Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries

The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good ox...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 42; pp. 21534 - 21559
Main Authors Zhang, Yun-Long, Goh, Kokswee, Zhao, Lei, Sui, Xu-Lei, Gong, Xiao-Fei, Cai, Jia-Jun, Zhou, Qing-Yan, Zhang, Hong-Da, Li, Lin, Kong, Fan-Rong, Gu, Da-Ming, Wang, Zhen-Bo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 05.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed. Different types of advanced non-noble materials in bifunctional catalysts for ORR and OER.
AbstractList The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.
The catalyst in the oxygen electrode is the core component of the aqueous metal–air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal–air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.
The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed. Different types of advanced non-noble materials in bifunctional catalysts for ORR and OER.
Author Gu, Da-Ming
Li, Lin
Goh, Kokswee
Zhou, Qing-Yan
Kong, Fan-Rong
Gong, Xiao-Fei
Wang, Zhen-Bo
Zhang, Yun-Long
Zhao, Lei
Cai, Jia-Jun
Sui, Xu-Lei
Zhang, Hong-Da
AuthorAffiliation Electric Power Research Institute
Harbin Institute of Technology
State Grid Heilongjiang Electric Power Co
State Key Lab of Urban Water Resource and Environment
Ltd
School of Chemistry and Chemical Engineering
Sunwoda Electric Vehicle Battery Co
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
AuthorAffiliation_xml – name: MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
– name: School of Chemistry and Chemical Engineering
– name: State Grid Heilongjiang Electric Power Co
– name: State Key Lab of Urban Water Resource and Environment
– name: Sunwoda Electric Vehicle Battery Co
– name: Ltd
– name: Electric Power Research Institute
– name: Harbin Institute of Technology
Author_xml – sequence: 1
  givenname: Yun-Long
  surname: Zhang
  fullname: Zhang, Yun-Long
– sequence: 2
  givenname: Kokswee
  surname: Goh
  fullname: Goh, Kokswee
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
– sequence: 4
  givenname: Xu-Lei
  surname: Sui
  fullname: Sui, Xu-Lei
– sequence: 5
  givenname: Xiao-Fei
  surname: Gong
  fullname: Gong, Xiao-Fei
– sequence: 6
  givenname: Jia-Jun
  surname: Cai
  fullname: Cai, Jia-Jun
– sequence: 7
  givenname: Qing-Yan
  surname: Zhou
  fullname: Zhou, Qing-Yan
– sequence: 8
  givenname: Hong-Da
  surname: Zhang
  fullname: Zhang, Hong-Da
– sequence: 9
  givenname: Lin
  surname: Li
  fullname: Li, Lin
– sequence: 10
  givenname: Fan-Rong
  surname: Kong
  fullname: Kong, Fan-Rong
– sequence: 11
  givenname: Da-Ming
  surname: Gu
  fullname: Gu, Da-Ming
– sequence: 12
  givenname: Zhen-Bo
  surname: Wang
  fullname: Wang, Zhen-Bo
BookMark eNp90UtLAzEQB_AgFXxevAsRLyKsJpvHdo9S6wPEQtHzMptkIbJNapIq_famrVQQ8RAyh1_-mUwO0MB5ZxA6oeSKElZfa-ICEYJSs4P2S8JJwVhVDra15HvoIMY3QmTNJNtH9kZ_gFNG45xUON_2Bs8gmWChj9g63Npu4VSy3kGPFSTolzFF3PmAJ9MpBqfxZDzFyX9C0BjeF8YvIp6ZDAuwAbeQVmkmHqHdLmea4-_9EL3ejV9GD8XT5P5xdPNUKM5ZKqSqOJU1cAk011q2w4rVVUmk4Z2hiqiq5q0SmlMhS0VrkhftWFvrVikt2SG62OTOg8_dxNTMbFSm78GtWmtKLsQwXyXqTM9_0Te_CPmha1UJwUjJsiIbpYKPMZiuUTbBaiIpgO0bSprV7Jtb8jxdz36cj1z-OjIPdgZh-Tc-2-AQ1db9fGQz1102p_8Z9gV1O5td
CitedBy_id crossref_primary_10_3390_catal14060369
crossref_primary_10_1039_D3NR01083J
crossref_primary_10_1002_smll_202309154
crossref_primary_10_3390_catal14050325
crossref_primary_10_1016_j_microc_2025_113416
crossref_primary_10_1021_acs_langmuir_4c01636
crossref_primary_10_1002_ange_202106661
crossref_primary_10_1016_j_ijhydene_2024_10_225
crossref_primary_10_1149_1945_7111_ace852
crossref_primary_10_1016_j_coelec_2023_101246
crossref_primary_10_1021_acs_jpclett_4c00482
crossref_primary_10_1002_smtd_202401480
crossref_primary_10_1016_j_colsurfa_2024_134986
crossref_primary_10_1002_aenm_202300239
crossref_primary_10_1039_D2CP00761D
crossref_primary_10_3390_batteries9030185
crossref_primary_10_1149_1945_7111_ac4b25
crossref_primary_10_1039_D4NJ05017G
crossref_primary_10_1016_j_memori_2023_100097
crossref_primary_10_1002_chem_202301036
crossref_primary_10_1002_EXP_20220174
crossref_primary_10_1039_D1CC04984D
crossref_primary_10_1016_j_jallcom_2025_179830
crossref_primary_10_1016_j_flatc_2024_100664
crossref_primary_10_1016_j_jallcom_2025_179286
crossref_primary_10_1016_j_jiec_2024_11_057
crossref_primary_10_1002_smll_202203589
crossref_primary_10_1002_admi_202300038
crossref_primary_10_1002_smll_202308443
crossref_primary_10_1016_j_diamond_2025_112220
crossref_primary_10_1016_j_diamond_2023_109776
crossref_primary_10_1002_anie_202106661
crossref_primary_10_1016_j_apcata_2023_119423
crossref_primary_10_1016_j_jcis_2022_12_138
crossref_primary_10_1016_j_carbon_2023_118615
crossref_primary_10_1016_j_surfin_2023_102857
crossref_primary_10_1039_D2NR03918D
crossref_primary_10_1002_adfm_202400107
crossref_primary_10_1039_D3RA03394E
crossref_primary_10_1002_smll_202411021
crossref_primary_10_1002_smll_202300289
crossref_primary_10_1021_acs_energyfuels_2c00357
crossref_primary_10_1016_j_surfin_2024_105218
crossref_primary_10_1002_smll_202409051
crossref_primary_10_1007_s12274_022_5192_7
crossref_primary_10_1016_j_jcis_2025_137413
crossref_primary_10_1016_j_mssp_2022_107259
crossref_primary_10_1039_D1TA09864K
crossref_primary_10_1016_j_jcis_2021_12_066
crossref_primary_10_1021_acsami_1c24918
crossref_primary_10_1016_j_bioelechem_2024_108730
crossref_primary_10_1039_D2CP06035C
crossref_primary_10_2166_wst_2021_226
crossref_primary_10_1016_j_est_2024_110440
crossref_primary_10_1016_j_apcata_2023_119254
crossref_primary_10_1021_acsami_4c04459
crossref_primary_10_1016_j_mtchem_2021_100632
crossref_primary_10_1039_D1CP05721A
crossref_primary_10_1039_D3DT02979D
crossref_primary_10_1021_acssuschemeng_2c03045
crossref_primary_10_1016_j_jallcom_2022_167115
crossref_primary_10_1016_j_ultsonch_2021_105846
crossref_primary_10_1016_j_seppur_2023_125082
crossref_primary_10_1007_s10853_024_09587_4
crossref_primary_10_3390_polym14153187
crossref_primary_10_1016_j_cartre_2022_100221
crossref_primary_10_1039_D4NJ04223A
crossref_primary_10_1016_j_electacta_2021_139179
crossref_primary_10_1016_j_jpowsour_2021_230891
crossref_primary_10_1002_ente_202100940
crossref_primary_10_1016_j_jpowsour_2022_231988
crossref_primary_10_1016_j_apsusc_2023_159219
crossref_primary_10_1016_j_cattod_2022_06_021
crossref_primary_10_1016_j_ijhydene_2024_05_228
crossref_primary_10_1007_s11581_021_04367_5
crossref_primary_10_1039_D3QI01797D
crossref_primary_10_1149_1945_7111_ac7829
crossref_primary_10_1021_acs_jpclett_3c02752
crossref_primary_10_1002_cnl2_116
crossref_primary_10_1021_acsami_3c17193
crossref_primary_10_1016_j_ces_2025_121376
crossref_primary_10_1088_2053_1591_ad68cd
crossref_primary_10_1016_j_ijhydene_2021_09_082
crossref_primary_10_1016_j_jssc_2024_124553
crossref_primary_10_1007_s12274_022_5022_y
crossref_primary_10_1016_j_ensm_2022_08_032
crossref_primary_10_1039_D1NR01603B
crossref_primary_10_1002_aenm_202101249
crossref_primary_10_1016_j_ijhydene_2022_09_259
crossref_primary_10_1007_s11664_024_11320_5
crossref_primary_10_1016_j_ijhydene_2022_08_186
crossref_primary_10_1016_j_jcis_2024_07_143
crossref_primary_10_1016_j_apsusc_2021_149670
crossref_primary_10_1039_D2TA05838C
crossref_primary_10_3390_catal13101366
crossref_primary_10_1016_S1872_2067_22_64168_8
crossref_primary_10_1016_j_ijhydene_2021_11_204
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1039_D1DT03278J
crossref_primary_10_1016_j_ijhydene_2021_10_086
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1016_j_jpowsour_2024_234553
crossref_primary_10_1016_j_ijhydene_2022_08_197
crossref_primary_10_1039_D3NJ01546G
crossref_primary_10_1016_j_carbon_2023_118781
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1002_smll_202304844
crossref_primary_10_1016_j_apsusc_2022_152922
crossref_primary_10_1016_j_jpcs_2024_112221
crossref_primary_10_1039_D2CY01789J
crossref_primary_10_3390_molecules29225313
crossref_primary_10_1016_j_apsusc_2024_160201
crossref_primary_10_1039_D4NJ05293E
crossref_primary_10_1016_j_jpowsour_2025_236194
crossref_primary_10_3390_ma17102309
crossref_primary_10_1149_1945_7111_ac2688
crossref_primary_10_1016_j_ijhydene_2024_05_419
crossref_primary_10_1016_j_diamond_2023_110208
crossref_primary_10_1016_j_ijhydene_2023_08_020
Cites_doi 10.1039/C8DT02324G
10.1039/D0TA02825H
10.1016/j.carbon.2019.10.023
10.1016/j.cattod.2018.10.056
10.1039/C9TA08926H
10.1002/aenm.201903854
10.1002/batt.201900205
10.1039/C9TA07806A
10.1016/j.apcatb.2020.118953
10.1016/j.nanoen.2020.104669
10.1016/j.apcatb.2019.118100
10.1016/j.jtice.2014.05.023
10.1016/j.apcatb.2017.07.086
10.1002/aenm.201801956
10.1021/acsami.8b04940
10.1016/j.nanoen.2015.11.027
10.1002/anie.201509982
10.1016/j.bios.2015.10.018
10.1021/acssuschemeng.8b03232
10.1109/MNANO.2017.2710380
10.1016/j.nanoen.2017.05.022
10.1039/C6EE03446B
10.1016/j.ijhydene.2018.01.101
10.1002/celc.201701148
10.1021/cs500744x
10.1002/elan.201400441
10.1016/j.ceramint.2020.04.251
10.1002/adma.201601406
10.1002/aenm.201501966
10.1016/j.matlet.2020.127958
10.1039/C9TA06123A
10.1039/C9NR05744G
10.1002/advs.201801375
10.1016/j.mtphys.2020.100267
10.1016/j.electacta.2018.11.105
10.1007/s12678-020-00598-8
10.1002/smll.201600051
10.1039/C7TA03298F
10.1016/j.jpowsour.2019.04.074
10.1016/S0013-4686(98)00272-2
10.1002/adma.201705796
10.1016/j.ultsonch.2020.105111
10.1021/acsaem.8b00490
10.1016/j.apcatb.2020.118746
10.1016/j.ijhydene.2018.03.110
10.1039/C8CY02504E
10.1016/j.apcatb.2020.119107
10.1002/adfm.201704638
10.1016/j.electacta.2012.09.053
10.1016/j.ensm.2019.04.018
10.1002/aenm.201903215
10.1039/C8SC01454J
10.1002/aenm.201803737
10.1002/adma.201900341
10.1016/j.ijhydene.2019.03.093
10.1126/science.1168049
10.1016/j.jallcom.2019.05.131
10.1016/j.apcatb.2020.119086
10.1039/C6EE02169G
10.1002/adfm.202003407
10.1016/j.nanoen.2016.10.017
10.1149/2.0481815jes
10.1016/j.cattod.2019.10.004
10.1002/smll.201703748
10.1002/aenm.201903289
10.1016/j.jcat.2019.11.020
10.1039/C8TA06236F
10.1002/adma.201802136
10.1016/j.jpowsour.2020.227899
10.1002/ange.201311223
10.1149/2.1001914jes
10.1021/acsnano.9b07487
10.1016/j.nanoen.2019.05.066
10.1021/acscatal.7b02718
10.1016/j.ijhydene.2020.03.098
10.1002/aenm.201902104
10.1039/C9NJ04808A
10.1039/C7NR02385E
10.1002/aenm.201801839
10.1016/j.jcis.2018.03.036
10.1039/D0SC00676A
10.1039/C8TA08862D
10.1016/j.carbon.2016.10.057
10.1002/adfm.201702324
10.1016/j.apcatb.2019.03.037
10.1002/adma.201702327
10.1016/j.electacta.2014.08.001
10.1021/acssuschemeng.9b04164
10.1021/acsami.9b18101
10.1039/C7CC07115A
10.1039/C9CC00009G
10.1016/j.jpowsour.2019.226761
10.1149/2.0871712jes
10.1039/D0DT00976H
10.1002/anie.201607405
10.1021/acsami.9b04217
10.1039/D0TA02748K
10.1016/j.nanoen.2016.12.044
10.1016/j.apcatb.2020.119091
10.1016/j.chempr.2017.12.005
10.1016/j.apcata.2020.117555
10.1002/smll.201702068
10.1002/aenm.201701905
10.1021/acsami.8b13290
10.1021/acscatal.5b00601
10.1021/acsami.9b12213
10.1039/C8TA11524A
10.1039/D0TA02110E
10.1021/acsnano.7b08721
10.1002/aenm.201702048
10.1002/adfm.202000503
10.1002/advs.201800036
10.1002/adma.201604685
10.1016/j.carbon.2018.05.061
10.1016/j.apcatb.2020.119112
10.1002/adma.201905622
10.1039/D0TA03457F
10.1016/j.carbon.2019.07.075
10.1016/j.electacta.2016.10.002
10.1016/j.carbon.2020.05.037
10.1016/j.carbon.2018.12.008
10.1038/nchem.931
10.1039/C9TA03011E
10.1002/smll.201700518
10.1002/aenm.201800612
10.1016/j.jpowsour.2017.08.081
10.1021/acsami.7b16389
10.1016/j.apenergy.2019.113406
10.1039/C6NR08057J
10.1007/s13738-020-01970-7
10.1039/D0TA04633G
10.1149/2.0341706jes
10.1039/D0CP00281J
10.1002/aenm.201601198
10.1021/am5014369
10.1021/acs.energyfuels.9b04036
10.1002/cctc.202001093
10.1002/aenm.201802390
10.1007/s11581-018-2619-y
10.1016/j.electacta.2020.136249
10.1021/acssuschemeng.9b07621
10.1002/aenm.201703623
10.1016/j.apsusc.2018.03.106
10.1021/acssuschemeng.0c03570
10.1021/acsami.9b06141
10.1039/D0NA00073F
10.1016/j.electacta.2017.01.179
10.1016/j.cej.2020.125151
10.1002/adfm.201905992
10.1039/C9TA08936E
10.1016/j.jpowsour.2013.04.116
10.1016/j.electacta.2018.02.006
10.1021/acssuschemeng.9b04703
10.1002/adma.201800005
10.1007/s12274-020-2751-7
10.1002/adma.201606207
10.1002/adma.201602912
10.1021/acscatal.8b02504
10.1016/j.susc.2018.10.021
10.1016/j.electacta.2019.135566
10.1016/j.nanoen.2015.03.005
10.1016/j.jallcom.2017.06.299
10.1039/C8TA05295F
10.1002/adma.201670178
10.1039/C8EE03276A
10.1016/j.apcatb.2018.09.063
10.1007/s12274-020-2622-2
10.1126/science.1212858
10.1039/C9SE01058K
10.1021/acscatal.9b01772
10.1126/sciadv.1501122
10.1002/celc.201701302
10.1002/adfm.201702300
10.1016/j.apcatb.2018.08.074
10.1007/s11581-019-03226-8
10.1002/cctc.201901224
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr05511e
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 21559
ExternalDocumentID 10_1039_D0NR05511E
d0nr05511e
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c443t-6c74169a46a16c7d6b87397206e4fe1c0c794bc5d41562c190c191f3b9dbccd63
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 04:10:07 EDT 2025
Mon Jun 30 03:56:30 EDT 2025
Tue Jul 01 01:14:03 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Sat Jan 08 03:54:43 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-6c74169a46a16c7d6b87397206e4fe1c0c794bc5d41562c190c191f3b9dbccd63
Notes Dr Lei Zhao is currently working as a lecturer at Harbin Institute of Technology (HIT), China, and is a visiting scholar under the supervision of Prof. Zhongwei Chen at University of Waterloo. He received his B. E., M. E. and Ph.D. degree under the supervision of Prof. Zhenbo Wang at HIT in 2012, 2014 and 2017, respectively. His research interests focus on electrocatalysis, fuel cells and metal-air batteries.
Xu-Lei Sui currently is a lecturer at School of Chemistry and Chemical Engineering in Harbin Institute of Technology (HIT), China. He received his Ph.D. degree from HIT in 2015. Now he is also a postdoctoral fellow assisting Prof. Xue-Liang (Andy) Sun at University of Western Ontario, Canada and Prof. Zhen-Bo Wang at HIT. His current research interests are focused on the design and synthesis of advanced nano-materials for electrocatalysis in fuel cells.
Jiajun Cai received her Bachelor's degree from College of Chemistry, Jilin University in 2016. Currently, she is carrying out her Ph.D. research in School of Chemistry and Chemical Engineering at Harbin Institute of Technology under the supervision of Prof. Zhen-Bo Wang. She works on the synthesis and characterization of highly efficient catalysts for Zn-air batteries.
Yunlong Zhang received his B.S. degree in Chemical Engineering and Technology from Harbin Engineering University in 2017. He is carrying out his Ph.D. research in Harbin Institute of Technology under the supervision of Prof. Zhen-Bo Wang. Currently, he works on the synthesis and characterization of Metal Organic Frame materials as high-efficiency ORR catalysts for zinc-air batteries.
Xiaofei Gong received her B.S. degree in Chemical Engineering and Technology from Harbin Institute of Technology (Weihai) in 2015. She is carrying out her Ph.D. research in Harbin Institute of Technology under the supervision of Prof. Zhen-Bo Wang. Her current research focuses on carbon-based non-noble metal catalysts for oxygen reduction reaction in fuel cells.
Dr Zhen-Bo Wang, is currently a professor of Harbin Institute of Technology. He is a distinguished professor of National 'Ten Thousand Talents' Plan Science & Technology Innovation Leader (4th batch), Ministry of Science & Technology Young Scientific & Technological Innovator and consecutively selected for 5 years as Elsevier's "Most cited Chinese scientists". He obtained PhD degrees from HIT in 2006, and completed a post-doctoral stint at the University of Puerto Rico from 2006 to 2007. He has published more than 180 papers in peer-reviewed journals with 4500 citations (H-index = 39). His interests lie in chemical power sources and nanoelectrode materials.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5124-393X
0000-0001-9388-1481
PQID 2457553023
PQPubID 2047485
PageCount 26
ParticipantIDs rsc_primary_d0nr05511e
proquest_journals_2457553023
crossref_citationtrail_10_1039_D0NR05511E
crossref_primary_10_1039_D0NR05511E
proquest_miscellaneous_2455844359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201105
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 20201105
  day: 5
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gao (D0NR05511E-(cit27)/*[position()=1]) 2017; 164
Xu (D0NR05511E-(cit57)/*[position()=1]) 2018; 521
Zhu (D0NR05511E-(cit134)/*[position()=1]) 2019; 7
Liu (D0NR05511E-(cit34)/*[position()=1]) 2018; 29
Chen (D0NR05511E-(cit166)/*[position()=1]) 2015; 13
Senthilkumar (D0NR05511E-(cit81)/*[position()=1]) 2017; 5
Curutchet (D0NR05511E-(cit21)/*[position()=1]) 2020; 22
Miao (D0NR05511E-(cit162)/*[position()=1]) 2020; 333
Li (D0NR05511E-(cit123)/*[position()=1]) 2018; 8
Zhou (D0NR05511E-(cit119)/*[position()=1]) 2018; 6
Dai (D0NR05511E-(cit50)/*[position()=1]) 2018
Sadighi (D0NR05511E-(cit156)/*[position()=1]) 2017; 365
Zhou (D0NR05511E-(cit171)/*[position()=1]) 2018; 8
Cheng (D0NR05511E-(cit97)/*[position()=1]) 2014; 143
Jiang (D0NR05511E-(cit109)/*[position()=1]) 2019; 55
Kim (D0NR05511E-(cit164)/*[position()=1]) 2018; 6
Khani (D0NR05511E-(cit113)/*[position()=1]) 2019; 10
Han (D0NR05511E-(cit61)/*[position()=1]) 2020; 72
Rios (D0NR05511E-(cit153)/*[position()=1]) 1998; 44
Jian (D0NR05511E-(cit26)/*[position()=1]) 2016; 9
Cai (D0NR05511E-(cit29)/*[position()=1]) 2016; 8
Yan (D0NR05511E-(cit191)/*[position()=1]) 2019; 11
Park (D0NR05511E-(cit41)/*[position()=1]) 2016; 12
Kaewsai (D0NR05511E-(cit73)/*[position()=1]) 2018; 43
Fu (D0NR05511E-(cit116)/*[position()=1]) 2017
Min (D0NR05511E-(cit39)/*[position()=1]) 2018; 25
Li (D0NR05511E-(cit181)/*[position()=1]) 2020; 381
Li (D0NR05511E-(cit99)/*[position()=1]) 2015; 5
Hu (D0NR05511E-(cit148)/*[position()=1]) 2019; 11
Alobaid (D0NR05511E-(cit22)/*[position()=1]) 2018; 165
Zhan (D0NR05511E-(cit56)/*[position()=1]) 2018; 265
Zeng (D0NR05511E-(cit85)/*[position()=1]) 2020; 30
George (D0NR05511E-(cit18)/*[position()=1]) 2019; 9
Devaguptapu (D0NR05511E-(cit183)/*[position()=1]) 2017; 9
Mamtani (D0NR05511E-(cit46)/*[position()=1]) 2018; 220
Peng (D0NR05511E-(cit47)/*[position()=1]) 2019; 31
Zhou (D0NR05511E-(cit79)/*[position()=1]) 2020; 166
Sun (D0NR05511E-(cit105)/*[position()=1]) 2018; 5
Yan (D0NR05511E-(cit53)/*[position()=1]) 2018; 445
Shu (D0NR05511E-(cit54)/*[position()=1]) 2020; 157
Yang (D0NR05511E-(cit106)/*[position()=1]) 2019; 144
Wagh (D0NR05511E-(cit130)/*[position()=1]) 2020; 268
Yang (D0NR05511E-(cit176)/*[position()=1]) 2018; 8
Wang (D0NR05511E-(cit157)/*[position()=1]) 2019; 435
Hou (D0NR05511E-(cit60)/*[position()=1]) 2019; 798
Yu (D0NR05511E-(cit66)/*[position()=1]) 2020; 453
Peng (D0NR05511E-(cit165)/*[position()=1]) 2018; 8
Zeng (D0NR05511E-(cit2)/*[position()=1]) 2017
Kazakova (D0NR05511E-(cit24)/*[position()=1]) 2019
Xiao (D0NR05511E-(cit16)/*[position()=1]) 2020; 11
Zhang (D0NR05511E-(cit102)/*[position()=1]) 2016; 55
Jin (D0NR05511E-(cit168)/*[position()=1]) 2013; 241
Zhang (D0NR05511E-(cit169)/*[position()=1]) 2019; 7
Shi (D0NR05511E-(cit138)/*[position()=1]) 2020; 10
Wan (D0NR05511E-(cit180)/*[position()=1]) 2019; 166
Liu (D0NR05511E-(cit96)/*[position()=1]) 2020; 8
Ahn (D0NR05511E-(cit63)/*[position()=1]) 2017
Peng (D0NR05511E-(cit112)/*[position()=1]) 2014; 4
Yang (D0NR05511E-(cit88)/*[position()=1]) 2016; 2
Tang (D0NR05511E-(cit93)/*[position()=1]) 2016; 28
Qin (D0NR05511E-(cit78)/*[position()=1]) 2019; 9
Lai (D0NR05511E-(cit137)/*[position()=1]) 2020; 274
Wang (D0NR05511E-(cit44)/*[position()=1]) 2018; 30
Kim (D0NR05511E-(cit189)/*[position()=1]) 2018; 6
Chen (D0NR05511E-(cit101)/*[position()=1]) 2018; 137
Velasco-Velez (D0NR05511E-(cit80)/*[position()=1]) 2018; 681
Pendashteh (D0NR05511E-(cit141)/*[position()=1]) 2019; 427
Wang (D0NR05511E-(cit4)/*[position()=1]) 2020; 13
Liu (D0NR05511E-(cit151)/*[position()=1]) 2020; 26
Ma (D0NR05511E-(cit146)/*[position()=1]) 2020; 274
Lee (D0NR05511E-(cit37)/*[position()=1]) 2014; 45
Bai (D0NR05511E-(cit182)/*[position()=1]) 2018; 8
Chen (D0NR05511E-(cit10)/*[position()=1]) 2020; 274
Sato (D0NR05511E-(cit48)/*[position()=1]) 2020; 597
Liu (D0NR05511E-(cit1)/*[position()=1]) 2020
Ma (D0NR05511E-(cit6)/*[position()=1]) 2020; 4
Yu (D0NR05511E-(cit84)/*[position()=1]) 2016; 28
Zhang (D0NR05511E-(cit111)/*[position()=1]) 2017; 7
Chala (D0NR05511E-(cit175)/*[position()=1]) 2020; 14
Jia (D0NR05511E-(cit92)/*[position()=1]) 2016; 28
Li (D0NR05511E-(cit177)/*[position()=1]) 2019; 10
Fu (D0NR05511E-(cit40)/*[position()=1]) 2017; 29
Huang (D0NR05511E-(cit150)/*[position()=1]) 2019; 251
Amiinu (D0NR05511E-(cit43)/*[position()=1]) 2017; 27
Zhang (D0NR05511E-(cit95)/*[position()=1]) 2018; 5
Brocato (D0NR05511E-(cit72)/*[position()=1]) 2013; 87
Hua (D0NR05511E-(cit170)/*[position()=1]) 2017; 32
Amiinu (D0NR05511E-(cit45)/*[position()=1]) 2018; 28
Yu (D0NR05511E-(cit28)/*[position()=1]) 2019; 7
Zou (D0NR05511E-(cit114)/*[position()=1]) 2019; 259
Jung (D0NR05511E-(cit161)/*[position()=1]) 2014; 126
Fidiani (D0NR05511E-(cit8)/*[position()=1]) 2020; 8
Kim (D0NR05511E-(cit144)/*[position()=1]) 2020; 275
Lee (D0NR05511E-(cit9)/*[position()=1]) 2020; 352
Liu (D0NR05511E-(cit14)/*[position()=1]) 2020; 351
Li (D0NR05511E-(cit122)/*[position()=1]) 2020; 12
Yu (D0NR05511E-(cit5)/*[position()=1]) 2017; 11
Hu (D0NR05511E-(cit49)/*[position()=1]) 2016; 55
Zhong (D0NR05511E-(cit174)/*[position()=1]) 2017; 164
Cong (D0NR05511E-(cit71)/*[position()=1]) 2014; 26
Guo (D0NR05511E-(cit133)/*[position()=1]) 2018; 12
Wu (D0NR05511E-(cit142)/*[position()=1]) 2020; 8
Liu (D0NR05511E-(cit76)/*[position()=1]) 2019; 104
Chang (D0NR05511E-(cit135)/*[position()=1]) 2020; 12
Sun (D0NR05511E-(cit94)/*[position()=1]) 2019; 7
Liu (D0NR05511E-(cit58)/*[position()=1]) 2018; 521
Yuan (D0NR05511E-(cit188)/*[position()=1]) 2019; 251
Suntivich (D0NR05511E-(cit163)/*[position()=1]) 2011; 334
Owens-Baird (D0NR05511E-(cit69)/*[position()=1]) 2020; 11
Duan (D0NR05511E-(cit132)/*[position()=1]) 2020; 8
Guo (D0NR05511E-(cit179)/*[position()=1]) 2019; 11
Lu (D0NR05511E-(cit35)/*[position()=1]) 2018; 43
Pendashteh (D0NR05511E-(cit117)/*[position()=1]) 2019; 20
Xiong (D0NR05511E-(cit185)/*[position()=1]) 2020; 45
Rani (D0NR05511E-(cit51)/*[position()=1]) 2020; 66
Wan (D0NR05511E-(cit107)/*[position()=1]) 2017; 53
Tan (D0NR05511E-(cit13)/*[position()=1]) 2020
Ning (D0NR05511E-(cit125)/*[position()=1]) 2019; 11
Li (D0NR05511E-(cit178)/*[position()=1]) 2018; 30
Zhang (D0NR05511E-(cit77)/*[position()=1]) 2016
Kannan (D0NR05511E-(cit52)/*[position()=1]) 2016; 77
Bin (D0NR05511E-(cit67)/*[position()=1]) 2018; 10
Kong (D0NR05511E-(cit103)/*[position()=1]) 2020
Wu (D0NR05511E-(cit121)/*[position()=1]) 2019; 241
Gong (D0NR05511E-(cit87)/*[position()=1]) 2009; 323
Zhou (D0NR05511E-(cit90)/*[position()=1]) 2017; 5
Hu (D0NR05511E-(cit149)/*[position()=1]) 2020
Li (D0NR05511E-(cit19)/*[position()=1]) 2019; 62
Li (D0NR05511E-(cit120)/*[position()=1]) 2018; 47
Gupta (D0NR05511E-(cit136)/*[position()=1]) 2016
Liu (D0NR05511E-(cit118)/*[position()=1]) 2018; 14
Han (D0NR05511E-(cit131)/*[position()=1]) 2019; 31
Liang (D0NR05511E-(cit15)/*[position()=1]) 2019; 43
Du (D0NR05511E-(cit145)/*[position()=1]) 2020; 8
Luo (D0NR05511E-(cit187)/*[position()=1]) 2020; 12
Kong (D0NR05511E-(cit83)/*[position()=1]) 2020; 13
Islam (D0NR05511E-(cit190)/*[position()=1]) 2019; 7
Li (D0NR05511E-(cit38)/*[position()=1]) 2017; 111
Chen (D0NR05511E-(cit65)/*[position()=1]) 2018; 9
Zhao (D0NR05511E-(cit70)/*[position()=1]) 2020; 8
Wang (D0NR05511E-(cit192)/*[position()=1]) 2014; 6
Ding (D0NR05511E-(cit127)/*[position()=1]) 2018; 8
Guo (D0NR05511E-(cit36)/*[position()=1]) 2017; 723
Wang (D0NR05511E-(cit140)/*[position()=1]) 2016; 30
Li (D0NR05511E-(cit194)/*[position()=1]) 2018; 6
Qu (D0NR05511E-(cit100)/*[position()=1]) 2016; 19
Liu (D0NR05511E-(cit59)/*[position()=1]) 2017; 13
El-Sawy (D0NR05511E-(cit89)/*[position()=1]) 2016; 6
Xu (D0NR05511E-(cit11)/*[position()=1]) 2020; 272
Wang (D0NR05511E-(cit62)/*[position()=1]) 2018; 6
Li (D0NR05511E-(cit143)/*[position()=1]) 2019; 240
Wang (D0NR05511E-(cit124)/*[position()=1]) 2016; 30
Morales (D0NR05511E-(cit23)/*[position()=1]) 2020; 30
Senthilkumar (D0NR05511E-(cit104)/*[position()=1]) 2017; 5
Parkash (D0NR05511E-(cit193)/*[position()=1]) 2020; 17
Han (D0NR05511E-(cit55)/*[position()=1]) 2019; 153
Pendashteh (D0NR05511E-(cit126)/*[position()=1]) 2019; 427
Sarawutanukul (D0NR05511E-(cit184)/*[position()=1]) 2020; 3
Fu (D0NR05511E-(cit110)/*[position()=1]) 2019; 9
Chen (D0NR05511E-(cit147)/*[position()=1]) 2020; 8
Lin (D0NR05511E-(cit64)/*[position()=1]) 2018; 8
Ali (D0NR05511E-(cit75)/*[position()=1]) 2020; 46
Dilpazir (D0NR05511E-(cit129)/*[position()=1]) 2018; 1
Jiang (D0NR05511E-(cit86)/*[position()=1]) 2019; 12
Müssig (D0NR05511E-(cit195)/*[position()=1]) 2017; 231
He (D0NR05511E-(cit115)/*[position()=1]) 2019; 7
Bie (D0NR05511E-(cit167)/*[position()=1]) 2015
Nguyen (D0NR05511E-(cit139)/*[position()=1]) 2020; 10
Liu (D0NR05511E-(cit82)/*[position()=1]) 2017; 29
Li (D0NR05511E-(cit128)/*[position()=1]) 2019; 7
Cheng (D0NR05511E-(cit160)/*[position()=1]) 2011; 3
He (D0NR05511E-(cit12)/*[position()=1]) 2020; 351
Devaguptapu (D0NR05511E-(cit155)/*[position()=1]) 2017; 9
Liu (D0NR05511E-(cit159)/*[position()=1]) 2018; 5
Tahir (D0NR05511E-(cit68)/*[position()=1]) 2017; 37
Chai (D0NR05511E-(cit91)/*[position()=1]) 2017; 10
Wu (D0NR05511E-(cit25)/*[position()=1]) 2019; 11
Li (D0NR05511E-(cit98)/*[position()=1]) 2016; 9
Praveen (D0NR05511E-(cit20)/*[position()=1]) 2020; 2
Bubalo (D0NR05511E-(cit32)/*[position()=1]) 2013; 137
Guo (D0NR05511E-(cit152)/*[position()=1]) 2019; 7
Xiao (D0NR05511E-(cit17)/*[position()=1]) 2020; 34
Sun (D0NR05511E-(cit7)/*[position()=1]) 2018; 30
Zhu (D0NR05511E-(cit31)/*[position()=1]) 2018
Wang (D0NR05511E-(cit172)/*[position()=1]) 2017; 29
Lyu (D0NR05511E-(cit33)/*[position()=1]) 2017; 27
Rani (D0NR05511E-(cit74)/*[position()=1]) 2020
Peng (D0NR05511E-(cit186)/*[position()=1]) 2018; 8
Ding (D0NR05511E-(cit42)/*[position()=1]) 2019; 29
Li (D0NR05511E-(cit173)/*[position()=1]) 2018; 6
Zhang (D0NR05511E-(cit108)/*[position()=1]) 2018; 4
Xiao (D0NR05511E-(cit3)/*[position()=1]) 2020; 49
Atanassov (D0NR05511E-(cit30)/*[position()=1]) 2014
Yu (D0NR05511E-(cit158)/*[position()=1]) 2017; 9
Jin (D0NR05511E-(cit154)/*[position()=1]) 2019; 44
References_xml – issn: 2014
  publication-title: Defects in Graphene
  doi: Atanassov Serov Artyushkova Kiefer
– volume: 47
  start-page: 14992
  year: 2018
  ident: D0NR05511E-(cit120)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02324G
– volume: 8
  start-page: 9355
  year: 2020
  ident: D0NR05511E-(cit132)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02825H
– volume: 157
  start-page: 234
  year: 2020
  ident: D0NR05511E-(cit54)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.023
– volume: 351
  start-page: 113
  year: 2020
  ident: D0NR05511E-(cit12)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.10.056
– volume: 7
  start-page: 25853
  year: 2019
  ident: D0NR05511E-(cit128)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08926H
– volume: 10
  start-page: 1903854
  year: 2020
  ident: D0NR05511E-(cit138)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903854
– volume: 3
  start-page: 541
  year: 2020
  ident: D0NR05511E-(cit184)/*[position()=1]
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.201900205
– volume: 7
  start-page: 21918
  year: 2019
  ident: D0NR05511E-(cit94)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07806A
– volume: 272
  start-page: 118953
  year: 2020
  ident: D0NR05511E-(cit11)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118953
– volume: 72
  start-page: 104669
  year: 2020
  ident: D0NR05511E-(cit61)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104669
– volume: 259
  start-page: 118100
  year: 2019
  ident: D0NR05511E-(cit114)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118100
– volume: 45
  start-page: 2334
  year: 2014
  ident: D0NR05511E-(cit37)/*[position()=1]
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2014.05.023
– volume: 220
  start-page: 88
  year: 2018
  ident: D0NR05511E-(cit46)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.07.086
– start-page: 1801956
  year: 2018
  ident: D0NR05511E-(cit31)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 10
  start-page: 26178
  year: 2018
  ident: D0NR05511E-(cit67)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04940
– volume: 19
  start-page: 373
  year: 2016
  ident: D0NR05511E-(cit100)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.11.027
– start-page: 259
  year: 2019
  ident: D0NR05511E-(cit24)/*[position()=1]
  publication-title: Catal. Today
– volume: 55
  start-page: 11736
  year: 2016
  ident: D0NR05511E-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509982
– volume: 77
  start-page: 1208
  year: 2016
  ident: D0NR05511E-(cit52)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.10.018
– volume: 6
  start-page: 14641
  year: 2018
  ident: D0NR05511E-(cit194)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03232
– volume: 11
  start-page: 29
  year: 2017
  ident: D0NR05511E-(cit5)/*[position()=1]
  publication-title: IEEE Nanotechnol. Mag.
  doi: 10.1109/MNANO.2017.2710380
– volume: 37
  start-page: 136
  year: 2017
  ident: D0NR05511E-(cit68)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.022
– volume: 10
  start-page: 1186
  year: 2017
  ident: D0NR05511E-(cit91)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03446B
– volume: 43
  start-page: 5133
  year: 2018
  ident: D0NR05511E-(cit73)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.101
– volume: 5
  start-page: 1811
  year: 2017
  ident: D0NR05511E-(cit90)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701148
– volume: 29
  start-page: 1
  year: 2018
  ident: D0NR05511E-(cit34)/*[position()=1]
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 4
  start-page: 3797
  year: 2014
  ident: D0NR05511E-(cit112)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500744x
– volume: 9
  start-page: 1601
  year: 2016
  ident: D0NR05511E-(cit26)/*[position()=1]
  publication-title: ChemCatChem
– volume: 26
  start-page: 2567
  year: 2014
  ident: D0NR05511E-(cit71)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.201400441
– volume: 46
  start-page: 19158
  year: 2020
  ident: D0NR05511E-(cit75)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.251
– volume: 28
  start-page: 6845
  year: 2016
  ident: D0NR05511E-(cit93)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601406
– volume: 6
  start-page: 1501966
  year: 2016
  ident: D0NR05511E-(cit89)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501966
– start-page: 127958
  year: 2020
  ident: D0NR05511E-(cit74)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127958
– volume: 7
  start-page: 19453
  year: 2019
  ident: D0NR05511E-(cit190)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06123A
– volume: 11
  start-page: 20144
  year: 2019
  ident: D0NR05511E-(cit25)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR05744G
– volume: 5
  start-page: 1801375
  year: 2018
  ident: D0NR05511E-(cit95)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801375
– start-page: 100267
  year: 2020
  ident: D0NR05511E-(cit149)/*[position()=1]
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2020.100267
– volume: 29
  start-page: 653
  year: 2019
  ident: D0NR05511E-(cit42)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.105
– volume: 11
  start-page: 393
  year: 2020
  ident: D0NR05511E-(cit16)/*[position()=1]
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-020-00598-8
– volume: 12
  start-page: 2707
  year: 2016
  ident: D0NR05511E-(cit41)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201600051
– volume: 5
  start-page: 14174
  year: 2017
  ident: D0NR05511E-(cit104)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03298F
– volume: 427
  start-page: 299
  year: 2019
  ident: D0NR05511E-(cit126)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.074
– volume: 44
  start-page: 1491
  year: 1998
  ident: D0NR05511E-(cit153)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00272-2
– volume: 30
  start-page: 1705796
  year: 2018
  ident: D0NR05511E-(cit178)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705796
– volume: 66
  start-page: 105111
  year: 2020
  ident: D0NR05511E-(cit51)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105111
– volume: 1
  start-page: 3283
  year: 2018
  ident: D0NR05511E-(cit129)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00490
– volume: 268
  start-page: 118746
  year: 2020
  ident: D0NR05511E-(cit130)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118746
– volume: 43
  start-page: 8794
  year: 2018
  ident: D0NR05511E-(cit35)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.110
– volume: 9
  start-page: 1595
  year: 2019
  ident: D0NR05511E-(cit78)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02504E
– volume: 275
  start-page: 119107
  year: 2020
  ident: D0NR05511E-(cit144)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119107
– volume: 28
  start-page: 1704638
  year: 2018
  ident: D0NR05511E-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704638
– volume: 87
  start-page: 361
  year: 2013
  ident: D0NR05511E-(cit72)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.053
– volume: 20
  start-page: 216
  year: 2019
  ident: D0NR05511E-(cit117)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.018
– volume: 10
  start-page: 1903215
  year: 2019
  ident: D0NR05511E-(cit113)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903215
– volume: 9
  start-page: 4746
  year: 2018
  ident: D0NR05511E-(cit65)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01454J
– volume: 9
  start-page: 1803737
  year: 2019
  ident: D0NR05511E-(cit110)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803737
– volume: 31
  start-page: 1900341
  year: 2019
  ident: D0NR05511E-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900341
– volume: 44
  start-page: 11421
  year: 2019
  ident: D0NR05511E-(cit154)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.093
– volume: 323
  start-page: 760
  year: 2009
  ident: D0NR05511E-(cit87)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 798
  start-page: 560
  year: 2019
  ident: D0NR05511E-(cit60)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.131
– volume-title: Defects in Graphene
  year: 2014
  ident: D0NR05511E-(cit30)/*[position()=1]
– volume: 274
  start-page: 119086
  year: 2020
  ident: D0NR05511E-(cit137)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119086
– volume: 9
  start-page: 3079
  year: 2016
  ident: D0NR05511E-(cit98)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02169G
– start-page: 2003407
  year: 2020
  ident: D0NR05511E-(cit1)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003407
– volume: 30
  start-page: 368
  year: 2016
  ident: D0NR05511E-(cit140)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.017
– volume: 165
  start-page: J3395
  year: 2018
  ident: D0NR05511E-(cit22)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0481815jes
– volume: 352
  start-page: 39
  year: 2020
  ident: D0NR05511E-(cit9)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.10.004
– volume: 14
  start-page: 1703748
  year: 2018
  ident: D0NR05511E-(cit118)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201703748
– volume: 10
  start-page: 1903289
  year: 2020
  ident: D0NR05511E-(cit139)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903289
– volume: 381
  start-page: 395
  year: 2020
  ident: D0NR05511E-(cit181)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.11.020
– volume: 6
  start-page: 17807
  year: 2018
  ident: D0NR05511E-(cit189)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06236F
– volume: 30
  start-page: 1802136
  year: 2018
  ident: D0NR05511E-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802136
– volume: 453
  start-page: 227899
  year: 2020
  ident: D0NR05511E-(cit66)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227899
– volume: 126
  start-page: 4670
  year: 2014
  ident: D0NR05511E-(cit161)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201311223
– volume: 166
  start-page: A3409
  year: 2019
  ident: D0NR05511E-(cit180)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1001914jes
– start-page: 1
  year: 2020
  ident: D0NR05511E-(cit103)/*[position()=1]
  publication-title: Nano Res.
– volume: 14
  start-page: 1770
  year: 2020
  ident: D0NR05511E-(cit175)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07487
– volume: 62
  start-page: 628
  year: 2019
  ident: D0NR05511E-(cit19)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.066
– volume: 7
  start-page: 7855
  year: 2017
  ident: D0NR05511E-(cit111)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02718
– volume: 45
  start-page: 13841
  year: 2020
  ident: D0NR05511E-(cit185)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.098
– volume: 10
  start-page: 1902104
  year: 2019
  ident: D0NR05511E-(cit177)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902104
– volume: 43
  start-page: 19308
  year: 2019
  ident: D0NR05511E-(cit15)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ04808A
– volume: 9
  start-page: 8623
  year: 2017
  ident: D0NR05511E-(cit158)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR02385E
– volume: 8
  start-page: 1801839
  year: 2018
  ident: D0NR05511E-(cit176)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801839
– volume: 521
  start-page: 141
  year: 2018
  ident: D0NR05511E-(cit57)/*[position()=1]
  publication-title: J. Colloid Sci.
  doi: 10.1016/j.jcis.2018.03.036
– volume: 11
  start-page: 5007
  year: 2020
  ident: D0NR05511E-(cit69)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00676A
– volume: 6
  start-page: 21162
  year: 2018
  ident: D0NR05511E-(cit119)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08862D
– volume: 111
  start-page: 813
  year: 2017
  ident: D0NR05511E-(cit38)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.057
– volume: 27
  start-page: 1702324
  year: 2017
  ident: D0NR05511E-(cit33)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702324
– volume: 251
  start-page: 181
  year: 2019
  ident: D0NR05511E-(cit150)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.03.037
– volume: 104
  start-page: 330
  year: 2019
  ident: D0NR05511E-(cit76)/*[position()=1]
  publication-title: J. Chin. Inst. Chem. Eng.
– volume: 427
  start-page: 299
  year: 2019
  ident: D0NR05511E-(cit141)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.074
– volume: 29
  start-page: 1702327
  year: 2017
  ident: D0NR05511E-(cit172)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702327
– volume: 143
  start-page: 291
  year: 2014
  ident: D0NR05511E-(cit97)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.001
– volume: 7
  start-page: 14394
  year: 2019
  ident: D0NR05511E-(cit28)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04164
– volume: 12
  start-page: 5717
  year: 2020
  ident: D0NR05511E-(cit122)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18101
– volume: 53
  start-page: 12177
  year: 2017
  ident: D0NR05511E-(cit107)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07115A
– volume: 55
  start-page: 4023
  year: 2019
  ident: D0NR05511E-(cit109)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00009G
– volume: 435
  start-page: 226761
  year: 2019
  ident: D0NR05511E-(cit157)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226761
– volume: 164
  start-page: H755
  year: 2017
  ident: D0NR05511E-(cit27)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0871712jes
– volume: 137
  start-page: 2402
  year: 2013
  ident: D0NR05511E-(cit32)/*[position()=1]
  publication-title: J. Acoust. Soc. Am.
– volume: 49
  start-page: 5730
  year: 2020
  ident: D0NR05511E-(cit3)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT00976H
– volume: 55
  start-page: 13296
  year: 2016
  ident: D0NR05511E-(cit102)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607405
– volume: 11
  start-page: 21506
  year: 2019
  ident: D0NR05511E-(cit179)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04217
– volume: 8
  start-page: 11874
  year: 2020
  ident: D0NR05511E-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02748K
– volume: 32
  start-page: 247
  year: 2017
  ident: D0NR05511E-(cit170)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.044
– volume: 274
  start-page: 119091
  year: 2020
  ident: D0NR05511E-(cit146)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119091
– start-page: 1704609
  year: 2017
  ident: D0NR05511E-(cit116)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 4
  start-page: 285
  year: 2018
  ident: D0NR05511E-(cit108)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 597
  start-page: 117555
  year: 2020
  ident: D0NR05511E-(cit48)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2020.117555
– start-page: 1702068
  year: 2017
  ident: D0NR05511E-(cit63)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702068
– volume: 8
  start-page: 1701905
  year: 2018
  ident: D0NR05511E-(cit171)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701905
– volume: 5
  start-page: 14174
  year: 2017
  ident: D0NR05511E-(cit81)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03298F
– volume: 11
  start-page: 1957
  year: 2019
  ident: D0NR05511E-(cit125)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13290
– volume: 5
  start-page: 4133
  year: 2015
  ident: D0NR05511E-(cit99)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00601
– volume: 12
  start-page: 4366
  year: 2020
  ident: D0NR05511E-(cit135)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12213
– volume: 7
  start-page: 2497
  year: 2019
  ident: D0NR05511E-(cit152)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11524A
– volume: 8
  start-page: 7171
  year: 2020
  ident: D0NR05511E-(cit70)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02110E
– volume: 12
  start-page: 1894
  year: 2018
  ident: D0NR05511E-(cit133)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08721
– volume: 8
  start-page: 1702048
  year: 2018
  ident: D0NR05511E-(cit123)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702048
– volume: 30
  start-page: 2000503
  year: 2020
  ident: D0NR05511E-(cit85)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000503
– volume: 5
  start-page: 1800036
  year: 2018
  ident: D0NR05511E-(cit105)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800036
– volume: 30
  start-page: 368
  year: 2016
  ident: D0NR05511E-(cit124)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.017
– volume: 6
  start-page: 17807
  year: 2018
  ident: D0NR05511E-(cit164)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06236F
– volume: 29
  start-page: 1604685
  year: 2017
  ident: D0NR05511E-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 137
  start-page: 458
  year: 2018
  ident: D0NR05511E-(cit101)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.061
– volume: 274
  start-page: 119112
  year: 2020
  ident: D0NR05511E-(cit10)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119112
– volume: 31
  start-page: e1905622
  year: 2019
  ident: D0NR05511E-(cit131)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905622
– volume: 8
  start-page: 9981
  year: 2020
  ident: D0NR05511E-(cit145)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03457F
– volume: 153
  start-page: 575
  year: 2019
  ident: D0NR05511E-(cit55)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.075
– start-page: 623
  year: 2016
  ident: D0NR05511E-(cit77)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.002
– volume: 166
  start-page: 284
  year: 2020
  ident: D0NR05511E-(cit79)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.037
– volume: 144
  start-page: 8
  year: 2019
  ident: D0NR05511E-(cit106)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.008
– volume: 3
  start-page: 79
  year: 2011
  ident: D0NR05511E-(cit160)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 7
  start-page: 14732
  year: 2019
  ident: D0NR05511E-(cit134)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03011E
– start-page: 1700518
  year: 2017
  ident: D0NR05511E-(cit2)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700518
– volume: 8
  start-page: 1800612
  year: 2018
  ident: D0NR05511E-(cit165)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800612
– volume: 365
  start-page: 134
  year: 2017
  ident: D0NR05511E-(cit156)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.081
– volume: 9
  start-page: 44567
  year: 2017
  ident: D0NR05511E-(cit183)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16389
– volume: 251
  start-page: 113406
  year: 2019
  ident: D0NR05511E-(cit188)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113406
– volume: 8
  start-page: 20048
  year: 2016
  ident: D0NR05511E-(cit29)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR08057J
– volume: 17
  start-page: 2943
  year: 2020
  ident: D0NR05511E-(cit193)/*[position()=1]
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-020-01970-7
– volume: 8
  start-page: 11649
  year: 2020
  ident: D0NR05511E-(cit147)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04633G
– volume: 164
  start-page: F491
  year: 2017
  ident: D0NR05511E-(cit174)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0341706jes
– volume: 22
  start-page: 7031
  year: 2020
  ident: D0NR05511E-(cit21)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00281J
– start-page: 1601198
  year: 2016
  ident: D0NR05511E-(cit136)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601198
– volume: 6
  start-page: 10172
  year: 2014
  ident: D0NR05511E-(cit192)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5014369
– volume: 34
  start-page: 2425
  year: 2020
  ident: D0NR05511E-(cit17)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b04036
– volume: 12
  start-page: 2768
  year: 2020
  ident: D0NR05511E-(cit187)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001093
– volume: 8
  start-page: 1802390
  year: 2018
  ident: D0NR05511E-(cit182)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802390
– volume: 25
  start-page: 1707
  year: 2018
  ident: D0NR05511E-(cit39)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-018-2619-y
– volume: 351
  start-page: 136249
  year: 2020
  ident: D0NR05511E-(cit14)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136249
– volume: 6
  start-page: 14641
  year: 2018
  ident: D0NR05511E-(cit173)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03232
– volume: 8
  start-page: 2981
  year: 2020
  ident: D0NR05511E-(cit96)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07621
– volume: 8
  start-page: 1703623
  year: 2018
  ident: D0NR05511E-(cit64)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703623
– volume: 445
  start-page: 398
  year: 2018
  ident: D0NR05511E-(cit53)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.106
– volume: 8
  start-page: 9226
  year: 2020
  ident: D0NR05511E-(cit142)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c03570
– volume: 11
  start-page: 25870
  year: 2019
  ident: D0NR05511E-(cit191)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06141
– volume: 8
  start-page: 1800612
  year: 2018
  ident: D0NR05511E-(cit186)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800612
– volume: 2
  start-page: 1927
  year: 2020
  ident: D0NR05511E-(cit20)/*[position()=1]
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00073F
– volume: 13
  start-page: 528
  year: 2017
  ident: D0NR05511E-(cit59)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
– volume: 231
  start-page: 216
  year: 2017
  ident: D0NR05511E-(cit195)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.179
– start-page: 125151
  year: 2020
  ident: D0NR05511E-(cit13)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125151
– volume: 30
  start-page: 1905992
  year: 2020
  ident: D0NR05511E-(cit23)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905992
– volume: 7
  start-page: 26607
  year: 2019
  ident: D0NR05511E-(cit169)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08936E
– volume: 241
  start-page: 225
  year: 2013
  ident: D0NR05511E-(cit168)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.116
– volume: 9
  start-page: 44567
  year: 2017
  ident: D0NR05511E-(cit155)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16389
– volume: 265
  start-page: 681
  year: 2018
  ident: D0NR05511E-(cit56)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.006
– volume: 7
  start-page: 19612
  year: 2019
  ident: D0NR05511E-(cit115)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04703
– volume: 30
  start-page: 1800005
  year: 2018
  ident: D0NR05511E-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800005
– volume: 13
  start-page: 1090
  year: 2020
  ident: D0NR05511E-(cit4)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2751-7
– volume: 29
  start-page: 1606207
  year: 2017
  ident: D0NR05511E-(cit82)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606207
– volume: 28
  start-page: 9532
  year: 2016
  ident: D0NR05511E-(cit92)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602912
– start-page: 167
  year: 2018
  ident: D0NR05511E-(cit50)/*[position()=1]
  publication-title: Carbon-Based Met.-Free Catal.
– volume: 8
  start-page: 7879
  year: 2018
  ident: D0NR05511E-(cit127)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02504
– volume: 681
  start-page: 1
  year: 2018
  ident: D0NR05511E-(cit80)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2018.10.021
– volume: 333
  start-page: 135566
  year: 2020
  ident: D0NR05511E-(cit162)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135566
– volume: 13
  start-page: 423
  year: 2015
  ident: D0NR05511E-(cit166)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.005
– start-page: 1
  issue: 44
  year: 2015
  ident: D0NR05511E-(cit167)/*[position()=1]
  publication-title: J. Mater. Chem. A
– volume: 521
  start-page: 141
  year: 2018
  ident: D0NR05511E-(cit58)/*[position()=1]
  publication-title: Chem. – Asian J.
– volume: 723
  start-page: 772
  year: 2017
  ident: D0NR05511E-(cit36)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.299
– volume: 6
  start-page: 14299
  year: 2018
  ident: D0NR05511E-(cit62)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05295F
– volume: 28
  start-page: 5140
  year: 2016
  ident: D0NR05511E-(cit84)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201670178
– volume: 12
  start-page: 322
  year: 2019
  ident: D0NR05511E-(cit86)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03276A
– volume: 241
  start-page: 407
  year: 2019
  ident: D0NR05511E-(cit121)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.063
– volume: 13
  start-page: 401
  year: 2020
  ident: D0NR05511E-(cit83)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2622-2
– volume: 334
  start-page: 1383
  year: 2011
  ident: D0NR05511E-(cit163)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 4
  start-page: 1747
  year: 2020
  ident: D0NR05511E-(cit6)/*[position()=1]
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C9SE01058K
– volume: 9
  start-page: 8682
  year: 2019
  ident: D0NR05511E-(cit18)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01772
– volume: 2
  start-page: e1501122
  year: 2016
  ident: D0NR05511E-(cit88)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 5
  start-page: 1080
  year: 2018
  ident: D0NR05511E-(cit159)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701302
– volume: 27
  start-page: 1702300
  year: 2017
  ident: D0NR05511E-(cit43)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702300
– volume: 240
  start-page: 112
  year: 2019
  ident: D0NR05511E-(cit143)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.08.074
– volume: 26
  start-page: 767
  year: 2020
  ident: D0NR05511E-(cit151)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-019-03226-8
– volume: 11
  start-page: 6051
  year: 2019
  ident: D0NR05511E-(cit148)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901224
SSID ssj0069363
Score 2.6305494
SecondaryResourceType review_article
Snippet The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit...
The catalyst in the oxygen electrode is the core component of the aqueous metal–air battery, which plays a vital role in the determination of the open circuit...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21534
SubjectTerms Battery cycles
Carbon
Catalysts
Flux density
Metal air batteries
Noble metals
Open circuit voltage
Oxygen evolution reactions
Oxygen reduction reactions
Rechargeable batteries
Title Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries
URI https://www.proquest.com/docview/2457553023
https://www.proquest.com/docview/2455844359
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VWRZkBBdUZUmd97FAlxVbWqlqRTlF8SNStJCu2lQIThy58w_5JYwd28mKCgGHRonjxlHmi-eb8WQGoWciDOKA0tAFupq7QZhyN80JdUFVgML1qMdV1ZJ30-h8Gbxdhate73snamlX01P2de93Jf8jVWgDucqvZP9Bsvai0AD7IF_YgoRh-1cyHtkF_HXlVrIyzAAIaDOydGTQUqot7e1Tjpov21olYBjM5nO1bjAbz4F-ytDZQQ4qQgbEfhLQ0QRB-Hm5GVCVhNOEG2oqC_PyegsStsj4sKvciY7wVX5oG9uzVr6bi_Xl9rOw3aGLctNORGmaVjsXjppgobLrjwDjU_pYQ4ugxuthQk5VSIkuXNfObESGMfp-k778VHTb4utTM-lAsMnCZSfaUDtBhTluMov_phI8X2ZU5V618YAdDkWr-Mxi_3SWnS0nk2wxXi0O0CEBg4P00eHo4uWb90arR6mvqvLZWzepbv30RXvt6-SmtVgONqacjKIti9volrY38KgBzx3UE9VddLOThfIeujQwwhZG2MIIlxXuwghbGGGAEQYYYYARBhjhBkZYwwgrGP389gMAhC2A7qPl2Xjx6tzVNThcFgR-7UZMUvY0D6J8CPs8okkMFJZ4kQgKMWQegwmdspBLRwBhQC_hNyx8mnLKGI_8I9SHmxcPEE5IzEPO00T-JSZhkhR5QpOAx5ylHi0c9Nw8vIzpBPWyTsrHTAVK-Gn22pvO1YMeO-ip7XvVpGXZ2-vEyCDTr-02IwFYKKpWloOe2NMAUblSllfyCck-QMzBkkgddASys2O0onbQ8f4T2RUvjv888EN0o31zTlC_3uzEI-C2NX2sYfcLHq6mGw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+non-noble+materials+in+bifunctional+catalysts+for+ORR+and+OER+toward+aqueous+metal%E2%80%93air+batteries&rft.jtitle=Nanoscale&rft.au=Yun-Long%2C+Zhang&rft.au=Goh%2C+Kokswee&rft.au=Zhao%2C+Lei&rft.au=Xu-Lei%2C+Sui&rft.date=2020-11-05&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=42&rft.spage=21534&rft.epage=21559&rft_id=info:doi/10.1039%2Fd0nr05511e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon