernandez (bib25) 2001; 98 Echelman, Alegre-Cebollada, Badilla, Chang, Ton-That, Fernández (bib16) 2016; 113 Reardon-Robinson, Ton-That (bib18) 2015; 198 Ainavarapu, Brujic, Huang, Wiita, Lu, Li, Walther, Carrion-Vazquez, Li, Fernandez (bib19) 2007; 92 Alegre-Cebollada (10.1074/jbc.M117.777466_bib21) 2010; 285 Janssen (10.1074/jbc.M117.777466_bib33) 2005; 437 Stone (10.1074/jbc.M117.777466_bib35) 2010; 125 Law (10.1074/jbc.M117.777466_bib5) 1997; 6 Ding (10.1074/jbc.M117.777466_bib39) 2010; 76 Pointon (10.1074/jbc.M117.777466_bib10) 2010; 285 Alegre-Cebollada (10.1074/jbc.M117.777466_bib15) 2014; 156 Baker (10.1074/jbc.M117.777466_bib17) 2015; 43 Popa (10.1074/jbc.M117.777466_bib29) 2016; 138 Echelman (10.1074/jbc.M117.777466_bib16) 2016; 113 Schlierf (10.1074/jbc.M117.777466_bib26) 2004; 101 Pangburn (10.1074/jbc.M117.777466_bib23) 1992; 267 Garcia-Ferrer (10.1074/jbc.M117.777466_bib4) 2015; 112 Möller (10.1074/jbc.M117.777466_bib13) 2013; 3 Bustamante (10.1074/jbc.M117.777466_bib43) 1994; 265 Johnson (10.1074/jbc.M117.777466_bib14) 2007; 317 George (10.1074/jbc.M117.777466_bib38) 2006; 26 Mitchell (10.1074/jbc.M117.777466_bib27) 2001; 312 Khan (10.1074/jbc.M117.777466_bib32) 1986; 25 Wong (10.1074/jbc.M117.777466_bib6) 2014; 5 Mitchell (10.1074/jbc.M117.777466_bib3) 2012; 51 Carrion-Vazquez (10.1074/jbc.M117.777466_bib40) 1999; 96 Schwartz (10.1074/jbc.M117.777466_bib36) 2013; 110 Popa (10.1074/jbc.M117.777466_bib41) 2013; 8 Dodds (10.1074/jbc.M117.777466_bib7) 1996; 379 Sim (10.1074/jbc.M117.777466_bib8) 1981; 193 Linke-Winnebeck (10.1074/jbc.M117.777466_bib9) 2014; 289 Scheffner (10.1074/jbc.M117.777466_bib1) 1995; 373 Peng (10.1074/jbc.M117.777466_bib22) 2009; 131 Sauer (10.1074/jbc.M117.777466_bib37) 2016; 7 Reardon-Robinson (10.1074/jbc.M117.777466_bib18) 2015; 198 Nishida (10.1074/jbc.M117.777466_bib31) 2006; 103 Wiita (10.1074/jbc.M117.777466_bib24) 2006; 103 Smith (10.1074/jbc.M117.777466_bib20) 2010; 192 Prussin (10.1074/jbc.M117.777466_bib34) 2003; 111 Kahn (10.1074/jbc.M117.777466_bib28) 2015; 290 Oberhauser (10.1074/jbc.M117.777466_bib25) 2001; 98 Florin (10.1074/jbc.M117.777466_bib42) 1995; 10 Walden (10.1074/jbc.M117.777466_bib11) 2015; 4 Rivas-Pardo (10.1074/jbc.M117.777466_bib12) 2016; 14 Nilsson (10.1074/jbc.M117.777466_bib30) 2012; 217 Bhaumik (10.1074/jbc.M117.777466_bib2) 2005; 15 Ainavarapu (10.1074/jbc.M117.777466_bib19) 2007; 92 |
References_xml | – volume: 317 start-page: 663 year: 2007 end-page: 666 ident: bib14 article-title: Forced unfolding of proteins within cells publication-title: Science – volume: 14 start-page: 1339 year: 2016 end-page: 1347 ident: bib12 article-title: Work done by titin protein folding assists muscle contraction publication-title: Cell Rep – volume: 26 start-page: 2394 year: 2006 end-page: 2400 ident: bib38 article-title: adhesion via spa, clfa, and sdrcde to immobilized platelets demonstrates shear-dependent behavior publication-title: Arterioscler. Thromb. Vasc. Biol – volume: 217 start-page: 1106 year: 2012 end-page: 1110 ident: bib30 article-title: The tick-over theory revisited: is c3 a contact-activated protein? publication-title: Immunobiology – volume: 43 start-page: 787 year: 2015 end-page: 794 ident: bib17 article-title: Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria publication-title: Biochem. Soc. Trans – volume: 103 start-page: 19737 year: 2006 end-page: 19742 ident: bib31 article-title: Structural transitions of complement component c3 and its activation products publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 6 start-page: 263 year: 1997 end-page: 274 ident: bib5 article-title: The internal thioester and the covalent binding properties of the complement proteins c3 and c4 publication-title: Protein Sci – volume: 113 start-page: 2490 year: 2016 end-page: 2495 ident: bib16 article-title: CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 101 start-page: 7299 year: 2004 end-page: 7304 ident: bib26 article-title: The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 111 start-page: S486 year: 2003 end-page: S494 ident: bib34 article-title: IgE, mast cells, basophils, and eosinophils publication-title: J. Allergy Clin. Immunol – volume: 8 start-page: 1261 year: 2013 end-page: 1276 ident: bib41 article-title: Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy publication-title: Nat. Protoc – volume: 265 start-page: 1599 year: 1994 end-page: 1600 ident: bib43 article-title: Entropic elasticity of λ-phage DNA publication-title: Science – volume: 193 start-page: 115 year: 1981 end-page: 127 ident: bib8 article-title: The covalent-binding reaction of complement component c3 publication-title: Biochem. J – volume: 98 start-page: 468 year: 2001 end-page: 472 ident: bib25 article-title: Stepwise unfolding of titin under force-clamp atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 125 start-page: S73 year: 2010 end-page: S80 ident: bib35 article-title: Ige, mast cells, basophils, and eosinophils publication-title: J. Allergy Clin. Immunol – volume: 156 start-page: 1235 year: 2014 end-page: 1246 ident: bib15 article-title: -Glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding publication-title: Cell – volume: 112 start-page: 8290 year: 2015 end-page: 8295 ident: bib4 article-title: Structural and functional insights into publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 289 start-page: 177 year: 2014 end-page: 189 ident: bib9 article-title: Structural model for covalent adhesion of the publication-title: J. Biol. Chem – volume: 312 start-page: 107 year: 2001 end-page: 114 ident: bib27 article-title: Methylamine in human urine publication-title: Clin. Chim. Acta – volume: 285 start-page: 33858 year: 2010 end-page: 33866 ident: bib10 article-title: A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction publication-title: J. Biol. Chem – volume: 285 start-page: 11235 year: 2010 end-page: 11242 ident: bib21 article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic publication-title: J. Biol. Chem – volume: 103 start-page: 7222 year: 2006 end-page: 7227 ident: bib24 article-title: Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 198 start-page: 746 year: 2015 end-page: 754 ident: bib18 article-title: Disulfide-bond-forming pathways in Gram-positive bacteria publication-title: J. Bacteriol – volume: 10 start-page: 895 year: 1995 end-page: 901 ident: bib42 article-title: Sensing specific molecular interactions with the atomic force microscope publication-title: Biosens. Bioelectron – volume: 5 year: 2014 ident: bib6 article-title: Structure of a bacterial α2-macroglobulin reveals mimicry of eukaryotic innate immunity publication-title: Nat. Commun – volume: 192 start-page: 4651 year: 2010 end-page: 4659 ident: bib20 article-title: Roles of minor pilin subunits spy0125 and spy0130 in the serotype m1 publication-title: J. Bacteriol – volume: 92 start-page: 225 year: 2007 end-page: 233 ident: bib19 article-title: Contour length and refolding rate of a small protein controlled by engineered disulfide bonds publication-title: Biophys. J – volume: 110 start-page: 15530 year: 2013 end-page: 15537 ident: bib36 article-title: Positively selected fimh residues enhance virulence during urinary tract infection by altering fimh conformation publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 138 start-page: 10546 year: 2016 end-page: 10553 ident: bib29 article-title: A halotag anchored ruler for week-long studies of protein dynamics publication-title: J. Am. Chem. Soc – volume: 373 start-page: 81 year: 1995 end-page: 83 ident: bib1 article-title: Protein ubiquitination involving an e1-e2-e3 enzyme ubiquitin thioester cascade publication-title: Nature – volume: 3 year: 2013 ident: bib13 article-title: Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism publication-title: Sci. Rep – volume: 76 start-page: 1294 year: 2010 end-page: 1297 ident: bib39 article-title: Shear-enhanced oral microbial adhesion publication-title: Appl. Environ. Microbiol – volume: 15 start-page: 621 year: 2005 end-page: 628 ident: bib2 article-title: Structural biology of the thioester-dependent degradation and synthesis of fatty acids publication-title: Curr. Opin. Struct. Biol – volume: 25 start-page: 5165 year: 1986 end-page: 5171 ident: bib32 article-title: Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis publication-title: Biochemistry – volume: 7 year: 2016 ident: bib37 article-title: Catch-bond mechanism of the bacterial adhesin fimh publication-title: Nat. Commun – volume: 290 start-page: 14518 year: 2015 end-page: 14527 ident: bib28 article-title: Monitoring oxidative folding of a single protein catalyzed by the disulfide oxidoreductase dsba publication-title: J. Biol. Chem – volume: 437 start-page: 505 year: 2005 end-page: 511 ident: bib33 article-title: Structures of complement component c3 provide insights into the function and evolution of immunity publication-title: Nature – volume: 4 year: 2015 ident: bib11 article-title: An internal thioester in a pathogen surface protein mediates covalent host binding publication-title: Elife – volume: 131 start-page: 14050 year: 2009 end-page: 14056 ident: bib22 article-title: Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins publication-title: J. Am. Chem. Soc – volume: 267 start-page: 8584 year: 1992 end-page: 8590 ident: bib23 article-title: Spontaneous reformation of the intramolecular thioester in complement protein c3 and low temperature capture of a conformational intermediate capable of reformation publication-title: J. Biol. Chem – volume: 51 start-page: 3252 year: 2012 end-page: 3263 ident: bib3 article-title: Structure of pa1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains publication-title: Biochemistry – volume: 379 start-page: 177 year: 1996 end-page: 179 ident: bib7 article-title: The reaction mechanism of the internal thioester in the human complement component c4 publication-title: Nature – volume: 96 start-page: 3694 year: 1999 end-page: 3699 ident: bib40 article-title: Mechanical and chemical unfolding of a single protein: a comparison publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 113 start-page: 2490 year: 2016 ident: 10.1074/jbc.M117.777466_bib16 article-title: CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1522946113 – volume: 5 year: 2014 ident: 10.1074/jbc.M117.777466_bib6 article-title: Structure of a bacterial α2-macroglobulin reveals mimicry of eukaryotic innate immunity publication-title: Nat. Commun doi: 10.1038/ncomms5917 – volume: 131 start-page: 14050 year: 2009 ident: 10.1074/jbc.M117.777466_bib22 article-title: Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins publication-title: J. Am. Chem. Soc doi: 10.1021/ja903589t – volume: 265 start-page: 1599 year: 1994 ident: 10.1074/jbc.M117.777466_bib43 article-title: Entropic elasticity of λ-phage DNA publication-title: Science doi: 10.1126/science.8079175 – volume: 156 start-page: 1235 year: 2014 ident: 10.1074/jbc.M117.777466_bib15 article-title: S-Glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding publication-title: Cell doi: 10.1016/j.cell.2014.01.056 – volume: 4 year: 2015 ident: 10.1074/jbc.M117.777466_bib11 article-title: An internal thioester in a pathogen surface protein mediates covalent host binding publication-title: Elife doi: 10.7554/eLife.06638 – volume: 92 start-page: 225 year: 2007 ident: 10.1074/jbc.M117.777466_bib19 article-title: Contour length and refolding rate of a small protein controlled by engineered disulfide bonds publication-title: Biophys. J doi: 10.1529/biophysj.106.091561 – volume: 15 start-page: 621 year: 2005 ident: 10.1074/jbc.M117.777466_bib2 article-title: Structural biology of the thioester-dependent degradation and synthesis of fatty acids publication-title: Curr. Opin. Struct. Biol doi: 10.1016/j.sbi.2005.10.010 – volume: 111 start-page: S486 year: 2003 ident: 10.1074/jbc.M117.777466_bib34 article-title: IgE, mast cells, basophils, and eosinophils publication-title: J. Allergy Clin. Immunol doi: 10.1067/mai.2003.120 – volume: 98 start-page: 468 year: 2001 ident: 10.1074/jbc.M117.777466_bib25 article-title: Stepwise unfolding of titin under force-clamp atomic force microscopy publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.98.2.468 – volume: 103 start-page: 19737 year: 2006 ident: 10.1074/jbc.M117.777466_bib31 article-title: Structural transitions of complement component c3 and its activation products publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0609791104 – volume: 267 start-page: 8584 year: 1992 ident: 10.1074/jbc.M117.777466_bib23 article-title: Spontaneous reformation of the intramolecular thioester in complement protein c3 and low temperature capture of a conformational intermediate capable of reformation publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(18)42483-0 – volume: 198 start-page: 746 year: 2015 ident: 10.1074/jbc.M117.777466_bib18 article-title: Disulfide-bond-forming pathways in Gram-positive bacteria publication-title: J. Bacteriol doi: 10.1128/JB.00769-15 – volume: 101 start-page: 7299 year: 2004 ident: 10.1074/jbc.M117.777466_bib26 article-title: The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0400033101 – volume: 285 start-page: 33858 year: 2010 ident: 10.1074/jbc.M117.777466_bib10 article-title: A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction publication-title: J. Biol. Chem doi: 10.1074/jbc.M110.149385 – volume: 8 start-page: 1261 year: 2013 ident: 10.1074/jbc.M117.777466_bib41 article-title: Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy publication-title: Nat. Protoc doi: 10.1038/nprot.2013.056 – volume: 373 start-page: 81 year: 1995 ident: 10.1074/jbc.M117.777466_bib1 article-title: Protein ubiquitination involving an e1-e2-e3 enzyme ubiquitin thioester cascade publication-title: Nature doi: 10.1038/373081a0 – volume: 3 year: 2013 ident: 10.1074/jbc.M117.777466_bib13 article-title: Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism publication-title: Sci. Rep doi: 10.1038/srep02884 – volume: 379 start-page: 177 year: 1996 ident: 10.1074/jbc.M117.777466_bib7 article-title: The reaction mechanism of the internal thioester in the human complement component c4 publication-title: Nature doi: 10.1038/379177a0 – volume: 138 start-page: 10546 year: 2016 ident: 10.1074/jbc.M117.777466_bib29 article-title: A halotag anchored ruler for week-long studies of protein dynamics publication-title: J. Am. Chem. Soc doi: 10.1021/jacs.6b05429 – volume: 26 start-page: 2394 year: 2006 ident: 10.1074/jbc.M117.777466_bib38 article-title: Staphylococcus aureus adhesion via spa, clfa, and sdrcde to immobilized platelets demonstrates shear-dependent behavior publication-title: Arterioscler. Thromb. Vasc. Biol doi: 10.1161/01.ATV.0000237606.90253.94 – volume: 192 start-page: 4651 year: 2010 ident: 10.1074/jbc.M117.777466_bib20 article-title: Roles of minor pilin subunits spy0125 and spy0130 in the serotype m1 Streptococcus pyogenes strain sf370 publication-title: J. Bacteriol doi: 10.1128/JB.00071-10 – volume: 43 start-page: 787 year: 2015 ident: 10.1074/jbc.M117.777466_bib17 article-title: Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria publication-title: Biochem. Soc. Trans doi: 10.1042/BST20150066 – volume: 289 start-page: 177 year: 2014 ident: 10.1074/jbc.M117.777466_bib9 article-title: Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond publication-title: J. Biol. Chem doi: 10.1074/jbc.M113.523761 – volume: 317 start-page: 663 year: 2007 ident: 10.1074/jbc.M117.777466_bib14 article-title: Forced unfolding of proteins within cells publication-title: Science doi: 10.1126/science.1139857 – volume: 110 start-page: 15530 year: 2013 ident: 10.1074/jbc.M117.777466_bib36 article-title: Positively selected fimh residues enhance virulence during urinary tract infection by altering fimh conformation publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1315203110 – volume: 193 start-page: 115 year: 1981 ident: 10.1074/jbc.M117.777466_bib8 article-title: The covalent-binding reaction of complement component c3 publication-title: Biochem. J doi: 10.1042/bj1930115 – volume: 10 start-page: 895 year: 1995 ident: 10.1074/jbc.M117.777466_bib42 article-title: Sensing specific molecular interactions with the atomic force microscope publication-title: Biosens. Bioelectron doi: 10.1016/0956-5663(95)99227-C – volume: 25 start-page: 5165 year: 1986 ident: 10.1074/jbc.M117.777466_bib32 article-title: Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis publication-title: Biochemistry doi: 10.1021/bi00366a027 – volume: 285 start-page: 11235 year: 2010 ident: 10.1074/jbc.M117.777466_bib21 article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes publication-title: J. Biol. Chem doi: 10.1074/jbc.M110.102962 – volume: 96 start-page: 3694 year: 1999 ident: 10.1074/jbc.M117.777466_bib40 article-title: Mechanical and chemical unfolding of a single protein: a comparison publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.96.7.3694 – volume: 6 start-page: 263 year: 1997 ident: 10.1074/jbc.M117.777466_bib5 article-title: The internal thioester and the covalent binding properties of the complement proteins c3 and c4 publication-title: Protein Sci doi: 10.1002/pro.5560060201 – volume: 103 start-page: 7222 year: 2006 ident: 10.1074/jbc.M117.777466_bib24 article-title: Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0511035103 – volume: 76 start-page: 1294 year: 2010 ident: 10.1074/jbc.M117.777466_bib39 article-title: Shear-enhanced oral microbial adhesion publication-title: Appl. Environ. Microbiol doi: 10.1128/AEM.02083-09 – volume: 112 start-page: 8290 year: 2015 ident: 10.1074/jbc.M117.777466_bib4 article-title: Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1506538112 – volume: 290 start-page: 14518 year: 2015 ident: 10.1074/jbc.M117.777466_bib28 article-title: Monitoring oxidative folding of a single protein catalyzed by the disulfide oxidoreductase dsba publication-title: J. Biol. Chem doi: 10.1074/jbc.M115.646000 – volume: 51 start-page: 3252 year: 2012 ident: 10.1074/jbc.M117.777466_bib3 article-title: Structure of pa1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains publication-title: Biochemistry doi: 10.1021/bi300112e – volume: 217 start-page: 1106 year: 2012 ident: 10.1074/jbc.M117.777466_bib30 article-title: The tick-over theory revisited: is c3 a contact-activated protein? publication-title: Immunobiology doi: 10.1016/j.imbio.2012.07.008 – volume: 125 start-page: S73 year: 2010 ident: 10.1074/jbc.M117.777466_bib35 article-title: Ige, mast cells, basophils, and eosinophils publication-title: J. Allergy Clin. Immunol doi: 10.1016/j.jaci.2009.11.017 – volume: 7 year: 2016 ident: 10.1074/jbc.M117.777466_bib37 article-title: Catch-bond mechanism of the bacterial adhesin fimh publication-title: Nat. Commun doi: 10.1038/ncomms10738 – volume: 14 start-page: 1339 year: 2016 ident: 10.1074/jbc.M117.777466_bib12 article-title: Work done by titin protein folding assists muscle contraction publication-title: Cell Rep doi: 10.1016/j.celrep.2016.01.025 – volume: 312 start-page: 107 year: 2001 ident: 10.1074/jbc.M117.777466_bib27 article-title: Methylamine in human urine publication-title: Clin. Chim. Acta doi: 10.1016/S0009-8981(01)00608-8 – volume: 437 start-page: 505 year: 2005 ident: 10.1074/jbc.M117.777466_bib33 article-title: Structures of complement component c3 provide insights into the function and evolution of immunity publication-title: Nature doi: 10.1038/nature04005 |
SSID | ssj0000491 |
Score | 2.3799002 |
SecondaryResourceType | review_article |
Snippet | Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8988 |
SubjectTerms | adhesin Adhesins, Bacterial - chemistry atomic force microscopy (AFM) bacterial adhesion Disulfides - chemistry Editors' Picks Gram-positive bacteria Histamine - chemistry Methylamines - chemistry pilus mechanics Protein Folding single-molecule biophysics Streptococcus pyogenes - chemistry thioester bond |
Title | Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin |
URI | https://dx.doi.org/10.1074/jbc.M117.777466 https://www.ncbi.nlm.nih.gov/pubmed/28348083 https://www.proquest.com/docview/1881772969 https://pubmed.ncbi.nlm.nih.gov/PMC5448130 |
Volume | 292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97C9jK3dJbuhwRiDYM8XyZfHLmyUjowVUsibsSWZpqx2aZNC9-_2z3aOLrabLrD1xQTZjh1_X6RP8jnfIeR9pWJVhzL2EiFzjykmdLKyl0CHWcmK8Vpnpc2-JwfH7HDBF6PR70HU0npV-eLXX_NK7oIqtAGumCX7H8h2XwoN8BnwhS0gDNt_wnimMG_XJSFibNWFKS2vTOSgwqyFKxt0UULbstXGCJOq1Z5L0FYZt2Z0DJAn6tL6cJ_2HBooVmPYZCxFXJ24TpFjRKldTTVp65NDfyPaB5NpJkddKy5h6_f0oVvHxmTtdjLzh0sRMLwFGCHXk8e9YxoGnH5ett0tmdgRV_bXVtsc9ng6XiQyXu6-Mj0yaERMN1gMu-wojwbcNCnWtgfO8iwbjua5Cf-9NVKAdMKRohL-LAxTPwUZbMq_DHhzfqaJAwqMZYGpt7Nhzv1jNuUwwQUhcI_cj2CmgmPDt6PesB4mYKZoo_1lzl0qZZ82ro221PZC2zTS7TnQZijvQBvNH5NHliJ03zD0CRmpZpfs7Tflqj27ph-oDjPWKOySB1OH0x6Z9wSmhsDUEZgCgWlPYNrWtKQdgSkSmC4baOsITC2Bn5Ljr1_m0wPPlvnwBGPxyktVCqK5zFQgQM5zVXNRcynTPK9APEoANAhFGYQySCQLRAgTgIyD7BZBxWVe8_gZ2WnaRr0gNBYR1vZkPIprVmZ1GXGVhFmWAEJK1vWY-O7BFsJ64GMplp-FjsVIWQGgFAhKYUAZk4_dCefG_mX7oZFDqrDq1ajSAii3_aR3DtMCnj2-rCsb1a4vC7jrEGe-ST4mzw3G3R04noxJegP97gD0jL-5p1meaO94y9aXdz7zFXnY__Vfk53VxVq9AV2-qt5q5v8BuEXktw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+forces+regulate+the+reactivity+of+a+thioester+bond+in+a+bacterial+adhesin&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Echelman%2C+Daniel+J.&rft.au=Lee%2C+Alex+Q.&rft.au=Fern%C3%A1ndez%2C+Julio+M.&rft.date=2017-05-26&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=292&rft.issue=21&rft.spage=8988&rft.epage=8997&rft_id=info:doi/10.1074%2Fjbc.M117.777466&rft_id=info%3Apmid%2F28348083&rft.externalDocID=PMC5448130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |