Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin

Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host sur...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 292; no. 21; pp. 8988 - 8997
Main Authors Echelman, Daniel J., Lee, Alex Q., Fernández, Julio M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.05.2017
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1074/jbc.M117.777466

Cover

Loading…
Abstract Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
AbstractList Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of , we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes , we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Author Fernández, Julio M.
Echelman, Daniel J.
Lee, Alex Q.
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Echelman
  fullname: Echelman, Daniel J.
  email: dje2122@columbia.edu
– sequence: 2
  givenname: Alex Q.
  surname: Lee
  fullname: Lee, Alex Q.
– sequence: 3
  givenname: Julio M.
  surname: Fernández
  fullname: Fernández, Julio M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28348083$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFPHCEUxomx0dX23Fszx15mhRkY4NKkMdU20XixSW-EgTfuM7Nggd3E_75s1prWRLkQHr_ve_C-E3IYYgBCPjK6ZFTys_vRLa8Zk0spJR-GA7JgVPVtL9ivQ7KgtGOt7oQ6Jic539O6uGZH5LhTPVcVXJDba3ArG9DZuZlicpCbBHeb2RZoygrqwbqCWyyPTZwaW2sYIRdIzRiDbzDU2lgRSFgdrF9BxvCevJvsnOHD035Kfl58uz3_3l7dXP44_3rVOs770kqQSvdWAXWCCwGTcJPwXmo9DgPzSivKnKXM08Fz6hjveiVkJx0dhdeT6E_Jl73vw2Zcg3cQSrKzeUi4tunRRIvm_5uAK3MXt0ZwrlhPq8HnJ4MUf2_qv8was4N5tgHiJhumFJOy04Ou6Kd_ez03-TvKCpztAZdizgmmZ4RRswvL1LDMLiyzD6sqxAuFw2ILxt1jcX5Dp_c6qLPdIiSTHUJw4DGBK8ZHfFX7B27trPc
CitedBy_id crossref_primary_10_1146_annurev_biophys_090420_083836
crossref_primary_10_3389_fmicb_2020_01457
crossref_primary_10_3390_gels8090577
crossref_primary_10_1038_s41570_017_0083
crossref_primary_10_1074_jbc_H117_777466
crossref_primary_10_1111_febs_15508
crossref_primary_10_1002_cbic_202200316
crossref_primary_10_1016_j_tibs_2020_03_002
crossref_primary_10_1172_JCI95823
crossref_primary_10_1016_j_xcrp_2025_102462
crossref_primary_10_1038_s41557_020_00586_x
crossref_primary_10_1007_s12551_021_00822_9
crossref_primary_10_1038_s41467_021_25425_6
crossref_primary_10_1038_s41596_024_00965_5
crossref_primary_10_1016_j_anaerobe_2024_102873
crossref_primary_10_1021_acs_orglett_2c02601
crossref_primary_10_1039_C9CP03350E
crossref_primary_10_1039_D0NR07492F
crossref_primary_10_1002_pro_3478
crossref_primary_10_1002_asia_202201128
crossref_primary_10_1021_acsnano_2c07298
crossref_primary_10_1021_acsnano_7b07247
crossref_primary_10_1039_C9NA00582J
crossref_primary_10_1016_j_sbi_2019_11_012
crossref_primary_10_1039_D0SM01106A
crossref_primary_10_1021_acsnano_9b02587
crossref_primary_10_1039_C7CS00820A
Cites_doi 10.1073/pnas.1522946113
10.1038/ncomms5917
10.1021/ja903589t
10.1126/science.8079175
10.1016/j.cell.2014.01.056
10.7554/eLife.06638
10.1529/biophysj.106.091561
10.1016/j.sbi.2005.10.010
10.1067/mai.2003.120
10.1073/pnas.98.2.468
10.1073/pnas.0609791104
10.1016/S0021-9258(18)42483-0
10.1128/JB.00769-15
10.1073/pnas.0400033101
10.1074/jbc.M110.149385
10.1038/nprot.2013.056
10.1038/373081a0
10.1038/srep02884
10.1038/379177a0
10.1021/jacs.6b05429
10.1161/01.ATV.0000237606.90253.94
10.1128/JB.00071-10
10.1042/BST20150066
10.1074/jbc.M113.523761
10.1126/science.1139857
10.1073/pnas.1315203110
10.1042/bj1930115
10.1016/0956-5663(95)99227-C
10.1021/bi00366a027
10.1074/jbc.M110.102962
10.1073/pnas.96.7.3694
10.1002/pro.5560060201
10.1073/pnas.0511035103
10.1128/AEM.02083-09
10.1073/pnas.1506538112
10.1074/jbc.M115.646000
10.1021/bi300112e
10.1016/j.imbio.2012.07.008
10.1016/j.jaci.2009.11.017
10.1038/ncomms10738
10.1016/j.celrep.2016.01.025
10.1016/S0009-8981(01)00608-8
10.1038/nature04005
ContentType Journal Article
Copyright 2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology
2017 by The American Society for Biochemistry and Molecular Biology, Inc.
2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology
– notice: 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M117.777466
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Mechanochemistry of a thioester bond in a bacterial adhesin
EISSN 1083-351X
EndPage 8997
ExternalDocumentID PMC5448130
28348083
10_1074_jbc_M117_777466
S0021925820427905
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: GM116122; HL061228
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NHLBI NIH HHS
  grantid: R01 HL061228
– fundername: NIGMS NIH HHS
  grantid: R01 GM116122
– fundername: ;
  grantid: HL061228; GM116122
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c443t-7e7893a8e0c5455ef5cf5dd799b661d89801ca01d06d40c142385727c0b5d9f53
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:32:01 EDT 2025
Thu Jul 10 19:57:08 EDT 2025
Wed Feb 19 02:29:40 EST 2025
Tue Jul 01 00:48:43 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Fri Feb 23 02:44:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords single-molecule biophysics
adhesin
atomic force microscopy (AFM)
thioester bond
Gram-positive bacteria
pilus mechanics
bacterial adhesion
Language English
License This is an open access article under the CC BY license.
2017 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-7e7893a8e0c5455ef5cf5dd799b661d89801ca01d06d40c142385727c0b5d9f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Chris Whitfield
OpenAccessLink https://dx.doi.org/10.1074/jbc.M117.777466
PMID 28348083
PQID 1881772969
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448130
proquest_miscellaneous_1881772969
pubmed_primary_28348083
crossref_primary_10_1074_jbc_M117_777466
crossref_citationtrail_10_1074_jbc_M117_777466
elsevier_sciencedirect_doi_10_1074_jbc_M117_777466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-26
PublicationDateYYYYMMDD 2017-05-26
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2017
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Carrion-Vazquez, Oberhauser, Fowler, Marszalek, Broedel, Clarke, Fernandez (bib40) 1999; 96
Khan, Sekulski, Erickson (bib32) 1986; 25
Bhaumik, Koski, Glumoff, Hiltunen, Wierenga (bib2) 2005; 15
Schlierf, Li, Fernandez (bib26) 2004; 101
Peng, Li (bib22) 2009; 131
Sim, Twose, Paterson, Sim (bib8) 1981; 193
Schwartz, Kalas, Pinkner, Chen, Spaulding, Dodson, Hultgren (bib36) 2013; 110
Baker, Squire, Young (bib17) 2015; 43
Dodds, Ren, Willis, Law (bib7) 1996; 379
Florin, Rief, Lehmann, Ludwig, Dornmair, Moy, Gaub (bib42) 1995; 10
Linke-Winnebeck, Paterson, Young, Middleditch, Greenwood, Witte, Baker (bib9) 2014; 289
Law, Dodds (bib5) 1997; 6
Popa, Rivas-Pardo, Eckels, Echelman, Badilla, Valle-Orero, Fernández (bib29) 2016; 138
Nilsson, Nilsson Ekdahl (bib30) 2012; 217
Mitchell, Zhang (bib27) 2001; 312
Popa, Kosuri, Alegre-Cebollada, Garcia-Manyes, Fernandez (bib41) 2013; 8
Bustamante, Marko, Siggia, Smith (bib43) 1994; 265
Johnson, Tang, Carag, Speicher, Discher (bib14) 2007; 317
Mitchell, Shi, Aldrich, Gulick (bib3) 2012; 51
Prussin, Metcalfe (bib34) 2003; 111
Ding, Palmer, Cisar, Kolenbrander (bib39) 2010; 76
Nishida, Walz, Springer (bib31) 2006; 103
Smith, Pointon, Abbot, Kang, Baker, Hirst, Wilson, Banfield, Kehoe (bib20) 2010; 192
Alegre-Cebollada, Kosuri, Giganti, Eckels, Rivas-Pardo, Hamdani, Warren, Solaro, Linke, Fernández (bib15) 2014; 156
Sauer, Jakob, Eras, Baday, Eriş, Navarra, Bernèche, Ernst, Maier, Glockshuber (bib37) 2016; 7
Wiita, Ainavarapu, Huang, Fernandez (bib24) 2006; 103
Möller, Lühmann, Chabria, Hall, Vogel (bib13) 2013; 3
Walden, Edwards, Dziewulska, Bergmann, Saalbach, Kan, Miller, Weckener, Jackson, Shirran, Botting, Florence, Rohde, Banfield, Schwarz-Linek (bib11) 2015; 4
Stone, Prussin, Metcalfe (bib35) 2010; 125
Pointon, Smith, Saalbach, Crow, Kehoe, Banfield (bib10) 2010; 285
Wong, Dessen (bib6) 2014; 5
Alegre-Cebollada, Badilla, Fernández (bib21) 2010; 285
Janssen, Huizinga, Raaijmakers, Roos, Daha, Nilsson-Ekdahl, Nilsson, Gros (bib33) 2005; 437
Rivas-Pardo, Eckels, Popa, Kosuri, Linke, Fernández (bib12) 2016; 14
Garcia-Ferrer, Arêde, Gómez-Blanco, Luque, Duquerroy, Castón, Goulas, Gomis-Rüth (bib4) 2015; 112
Scheffner, Nuber, Huibregtse (bib1) 1995; 373
George, Wei, Shin, Konstantopoulos, Ross (bib38) 2006; 26
Kahn, Fernández, Perez-Jimenez (bib28) 2015; 290
Pangburn (bib23) 1992; 267
Oberhauser, Hansma, Carrion-Vazquez, Fernandez (bib25) 2001; 98
Echelman, Alegre-Cebollada, Badilla, Chang, Ton-That, Fernández (bib16) 2016; 113
Reardon-Robinson, Ton-That (bib18) 2015; 198
Ainavarapu, Brujic, Huang, Wiita, Lu, Li, Walther, Carrion-Vazquez, Li, Fernandez (bib19) 2007; 92
Alegre-Cebollada (10.1074/jbc.M117.777466_bib21) 2010; 285
Janssen (10.1074/jbc.M117.777466_bib33) 2005; 437
Stone (10.1074/jbc.M117.777466_bib35) 2010; 125
Law (10.1074/jbc.M117.777466_bib5) 1997; 6
Ding (10.1074/jbc.M117.777466_bib39) 2010; 76
Pointon (10.1074/jbc.M117.777466_bib10) 2010; 285
Alegre-Cebollada (10.1074/jbc.M117.777466_bib15) 2014; 156
Baker (10.1074/jbc.M117.777466_bib17) 2015; 43
Popa (10.1074/jbc.M117.777466_bib29) 2016; 138
Echelman (10.1074/jbc.M117.777466_bib16) 2016; 113
Schlierf (10.1074/jbc.M117.777466_bib26) 2004; 101
Pangburn (10.1074/jbc.M117.777466_bib23) 1992; 267
Garcia-Ferrer (10.1074/jbc.M117.777466_bib4) 2015; 112
Möller (10.1074/jbc.M117.777466_bib13) 2013; 3
Bustamante (10.1074/jbc.M117.777466_bib43) 1994; 265
Johnson (10.1074/jbc.M117.777466_bib14) 2007; 317
George (10.1074/jbc.M117.777466_bib38) 2006; 26
Mitchell (10.1074/jbc.M117.777466_bib27) 2001; 312
Khan (10.1074/jbc.M117.777466_bib32) 1986; 25
Wong (10.1074/jbc.M117.777466_bib6) 2014; 5
Mitchell (10.1074/jbc.M117.777466_bib3) 2012; 51
Carrion-Vazquez (10.1074/jbc.M117.777466_bib40) 1999; 96
Schwartz (10.1074/jbc.M117.777466_bib36) 2013; 110
Popa (10.1074/jbc.M117.777466_bib41) 2013; 8
Dodds (10.1074/jbc.M117.777466_bib7) 1996; 379
Sim (10.1074/jbc.M117.777466_bib8) 1981; 193
Linke-Winnebeck (10.1074/jbc.M117.777466_bib9) 2014; 289
Scheffner (10.1074/jbc.M117.777466_bib1) 1995; 373
Peng (10.1074/jbc.M117.777466_bib22) 2009; 131
Sauer (10.1074/jbc.M117.777466_bib37) 2016; 7
Reardon-Robinson (10.1074/jbc.M117.777466_bib18) 2015; 198
Nishida (10.1074/jbc.M117.777466_bib31) 2006; 103
Wiita (10.1074/jbc.M117.777466_bib24) 2006; 103
Smith (10.1074/jbc.M117.777466_bib20) 2010; 192
Prussin (10.1074/jbc.M117.777466_bib34) 2003; 111
Kahn (10.1074/jbc.M117.777466_bib28) 2015; 290
Oberhauser (10.1074/jbc.M117.777466_bib25) 2001; 98
Florin (10.1074/jbc.M117.777466_bib42) 1995; 10
Walden (10.1074/jbc.M117.777466_bib11) 2015; 4
Rivas-Pardo (10.1074/jbc.M117.777466_bib12) 2016; 14
Nilsson (10.1074/jbc.M117.777466_bib30) 2012; 217
Bhaumik (10.1074/jbc.M117.777466_bib2) 2005; 15
Ainavarapu (10.1074/jbc.M117.777466_bib19) 2007; 92
References_xml – volume: 317
  start-page: 663
  year: 2007
  end-page: 666
  ident: bib14
  article-title: Forced unfolding of proteins within cells
  publication-title: Science
– volume: 14
  start-page: 1339
  year: 2016
  end-page: 1347
  ident: bib12
  article-title: Work done by titin protein folding assists muscle contraction
  publication-title: Cell Rep
– volume: 26
  start-page: 2394
  year: 2006
  end-page: 2400
  ident: bib38
  article-title: adhesion via spa, clfa, and sdrcde to immobilized platelets demonstrates shear-dependent behavior
  publication-title: Arterioscler. Thromb. Vasc. Biol
– volume: 217
  start-page: 1106
  year: 2012
  end-page: 1110
  ident: bib30
  article-title: The tick-over theory revisited: is c3 a contact-activated protein?
  publication-title: Immunobiology
– volume: 43
  start-page: 787
  year: 2015
  end-page: 794
  ident: bib17
  article-title: Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria
  publication-title: Biochem. Soc. Trans
– volume: 103
  start-page: 19737
  year: 2006
  end-page: 19742
  ident: bib31
  article-title: Structural transitions of complement component c3 and its activation products
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 6
  start-page: 263
  year: 1997
  end-page: 274
  ident: bib5
  article-title: The internal thioester and the covalent binding properties of the complement proteins c3 and c4
  publication-title: Protein Sci
– volume: 113
  start-page: 2490
  year: 2016
  end-page: 2495
  ident: bib16
  article-title: CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 101
  start-page: 7299
  year: 2004
  end-page: 7304
  ident: bib26
  article-title: The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 111
  start-page: S486
  year: 2003
  end-page: S494
  ident: bib34
  article-title: IgE, mast cells, basophils, and eosinophils
  publication-title: J. Allergy Clin. Immunol
– volume: 8
  start-page: 1261
  year: 2013
  end-page: 1276
  ident: bib41
  article-title: Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy
  publication-title: Nat. Protoc
– volume: 265
  start-page: 1599
  year: 1994
  end-page: 1600
  ident: bib43
  article-title: Entropic elasticity of λ-phage DNA
  publication-title: Science
– volume: 193
  start-page: 115
  year: 1981
  end-page: 127
  ident: bib8
  article-title: The covalent-binding reaction of complement component c3
  publication-title: Biochem. J
– volume: 98
  start-page: 468
  year: 2001
  end-page: 472
  ident: bib25
  article-title: Stepwise unfolding of titin under force-clamp atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 125
  start-page: S73
  year: 2010
  end-page: S80
  ident: bib35
  article-title: Ige, mast cells, basophils, and eosinophils
  publication-title: J. Allergy Clin. Immunol
– volume: 156
  start-page: 1235
  year: 2014
  end-page: 1246
  ident: bib15
  article-title: -Glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding
  publication-title: Cell
– volume: 112
  start-page: 8290
  year: 2015
  end-page: 8295
  ident: bib4
  article-title: Structural and functional insights into
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 289
  start-page: 177
  year: 2014
  end-page: 189
  ident: bib9
  article-title: Structural model for covalent adhesion of the
  publication-title: J. Biol. Chem
– volume: 312
  start-page: 107
  year: 2001
  end-page: 114
  ident: bib27
  article-title: Methylamine in human urine
  publication-title: Clin. Chim. Acta
– volume: 285
  start-page: 33858
  year: 2010
  end-page: 33866
  ident: bib10
  article-title: A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction
  publication-title: J. Biol. Chem
– volume: 285
  start-page: 11235
  year: 2010
  end-page: 11242
  ident: bib21
  article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic
  publication-title: J. Biol. Chem
– volume: 103
  start-page: 7222
  year: 2006
  end-page: 7227
  ident: bib24
  article-title: Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 198
  start-page: 746
  year: 2015
  end-page: 754
  ident: bib18
  article-title: Disulfide-bond-forming pathways in Gram-positive bacteria
  publication-title: J. Bacteriol
– volume: 10
  start-page: 895
  year: 1995
  end-page: 901
  ident: bib42
  article-title: Sensing specific molecular interactions with the atomic force microscope
  publication-title: Biosens. Bioelectron
– volume: 5
  year: 2014
  ident: bib6
  article-title: Structure of a bacterial α2-macroglobulin reveals mimicry of eukaryotic innate immunity
  publication-title: Nat. Commun
– volume: 192
  start-page: 4651
  year: 2010
  end-page: 4659
  ident: bib20
  article-title: Roles of minor pilin subunits spy0125 and spy0130 in the serotype m1
  publication-title: J. Bacteriol
– volume: 92
  start-page: 225
  year: 2007
  end-page: 233
  ident: bib19
  article-title: Contour length and refolding rate of a small protein controlled by engineered disulfide bonds
  publication-title: Biophys. J
– volume: 110
  start-page: 15530
  year: 2013
  end-page: 15537
  ident: bib36
  article-title: Positively selected fimh residues enhance virulence during urinary tract infection by altering fimh conformation
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 138
  start-page: 10546
  year: 2016
  end-page: 10553
  ident: bib29
  article-title: A halotag anchored ruler for week-long studies of protein dynamics
  publication-title: J. Am. Chem. Soc
– volume: 373
  start-page: 81
  year: 1995
  end-page: 83
  ident: bib1
  article-title: Protein ubiquitination involving an e1-e2-e3 enzyme ubiquitin thioester cascade
  publication-title: Nature
– volume: 3
  year: 2013
  ident: bib13
  article-title: Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism
  publication-title: Sci. Rep
– volume: 76
  start-page: 1294
  year: 2010
  end-page: 1297
  ident: bib39
  article-title: Shear-enhanced oral microbial adhesion
  publication-title: Appl. Environ. Microbiol
– volume: 15
  start-page: 621
  year: 2005
  end-page: 628
  ident: bib2
  article-title: Structural biology of the thioester-dependent degradation and synthesis of fatty acids
  publication-title: Curr. Opin. Struct. Biol
– volume: 25
  start-page: 5165
  year: 1986
  end-page: 5171
  ident: bib32
  article-title: Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis
  publication-title: Biochemistry
– volume: 7
  year: 2016
  ident: bib37
  article-title: Catch-bond mechanism of the bacterial adhesin fimh
  publication-title: Nat. Commun
– volume: 290
  start-page: 14518
  year: 2015
  end-page: 14527
  ident: bib28
  article-title: Monitoring oxidative folding of a single protein catalyzed by the disulfide oxidoreductase dsba
  publication-title: J. Biol. Chem
– volume: 437
  start-page: 505
  year: 2005
  end-page: 511
  ident: bib33
  article-title: Structures of complement component c3 provide insights into the function and evolution of immunity
  publication-title: Nature
– volume: 4
  year: 2015
  ident: bib11
  article-title: An internal thioester in a pathogen surface protein mediates covalent host binding
  publication-title: Elife
– volume: 131
  start-page: 14050
  year: 2009
  end-page: 14056
  ident: bib22
  article-title: Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins
  publication-title: J. Am. Chem. Soc
– volume: 267
  start-page: 8584
  year: 1992
  end-page: 8590
  ident: bib23
  article-title: Spontaneous reformation of the intramolecular thioester in complement protein c3 and low temperature capture of a conformational intermediate capable of reformation
  publication-title: J. Biol. Chem
– volume: 51
  start-page: 3252
  year: 2012
  end-page: 3263
  ident: bib3
  article-title: Structure of pa1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains
  publication-title: Biochemistry
– volume: 379
  start-page: 177
  year: 1996
  end-page: 179
  ident: bib7
  article-title: The reaction mechanism of the internal thioester in the human complement component c4
  publication-title: Nature
– volume: 96
  start-page: 3694
  year: 1999
  end-page: 3699
  ident: bib40
  article-title: Mechanical and chemical unfolding of a single protein: a comparison
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 113
  start-page: 2490
  year: 2016
  ident: 10.1074/jbc.M117.777466_bib16
  article-title: CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1522946113
– volume: 5
  year: 2014
  ident: 10.1074/jbc.M117.777466_bib6
  article-title: Structure of a bacterial α2-macroglobulin reveals mimicry of eukaryotic innate immunity
  publication-title: Nat. Commun
  doi: 10.1038/ncomms5917
– volume: 131
  start-page: 14050
  year: 2009
  ident: 10.1074/jbc.M117.777466_bib22
  article-title: Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja903589t
– volume: 265
  start-page: 1599
  year: 1994
  ident: 10.1074/jbc.M117.777466_bib43
  article-title: Entropic elasticity of λ-phage DNA
  publication-title: Science
  doi: 10.1126/science.8079175
– volume: 156
  start-page: 1235
  year: 2014
  ident: 10.1074/jbc.M117.777466_bib15
  article-title: S-Glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.056
– volume: 4
  year: 2015
  ident: 10.1074/jbc.M117.777466_bib11
  article-title: An internal thioester in a pathogen surface protein mediates covalent host binding
  publication-title: Elife
  doi: 10.7554/eLife.06638
– volume: 92
  start-page: 225
  year: 2007
  ident: 10.1074/jbc.M117.777466_bib19
  article-title: Contour length and refolding rate of a small protein controlled by engineered disulfide bonds
  publication-title: Biophys. J
  doi: 10.1529/biophysj.106.091561
– volume: 15
  start-page: 621
  year: 2005
  ident: 10.1074/jbc.M117.777466_bib2
  article-title: Structural biology of the thioester-dependent degradation and synthesis of fatty acids
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2005.10.010
– volume: 111
  start-page: S486
  year: 2003
  ident: 10.1074/jbc.M117.777466_bib34
  article-title: IgE, mast cells, basophils, and eosinophils
  publication-title: J. Allergy Clin. Immunol
  doi: 10.1067/mai.2003.120
– volume: 98
  start-page: 468
  year: 2001
  ident: 10.1074/jbc.M117.777466_bib25
  article-title: Stepwise unfolding of titin under force-clamp atomic force microscopy
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.98.2.468
– volume: 103
  start-page: 19737
  year: 2006
  ident: 10.1074/jbc.M117.777466_bib31
  article-title: Structural transitions of complement component c3 and its activation products
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0609791104
– volume: 267
  start-page: 8584
  year: 1992
  ident: 10.1074/jbc.M117.777466_bib23
  article-title: Spontaneous reformation of the intramolecular thioester in complement protein c3 and low temperature capture of a conformational intermediate capable of reformation
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(18)42483-0
– volume: 198
  start-page: 746
  year: 2015
  ident: 10.1074/jbc.M117.777466_bib18
  article-title: Disulfide-bond-forming pathways in Gram-positive bacteria
  publication-title: J. Bacteriol
  doi: 10.1128/JB.00769-15
– volume: 101
  start-page: 7299
  year: 2004
  ident: 10.1074/jbc.M117.777466_bib26
  article-title: The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0400033101
– volume: 285
  start-page: 33858
  year: 2010
  ident: 10.1074/jbc.M117.777466_bib10
  article-title: A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M110.149385
– volume: 8
  start-page: 1261
  year: 2013
  ident: 10.1074/jbc.M117.777466_bib41
  article-title: Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2013.056
– volume: 373
  start-page: 81
  year: 1995
  ident: 10.1074/jbc.M117.777466_bib1
  article-title: Protein ubiquitination involving an e1-e2-e3 enzyme ubiquitin thioester cascade
  publication-title: Nature
  doi: 10.1038/373081a0
– volume: 3
  year: 2013
  ident: 10.1074/jbc.M117.777466_bib13
  article-title: Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism
  publication-title: Sci. Rep
  doi: 10.1038/srep02884
– volume: 379
  start-page: 177
  year: 1996
  ident: 10.1074/jbc.M117.777466_bib7
  article-title: The reaction mechanism of the internal thioester in the human complement component c4
  publication-title: Nature
  doi: 10.1038/379177a0
– volume: 138
  start-page: 10546
  year: 2016
  ident: 10.1074/jbc.M117.777466_bib29
  article-title: A halotag anchored ruler for week-long studies of protein dynamics
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.6b05429
– volume: 26
  start-page: 2394
  year: 2006
  ident: 10.1074/jbc.M117.777466_bib38
  article-title: Staphylococcus aureus adhesion via spa, clfa, and sdrcde to immobilized platelets demonstrates shear-dependent behavior
  publication-title: Arterioscler. Thromb. Vasc. Biol
  doi: 10.1161/01.ATV.0000237606.90253.94
– volume: 192
  start-page: 4651
  year: 2010
  ident: 10.1074/jbc.M117.777466_bib20
  article-title: Roles of minor pilin subunits spy0125 and spy0130 in the serotype m1 Streptococcus pyogenes strain sf370
  publication-title: J. Bacteriol
  doi: 10.1128/JB.00071-10
– volume: 43
  start-page: 787
  year: 2015
  ident: 10.1074/jbc.M117.777466_bib17
  article-title: Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria
  publication-title: Biochem. Soc. Trans
  doi: 10.1042/BST20150066
– volume: 289
  start-page: 177
  year: 2014
  ident: 10.1074/jbc.M117.777466_bib9
  article-title: Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M113.523761
– volume: 317
  start-page: 663
  year: 2007
  ident: 10.1074/jbc.M117.777466_bib14
  article-title: Forced unfolding of proteins within cells
  publication-title: Science
  doi: 10.1126/science.1139857
– volume: 110
  start-page: 15530
  year: 2013
  ident: 10.1074/jbc.M117.777466_bib36
  article-title: Positively selected fimh residues enhance virulence during urinary tract infection by altering fimh conformation
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1315203110
– volume: 193
  start-page: 115
  year: 1981
  ident: 10.1074/jbc.M117.777466_bib8
  article-title: The covalent-binding reaction of complement component c3
  publication-title: Biochem. J
  doi: 10.1042/bj1930115
– volume: 10
  start-page: 895
  year: 1995
  ident: 10.1074/jbc.M117.777466_bib42
  article-title: Sensing specific molecular interactions with the atomic force microscope
  publication-title: Biosens. Bioelectron
  doi: 10.1016/0956-5663(95)99227-C
– volume: 25
  start-page: 5165
  year: 1986
  ident: 10.1074/jbc.M117.777466_bib32
  article-title: Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis
  publication-title: Biochemistry
  doi: 10.1021/bi00366a027
– volume: 285
  start-page: 11235
  year: 2010
  ident: 10.1074/jbc.M117.777466_bib21
  article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M110.102962
– volume: 96
  start-page: 3694
  year: 1999
  ident: 10.1074/jbc.M117.777466_bib40
  article-title: Mechanical and chemical unfolding of a single protein: a comparison
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.96.7.3694
– volume: 6
  start-page: 263
  year: 1997
  ident: 10.1074/jbc.M117.777466_bib5
  article-title: The internal thioester and the covalent binding properties of the complement proteins c3 and c4
  publication-title: Protein Sci
  doi: 10.1002/pro.5560060201
– volume: 103
  start-page: 7222
  year: 2006
  ident: 10.1074/jbc.M117.777466_bib24
  article-title: Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0511035103
– volume: 76
  start-page: 1294
  year: 2010
  ident: 10.1074/jbc.M117.777466_bib39
  article-title: Shear-enhanced oral microbial adhesion
  publication-title: Appl. Environ. Microbiol
  doi: 10.1128/AEM.02083-09
– volume: 112
  start-page: 8290
  year: 2015
  ident: 10.1074/jbc.M117.777466_bib4
  article-title: Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1506538112
– volume: 290
  start-page: 14518
  year: 2015
  ident: 10.1074/jbc.M117.777466_bib28
  article-title: Monitoring oxidative folding of a single protein catalyzed by the disulfide oxidoreductase dsba
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M115.646000
– volume: 51
  start-page: 3252
  year: 2012
  ident: 10.1074/jbc.M117.777466_bib3
  article-title: Structure of pa1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains
  publication-title: Biochemistry
  doi: 10.1021/bi300112e
– volume: 217
  start-page: 1106
  year: 2012
  ident: 10.1074/jbc.M117.777466_bib30
  article-title: The tick-over theory revisited: is c3 a contact-activated protein?
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2012.07.008
– volume: 125
  start-page: S73
  year: 2010
  ident: 10.1074/jbc.M117.777466_bib35
  article-title: Ige, mast cells, basophils, and eosinophils
  publication-title: J. Allergy Clin. Immunol
  doi: 10.1016/j.jaci.2009.11.017
– volume: 7
  year: 2016
  ident: 10.1074/jbc.M117.777466_bib37
  article-title: Catch-bond mechanism of the bacterial adhesin fimh
  publication-title: Nat. Commun
  doi: 10.1038/ncomms10738
– volume: 14
  start-page: 1339
  year: 2016
  ident: 10.1074/jbc.M117.777466_bib12
  article-title: Work done by titin protein folding assists muscle contraction
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.01.025
– volume: 312
  start-page: 107
  year: 2001
  ident: 10.1074/jbc.M117.777466_bib27
  article-title: Methylamine in human urine
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(01)00608-8
– volume: 437
  start-page: 505
  year: 2005
  ident: 10.1074/jbc.M117.777466_bib33
  article-title: Structures of complement component c3 provide insights into the function and evolution of immunity
  publication-title: Nature
  doi: 10.1038/nature04005
SSID ssj0000491
Score 2.3799002
SecondaryResourceType review_article
Snippet Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8988
SubjectTerms adhesin
Adhesins, Bacterial - chemistry
atomic force microscopy (AFM)
bacterial adhesion
Disulfides - chemistry
Editors' Picks
Gram-positive bacteria
Histamine - chemistry
Methylamines - chemistry
pilus mechanics
Protein Folding
single-molecule biophysics
Streptococcus pyogenes - chemistry
thioester bond
Title Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin
URI https://dx.doi.org/10.1074/jbc.M117.777466
https://www.ncbi.nlm.nih.gov/pubmed/28348083
https://www.proquest.com/docview/1881772969
https://pubmed.ncbi.nlm.nih.gov/PMC5448130
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97C9jK3dJbuhwRiDYM8XyZfHLmyUjowVUsibsSWZpqx2aZNC9-_2z3aOLrabLrD1xQTZjh1_X6RP8jnfIeR9pWJVhzL2EiFzjykmdLKyl0CHWcmK8Vpnpc2-JwfH7HDBF6PR70HU0npV-eLXX_NK7oIqtAGumCX7H8h2XwoN8BnwhS0gDNt_wnimMG_XJSFibNWFKS2vTOSgwqyFKxt0UULbstXGCJOq1Z5L0FYZt2Z0DJAn6tL6cJ_2HBooVmPYZCxFXJ24TpFjRKldTTVp65NDfyPaB5NpJkddKy5h6_f0oVvHxmTtdjLzh0sRMLwFGCHXk8e9YxoGnH5ett0tmdgRV_bXVtsc9ng6XiQyXu6-Mj0yaERMN1gMu-wojwbcNCnWtgfO8iwbjua5Cf-9NVKAdMKRohL-LAxTPwUZbMq_DHhzfqaJAwqMZYGpt7Nhzv1jNuUwwQUhcI_cj2CmgmPDt6PesB4mYKZoo_1lzl0qZZ82ro221PZC2zTS7TnQZijvQBvNH5NHliJ03zD0CRmpZpfs7Tflqj27ph-oDjPWKOySB1OH0x6Z9wSmhsDUEZgCgWlPYNrWtKQdgSkSmC4baOsITC2Bn5Ljr1_m0wPPlvnwBGPxyktVCqK5zFQgQM5zVXNRcynTPK9APEoANAhFGYQySCQLRAgTgIyD7BZBxWVe8_gZ2WnaRr0gNBYR1vZkPIprVmZ1GXGVhFmWAEJK1vWY-O7BFsJ64GMplp-FjsVIWQGgFAhKYUAZk4_dCefG_mX7oZFDqrDq1ajSAii3_aR3DtMCnj2-rCsb1a4vC7jrEGe-ST4mzw3G3R04noxJegP97gD0jL-5p1meaO94y9aXdz7zFXnY__Vfk53VxVq9AV2-qt5q5v8BuEXktw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+forces+regulate+the+reactivity+of+a+thioester+bond+in+a+bacterial+adhesin&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Echelman%2C+Daniel+J.&rft.au=Lee%2C+Alex+Q.&rft.au=Fern%C3%A1ndez%2C+Julio+M.&rft.date=2017-05-26&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=292&rft.issue=21&rft.spage=8988&rft.epage=8997&rft_id=info:doi/10.1074%2Fjbc.M117.777466&rft_id=info%3Apmid%2F28348083&rft.externalDocID=PMC5448130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon