Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats
Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA trig...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 46; pp. 28939 - 28949 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration. |
---|---|
AbstractList | Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration. Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration. Bats have been shown to dampen several key upstream pathogen and danger-associated molecular patterns, yet much of the downstream signaling is yet unknown. Here, we identify residues in caspase-1 which are critical for enzymatic activity and have been targeted for inhibition in Pteropus bats. Further, we discover cleavage-site flanking residues which lead to loss of IL-1β cleavage in Myotis bats. Thus, we report an inverse relationship between caspase-1 function and IL-1β cleavage, resulting in a consistent reduction of downstream signaling by the inflammasome across bats within the two suborders. In sum, we confirm that bats have targeted the inflammasome pathway at multiple levels and via heterogeneous strategies to reduce proinflammatory responses, thus mitigating potential immune-mediated tissue damage and disease. Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration. |
Author | Lee, Lim Beng Ahn, Matae Luo, Dahai Zhu, Feng Wang, Lin-Fa Goh, Geraldine Irving, Aaron T. |
Author_xml | – sequence: 1 givenname: Geraldine surname: Goh fullname: Goh, Geraldine – sequence: 2 givenname: Matae surname: Ahn fullname: Ahn, Matae – sequence: 3 givenname: Feng surname: Zhu fullname: Zhu, Feng – sequence: 4 givenname: Lim Beng surname: Lee fullname: Lee, Lim Beng – sequence: 5 givenname: Dahai surname: Luo fullname: Luo, Dahai – sequence: 6 givenname: Aaron T. surname: Irving fullname: Irving, Aaron T. – sequence: 7 givenname: Lin-Fa surname: Wang fullname: Wang, Lin-Fa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33106404$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkbtu3DAQRYnARrx2UqdKIMBNGtnDx1JUEyBY5GFgATdJTcxSI1sLkVREyYB_Kx_ibwqFdTaPaoo592Lu3HN2EmIgxt5wuOJQyeshYLoSAFKuBefVC7biUPNSqxpO2ApAVKVRQp2x85T2AFCvDbxkZ1Jy0ArUisVN9ENPnsKE42Mx0t3c49TFUMS2cJgGTFTyAkNT3GxL_vQzIw-EfSqwaboFxL7w5O4xdMmnRdWgHyhQU3Sh7dH7g10Xih1O6RU7bbOaXj_PC_b986dvm6_l9vbLzebjtnRKyamsELCFtWmM5jvTiBxOtapCwwkFVbXbEQmHojJKa6MX2si2BjJOajBaXrAPB99h3nlqXM43Ym-HsfM5p43Y2X83obu3d_HBVtoIWdfZ4P2zwRh_zJQm67vkqO8xUJyTFWqt9PJ0ntHL_9B9nMf8mIXSKl9jzGJ4faDcGFMaqT0ew8EuZdqlTPunzKx493eGI_-7vQy8PQD7NMXxuBe6rjjwWv4CqDioRA |
CitedBy_id | crossref_primary_10_1016_j_cell_2023_03_036 crossref_primary_10_1016_j_it_2024_01_007 crossref_primary_10_2217_fmb_2023_0233 crossref_primary_10_1016_j_isci_2020_101876 crossref_primary_10_3390_ani13243842 crossref_primary_10_1084_jem_20211223 crossref_primary_10_1038_s41392_022_01247_w crossref_primary_10_1017_cts_2021_790 crossref_primary_10_3390_v14020238 crossref_primary_10_1002_jmv_29772 crossref_primary_10_1093_gigascience_giad086 crossref_primary_10_1038_s41467_024_48934_6 crossref_primary_10_30802_AALAS_CM_21_000027 crossref_primary_10_1016_j_isci_2022_104782 crossref_primary_10_1126_sciimmunol_abh3567 crossref_primary_10_1152_physrev_00002_2021 crossref_primary_10_1042_CS20201452 crossref_primary_10_1038_s41467_022_32922_9 crossref_primary_10_1016_j_dci_2022_104579 crossref_primary_10_1126_sciimmunol_abd0205 crossref_primary_10_1186_s40779_022_00404_0 crossref_primary_10_1093_molbev_msad104 crossref_primary_10_1038_s41598_024_53645_5 crossref_primary_10_1093_dnares_dsac026 crossref_primary_10_1073_pnas_2113628119 crossref_primary_10_1128_spectrum_03483_22 crossref_primary_10_3390_ijms222413480 crossref_primary_10_1051_medsci_2023179 crossref_primary_10_3389_fimmu_2023_1147859 crossref_primary_10_1038_s41586_020_03128_0 crossref_primary_10_1016_j_isci_2022_104779 crossref_primary_10_1016_j_jbc_2022_101931 crossref_primary_10_1093_gbe_evad148 crossref_primary_10_1093_conphys_coab074 crossref_primary_10_1002_JLB_4COVHR0221_093RR crossref_primary_10_3389_fcimb_2023_1224532 crossref_primary_10_3390_v14010150 crossref_primary_10_1016_j_cell_2023_01_011 crossref_primary_10_1016_j_coviro_2021_04_013 crossref_primary_10_1016_j_celrep_2022_111305 crossref_primary_10_3390_v13081620 |
Cites_doi | 10.1023/A:1020506300324 10.1126/science.1118391 10.4049/jimmunol.1800973 10.1038/nature22975 10.1186/1471-2148-12-140 10.1038/nature15514 10.4049/jimmunol.1600714 10.1073/pnas.0404781101 10.1016/j.chom.2008.08.007 10.1073/pnas.0812690106 10.1371/journal.ppat.0030111 10.1016/0092-8674(94)90303-4 10.1038/srep38597 10.1073/pnas.0602571103 10.1073/pnas.1518240113 10.1038/cmi.2016.25 10.1016/j.clim.2016.12.011 10.1073/pnas.1201836109 10.1038/356768a0 10.1111/acel.13050 10.1016/S1074-5521(00)00123-X 10.1074/jbc.M112.426460 10.1093/cz/zoy039 10.1038/sj.onc.1201206 10.1016/j.cell.2020.02.002 10.1371/journal.pbio.3000047 10.1073/pnas.1414859111 10.1038/ncomms1796 10.1038/cddis.2012.86 10.1038/s41467-019-09753-2 10.1084/jem.20081667 10.1038/s41577-020-0311-8 10.1038/s41467-018-06449-x 10.1016/j.cub.2013.09.014 10.1038/s41467-018-07384-7 10.1016/j.cell.2016.09.001 10.1038/s41564-019-0371-3 10.1093/molbev/msm088 10.1038/s41598-019-54057-6 10.1128/mBio.00944-17 10.3201/eid0204.960407 10.1038/370270a0 10.1038/ni1346 10.1073/pnas.1324140111 10.1038/438575a 10.15252/embj.2019103397 10.1002/j.1460-2075.1995.tb07184.x 10.1371/journal.pone.0008266 10.1016/j.chom.2018.01.006 10.1038/nm.4267 10.1371/journal.ppat.1001222 10.1016/j.immuni.2019.03.012 10.1093/sysbio/syq010 10.1016/j.immuni.2020.06.007 10.1016/S0960-894X(01)00573-X 10.1016/j.cell.2017.12.013 10.1016/j.cmet.2019.10.006 10.1093/molbev/msi097 10.1038/nature07710 10.1084/jem.20172222 10.1371/journal.ppat.1000311 10.1073/pnas.1814995116 10.1038/s41586-020-2012-7 10.1126/science.1230835 10.1073/pnas.0912613107 10.1016/j.cmet.2013.09.010 10.1038/srep21722 10.1002/eji.201545839 10.1016/j.immuni.2017.02.011 10.1084/jem.20172060 10.4049/jimmunol.1502538 10.1038/nri.2016.58 10.1089/jir.1995.15.243 10.1177/1074248417702890 10.1038/ni.1864 10.1038/ni1344 10.1186/1471-2164-11-444 10.1084/jem.20121960 10.1038/nature07725 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Nov 17, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Nov 17, 2020 – notice: 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2003352117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 28949 |
ExternalDocumentID | 10_1073_pnas_2003352117 33106404 26971019 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation Singapore (NRF) grantid: NRF2016NRF-NSFC002-013 – fundername: MOH | National Medical Research Council (NMRC) grantid: NMRC/BNIG/2040/2015 – fundername: National Research Foundation Singapore (NRF) grantid: NRF2012NRF-CRP001-056 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-7a0af058d861b8d22114f47a81ea2e79cbee2ca27846686a0af83f90e8c360863 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:23:46 EDT 2024 Sat Aug 17 01:53:15 EDT 2024 Thu Oct 10 17:34:42 EDT 2024 Fri Dec 06 02:30:34 EST 2024 Sat Sep 28 08:23:48 EDT 2024 Tue Dec 10 23:43:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | bats AIM2 IL-1β caspase-1 inflammasome |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-7a0af058d861b8d22114f47a81ea2e79cbee2ca27846686a0af83f90e8c360863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: G.G., M.A., A.T.I., and L.-F.W. conceived the study; M.A., A.T.I., and L.-F.W. provided resources and materials; G.G., L.B.L., and M.A. performed experiments; G.G., M.A., F.Z., and D.L. analyzed the data; and G.G., M.A., D.L., A.T.I., and L.-F.W. wrote the manuscript with input from all authors. 1G.G. and M.A. contributed equally to this work. Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved September 14, 2020 (received for review February 21, 2020) |
ORCID | 0000-0002-8131-1219 0000-0002-0196-1570 0000-0003-2114-8250 0000-0001-7637-7275 0000-0003-2752-0535 0000-0003-2370-6287 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682399 |
PMID | 33106404 |
PQID | 2464863889 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682399 proquest_miscellaneous_2454652111 proquest_journals_2464863889 crossref_primary_10_1073_pnas_2003352117 pubmed_primary_33106404 jstor_primary_26971019 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-17 |
PublicationDateYYYYMMDD | 2020-11-17 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 Irving A. T. (e_1_3_4_76_2) 2019; 11 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_19_2 doi: 10.1023/A:1020506300324 – ident: e_1_3_4_1_2 doi: 10.1126/science.1118391 – ident: e_1_3_4_30_2 doi: 10.4049/jimmunol.1800973 – ident: e_1_3_4_5_2 doi: 10.1038/nature22975 – ident: e_1_3_4_12_2 doi: 10.1186/1471-2148-12-140 – ident: e_1_3_4_20_2 doi: 10.1038/nature15514 – ident: e_1_3_4_24_2 doi: 10.4049/jimmunol.1600714 – ident: e_1_3_4_58_2 doi: 10.1073/pnas.0404781101 – ident: e_1_3_4_43_2 doi: 10.1016/j.chom.2008.08.007 – ident: e_1_3_4_64_2 doi: 10.1073/pnas.0812690106 – ident: e_1_3_4_29_2 doi: 10.1371/journal.ppat.0030111 – ident: e_1_3_4_36_2 doi: 10.1016/0092-8674(94)90303-4 – ident: e_1_3_4_77_2 doi: 10.1038/srep38597 – ident: e_1_3_4_59_2 doi: 10.1073/pnas.0602571103 – ident: e_1_3_4_7_2 doi: 10.1073/pnas.1518240113 – ident: e_1_3_4_54_2 doi: 10.1038/cmi.2016.25 – ident: e_1_3_4_25_2 doi: 10.1016/j.clim.2016.12.011 – ident: e_1_3_4_49_2 doi: 10.1073/pnas.1201836109 – ident: e_1_3_4_18_2 doi: 10.1038/356768a0 – ident: e_1_3_4_73_2 doi: 10.1111/acel.13050 – ident: e_1_3_4_56_2 doi: 10.1016/S1074-5521(00)00123-X – ident: e_1_3_4_40_2 doi: 10.1074/jbc.M112.426460 – ident: e_1_3_4_69_2 doi: 10.1093/cz/zoy039 – ident: e_1_3_4_13_2 doi: 10.1038/sj.onc.1201206 – ident: e_1_3_4_22_2 doi: 10.1016/j.cell.2020.02.002 – ident: e_1_3_4_61_2 doi: 10.1371/journal.pbio.3000047 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.1414859111 – ident: e_1_3_4_2_2 doi: 10.1038/ncomms1796 – ident: e_1_3_4_26_2 doi: 10.1038/cddis.2012.86 – ident: e_1_3_4_27_2 doi: 10.1038/s41467-019-09753-2 – ident: e_1_3_4_48_2 doi: 10.1084/jem.20081667 – ident: e_1_3_4_67_2 doi: 10.1038/s41577-020-0311-8 – ident: e_1_3_4_32_2 doi: 10.1038/s41467-018-06449-x – ident: e_1_3_4_41_2 doi: 10.1016/j.cub.2013.09.014 – ident: e_1_3_4_53_2 doi: 10.1038/s41467-018-07384-7 – ident: e_1_3_4_47_2 doi: 10.1016/j.cell.2016.09.001 – ident: e_1_3_4_9_2 doi: 10.1038/s41564-019-0371-3 – ident: e_1_3_4_38_2 doi: 10.1093/molbev/msm088 – ident: e_1_3_4_70_2 doi: 10.1038/s41598-019-54057-6 – ident: e_1_3_4_52_2 doi: 10.1128/mBio.00944-17 – ident: e_1_3_4_66_2 doi: 10.3201/eid0204.960407 – ident: e_1_3_4_35_2 doi: 10.1038/370270a0 – ident: e_1_3_4_45_2 doi: 10.1038/ni1346 – ident: e_1_3_4_65_2 doi: 10.1073/pnas.1324140111 – ident: e_1_3_4_3_2 doi: 10.1038/438575a – ident: e_1_3_4_62_2 doi: 10.15252/embj.2019103397 – ident: e_1_3_4_37_2 doi: 10.1002/j.1460-2075.1995.tb07184.x – ident: e_1_3_4_34_2 doi: 10.1371/journal.pone.0008266 – ident: e_1_3_4_10_2 doi: 10.1016/j.chom.2018.01.006 – ident: e_1_3_4_74_2 doi: 10.1038/nm.4267 – ident: e_1_3_4_46_2 doi: 10.1371/journal.ppat.1001222 – ident: e_1_3_4_63_2 doi: 10.1016/j.immuni.2019.03.012 – ident: e_1_3_4_78_2 doi: 10.1093/sysbio/syq010 – ident: e_1_3_4_39_2 doi: 10.1016/j.immuni.2020.06.007 – ident: e_1_3_4_57_2 doi: 10.1016/S0960-894X(01)00573-X – ident: e_1_3_4_75_2 doi: 10.1016/j.cell.2017.12.013 – ident: e_1_3_4_71_2 doi: 10.1016/j.cmet.2019.10.006 – ident: e_1_3_4_80_2 doi: 10.1093/molbev/msi097 – ident: e_1_3_4_14_2 doi: 10.1038/nature07710 – ident: e_1_3_4_21_2 doi: 10.1084/jem.20172222 – ident: e_1_3_4_79_2 doi: 10.1371/journal.ppat.1000311 – volume: 11 start-page: 2041 year: 2019 ident: e_1_3_4_76_2 article-title: Optimizing dissection, sample collection and cell isolation protocols for frugivorous bats publication-title: Methods Ecol. Evol. contributor: fullname: Irving A. T. – ident: e_1_3_4_42_2 doi: 10.1073/pnas.1814995116 – ident: e_1_3_4_4_2 doi: 10.1038/s41586-020-2012-7 – ident: e_1_3_4_6_2 doi: 10.1126/science.1230835 – ident: e_1_3_4_68_2 doi: 10.1073/pnas.0912613107 – ident: e_1_3_4_72_2 doi: 10.1016/j.cmet.2013.09.010 – ident: e_1_3_4_11_2 doi: 10.1038/srep21722 – ident: e_1_3_4_23_2 doi: 10.1002/eji.201545839 – ident: e_1_3_4_50_2 doi: 10.1016/j.immuni.2017.02.011 – ident: e_1_3_4_60_2 doi: 10.1084/jem.20172060 – ident: e_1_3_4_51_2 doi: 10.4049/jimmunol.1502538 – ident: e_1_3_4_31_2 doi: 10.1038/nri.2016.58 – ident: e_1_3_4_55_2 doi: 10.1089/jir.1995.15.243 – ident: e_1_3_4_33_2 doi: 10.1177/1074248417702890 – ident: e_1_3_4_17_2 doi: 10.1038/ni.1864 – ident: e_1_3_4_44_2 doi: 10.1038/ni1344 – ident: e_1_3_4_8_2 doi: 10.1186/1471-2164-11-444 – ident: e_1_3_4_16_2 doi: 10.1084/jem.20121960 – ident: e_1_3_4_15_2 doi: 10.1038/nature07725 |
SSID | ssj0009580 |
Score | 2.5858126 |
Snippet | Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having... Bats have been shown to dampen several key upstream pathogen and danger-associated molecular patterns, yet much of the downstream signaling is yet unknown.... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 28939 |
SubjectTerms | Aging Animals Arteriosclerosis Atherosclerosis Biological Sciences Caspase 1 - metabolism Caspase-1 Cell death Chiroptera Chiroptera - genetics Chiroptera - immunology Cleavage Cytokines Cytokines - metabolism Deoxyribonucleic acid DNA DNA-Binding Proteins Functional analysis Genomics HEK293 Cells Humans IL-1β Immune response Inflammasomes Inflammasomes - metabolism Inflammation - metabolism Interleukin-1beta - metabolism Macrophages - metabolism Neurodegeneration Positive selection Pyroptosis Signal Transduction Signaling Viruses Zoonoses |
Title | Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats |
URI | https://www.jstor.org/stable/26971019 https://www.ncbi.nlm.nih.gov/pubmed/33106404 https://www.proquest.com/docview/2464863889 https://search.proquest.com/docview/2454652111 https://pubmed.ncbi.nlm.nih.gov/PMC7682399 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4BJy5VaaENpciVONCD2fgntnOsUBGtCuJQJG6R4zjqSt3sarMc-lp9kD5TZ_JHQZx6jDy2LM_Y_iae-QbgxJU-eOUCrxBOc51XjnuvUx4yiejIpaXqaBevrs3lrf56l91tQTbmwnRB-6GcnzU_F2fN_EcXW7lahNkYJza7uTpHiEwpmbNt2Mbrd3TRJ6Zd1-edSDx-tdQjn49Vs1XjO4ZuyjMSgurvKUQ3Rg9V2sZbqQ9MfA5yPo2c_OcqungJLwYMyT71c92Drdi8gr1hl7bsdKCS_vgalrTdhwDx9S-27gvPoyrYsmbB42nSRi6Ybyr25RsXf34zYnRCi2QUZ9T_JmSLSNnB83bRUq_KI9DGs5mhaaI19ZmP-MFKv2n34fbi8_fzSz6UWOBBa7Xh1qe-TjNXOSNKV0lcFl1r652IXkabhzJGGTy9ThrjDEk7VedpdEEZ9IbUAew0yya-BZbnmVdRWqtKhInRoaNS54GGqkMWRZbA6bjExapn0ii6F3CrClJM8aCYBA46FUxy0uSIhESewNGok2LYa9hPG40zcQ6bP0zNuEvo6cM3cXlPMlT0HccWCbzpVTgNPtpAAvaRcicBYuB-3IKG2TFxD4Z4-N8938GuJAee4grtEexs1vfxPaKcTXlMd0x23Nn2X8wm_TI |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhUFojcSgHd-NH_DiiimoLuxWHVuotchxHXYnNrjbbA3-LH9Lf1HFeUMSJY-SHLM-M_U088w3AR1M474TxtEQ4TaUtDXVOptRnHNGRSQvR0i7OL9T0Sn69zq53IBtyYdqgfV8sTuofy5N6cdPGVq6XfjLEiU2-z08RIseUzMkjeJwJbdngpI9cu6bLPOF4AEsuB0YfLSbr2rUc3THTiLFYgU8gvlGyr9M23EtdaOK_QOffsZN_XEZnz-FZjyLJ5261e7AT6hew19tpQ457MulPL2EVDb4PEd_8JJuu9DwKg6wq4h2eJ02gjLi6JOczyu5-kcjphDpJYqRR96OQLEPMD140yyaOKh1CbTydCSon6lOX-4gfpHDb5hVcnX25PJ3SvsgC9VKKLdUudVWamdIoVpiS47bISmpnWHA8aOuLELh38X1SKaNibyMqmwbjhUJ_SOzDbr2qwxsg1mZOBK61KBAoBoOuSmV9nKryWWBZAsfDFufrjksjb9_AtcijYPLfgklgvxXB2I8ri1iI2QQOBpnkvbXhOKkkrsQYbP4wNqOdxMcPV4fVbewTy77j3CyB150Ix8kHHUhAPxDu2CFycD9sQdVsubh7VXz73yOP4Mn0cj7LZ-cX397BUx7d-RhlqA9gd7u5De8R82yLw1bD7wFLYv-h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAX1AKFQAtG4lAOaeJHbOdYFVYttFUPVOotchxHrMRmV5vtgb_FD-E3MZNXW8SJY-SHLM-M_U088w3AB1s676T1cYVwOlZ5ZWPnVBr7TCA6smkpO9rF8wt9cqW-XGfXd0p9dUH7vpwfNj8Wh838exdbuVr4ZIwTSy7PjxEiU0pmsqrq5CE8yiQq2eioT3y7ts8-EXgIK6FGVh8jk1XjOp5uyjbinKrwScQ4Wg212sa7qQ9P_Bfw_Dt-8s6FNNuGpwOSZEf9infgQWiewc5gqy07GAilPz6HJRn9ECa-_snWffl5FAhb1sw7PFPaEHPmmoqdnsX89y9GvE6ol4yijfqfhWwRKEd43i5aGlU5hNt4QjNUUNSpPv8RP1jpNu0LuJp9_nZ8Eg-FFmKvlNzExqWuTjNbWc1LWwncFlUr4ywPTgST-zIE4R29UWptNfW2ss7TYL3U6BPJXdhqlk14BSzPMyeDMEaWCBaDRXelzj1NVfss8CyCg3GLi1XPp1F07-BGFiSY4lYwEex2Ipj6CZ0jHuJ5BHujTIrB4nCc0gpXYi02v5-a0VboAcQ1YXlDfaj0O87NI3jZi3CafNSBCMw94U4diIf7fguqZ8fHPajj6_8e-Q4eX36aFWenF1_fwBNBHj0FGpo92Nqsb8I-wp5N-bZT8D_6ugDD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementary+regulation+of+caspase-1+and+IL-1%CE%B2+reveals+additional+mechanisms+of+dampened+inflammation+in+bats&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Goh%2C+Geraldine&rft.au=Ahn%2C+Matae&rft.au=Zhu%2C+Feng&rft.au=Lee%2C+Lim+Beng&rft.date=2020-11-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=46&rft.spage=28939&rft.epage=28949&rft_id=info:doi/10.1073%2Fpnas.2003352117&rft.externalDocID=26971019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |