Cell-Based Versus Enzyme-Linked Immunosorbent Assay for the Detection of Acetylcholine Receptor Antibodies in Chinese Juvenile Myasthenia Gravis
Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset m...
Saved in:
Published in | Pediatric neurology Vol. 98; pp. 74 - 79 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.
Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.
Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.
The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass. |
---|---|
AbstractList | Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.
Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.
Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.
The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass. Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.BACKGROUNDPatients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.METHODSPatients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.RESULTSEighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass.CONCLUSIONSThe cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass. |
Author | Song, Jie Lu, Jiahong Zhou, Shuizhen Xi, Jianying Zhao, Chongbo Yan, Chong Li, Wenhui Feng, Xuelin |
Author_xml | – sequence: 1 givenname: Chong surname: Yan fullname: Yan, Chong organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 2 givenname: Wenhui surname: Li fullname: Li, Wenhui organization: Department of Neurology, Children's Hospital of Fudan University, Shanghai, China – sequence: 3 givenname: Jie surname: Song fullname: Song, Jie organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 4 givenname: Xuelin surname: Feng fullname: Feng, Xuelin organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 5 givenname: Jianying surname: Xi fullname: Xi, Jianying organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Jiahong surname: Lu fullname: Lu, Jiahong organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China – sequence: 7 givenname: Shuizhen surname: Zhou fullname: Zhou, Shuizhen organization: Department of Neurology, Children's Hospital of Fudan University, Shanghai, China – sequence: 8 givenname: Chongbo surname: Zhao fullname: Zhao, Chongbo email: zhao_chongbo@fudan.edu.cn organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31307830$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9rFDEUxYNU7Lb6FSTgiy-zJvMnm8GncVzbyoog6mvIJHfYbGeSNcksjJ_Cj9ws2z7Yp4ULF27O-QXOuUIX1llA6B0lS0oo-7Bb7kEbGb2FybthmRNaLwlNw16gBeWrIqtoRS7QgnC-ynhdl5foKoQdIaSq8_IVuixoQVa8IAv0r4VhyD7JABr_Bh-mgNf27zxCtjH2Ph3vxnGyLjjfgY24CUHOuHcexy3gzxBBReMsdj1uFMR5UFs3GAv4ByjYx6RrbDSd0wYCNha32_QYAH-dDmDNAPjbLENCWSPxjZcHE16jl70cArx53Nfo15f1z_Y223y_uWubTabKsogZ40pSpYu-zwnrql5yoGXBJOi8IkpDB0rqTtWa5QRYCYz3PdM67-qi5x2ri2v0_sTde_dnghDFaIJKYUgLbgoizyu-KnmiJenbR-nUjaDF3ptR-lk8pZgEzUmgvAvBQy-UifIYTPTSDIIScWxO7MR_zYljc4LQNCwxPj5jPH1znnt9ckOK7GDAi6AMWJUMPlUktDNnctpnHJXqNEoO9zCfTXkAPc3Ziw |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_109123 crossref_primary_10_5664_jcsm_11056 crossref_primary_10_3389_fneur_2022_858998 crossref_primary_10_3389_fneur_2020_00743 crossref_primary_10_15844_pedneurbriefs_34_24 crossref_primary_10_3389_fimmu_2021_666046 crossref_primary_10_1016_j_ejpn_2023_08_002 crossref_primary_10_1016_j_jneuroim_2020_577403 crossref_primary_10_3389_fneur_2020_596981 crossref_primary_10_3389_fimmu_2020_00212 |
Cites_doi | 10.1056/NEJMc1701027 10.1212/WNL.0000000000002790 10.1212/WNL.30.7.732 10.1016/j.jneuroim.2008.06.016 10.1016/j.spen.2017.04.003 10.1007/s11910-013-0421-9 10.1001/jamaneurol.2015.0203 10.1001/jamaneurol.2014.17 10.1007/s12264-012-1256-0 10.1196/annals.1254.007 10.1055/s-0033-1364181 10.3233/CH-151999 10.1016/j.jns.2014.05.037 10.1055/s-0038-1660500 10.1002/mus.25154 10.1001/archneurol.2012.437 10.1016/j.jneuroim.2007.01.010 10.1136/jnnp.2006.100545 10.1016/j.jns.2010.10.023 10.1111/j.1749-6632.1987.tb51301.x 10.1038/srep10193 10.1016/S1474-4422(15)00145-3 10.1212/WNL.42.10.1888 10.1016/j.jaut.2013.12.004 10.1111/ene.12270 10.1007/BF01959485 10.1007/s10072-012-1157-z 10.1542/peds.2013-0814 10.1016/j.jneuroim.2007.07.018 10.1038/315761a0 10.1097/TP.0000000000001816 10.1111/j.1468-1331.2005.01137.x 10.3109/08916930903541208 10.1002/ana.20341 10.1093/brain/awg223 10.1177/0883073816666206 10.1097/WCO.0b013e328357a829 10.1038/85520 10.1016/j.expneurol.2015.01.011 10.1111/joim.12163 10.1093/brain/awn092 10.1016/S1388-2457(00)00307-2 10.1212/01.WNL.0000065882.63904.53 10.1002/mus.21195 10.1007/s10072-012-1159-x |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.pediatrneurol.2019.01.016 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5150 |
EndPage | 79 |
ExternalDocumentID | 31307830 10_1016_j_pediatrneurol_2019_01_016 S0887899418312451 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81870988 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2016YFC0901504 |
GroupedDBID | --- --K --M -RU .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABOCM ABPPZ ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEF HMK HMO HMQ HVGLF HZ~ IHE J1W KOM M29 M2V M32 M41 MO0 MOBAO N4W N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSH SSN SSZ T5K UNMZH WOW WUQ XPP Z5R ZGI ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c443t-68ca1cd3ff206b5fa8e1436aed250cdebecadbc9d620e64e68ff6dd2b93f8b693 |
IEDL.DBID | .~1 |
ISSN | 0887-8994 1873-5150 |
IngestDate | Thu Aug 07 15:01:22 EDT 2025 Wed Feb 19 02:31:20 EST 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 04:00:52 EDT 2025 Fri Feb 23 02:21:55 EST 2024 Tue Aug 26 19:46:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Juvenile myasthenia gravis Diagnosis cell-based assay Acetylcholine receptor ELISA |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-68ca1cd3ff206b5fa8e1436aed250cdebecadbc9d620e64e68ff6dd2b93f8b693 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 31307830 |
PQID | 2258748250 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2258748250 pubmed_primary_31307830 crossref_citationtrail_10_1016_j_pediatrneurol_2019_01_016 crossref_primary_10_1016_j_pediatrneurol_2019_01_016 elsevier_sciencedirect_doi_10_1016_j_pediatrneurol_2019_01_016 elsevier_clinicalkey_doi_10_1016_j_pediatrneurol_2019_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Pediatric neurology |
PublicationTitleAlternate | Pediatr Neurol |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Evoli, Tonali, Padua (bib43) 2003; 126 George, Noack, Vanek (bib38) 2015; 61 Padua, Stalberg, LoMonaco, Evoli, Batocchi, Tonali (bib28) 2000; 111 Lindner, Schalke, Toyka (bib6) 1997; 244 Snead, Benton, Dwyer (bib8) 1980; 30 Della, Trippe, Lutz, Schara (bib3) 2014; 45 Lee, Kang, Lee (bib14) 2016; 31 Sanders, Wolfe, Benatar (bib12) 2016; 87 Romi, Aarli, Gilhus (bib46) 2005; 12 Maclennan, Vincent, Marx (bib37) 2008; 201-202 Valenzuela, Schaub (bib42) 2018; 102 Rodriguez, Al-Hajjar, Huda (bib26) 2015; 72 Vincent, Newsom-Davis (bib39) 1982; 49 Cetin, Vincent (bib49) 2018; 38 Huijbers, Lipka, Plomp, Niks, van der Maarel, Verschuuren (bib40) 2014; 275 Liew, Powell, Sloan (bib9) 2014; 71 Engel, Arahata (bib41) 1987; 505 Zisimopoulou, Evangelakou, Tzartos (bib48) 2014; 52 Gilhus, Verschuuren (bib2) 2015; 14 Feng, Wang, Liu (bib16) 2013; 34 Leite, Jacob, Viegas (bib17) 2008; 131 Takai, Noda, Mishina (bib33) 1985; 315 Gui, Luo, Lin (bib30) 2015; 262 Rodriguez, Huda, Lopez-Ruiz, Vincent (bib19) 2015; 270 Sanders, El-Salem, Massey, McConville, Vincent (bib44) 2003; 60 Lindstrom (bib34) 2003; 998 Shi, Wang, Ma (bib21) 2012; 28 Huang, Liu, Men (bib10) 2013; 34 Leite, Waters, Vincent (bib18) 2010; 43 Shiraishi, Motomura, Yoshimura (bib45) 2005; 57 Yang, Maxwell, Leite (bib20) 2011; 301 Chiang, Darras, Kang (bib4) 2009; 39 Zhang, Yang, Xu (bib11) 2007; 78 Chang, Leite, Senanayake (bib23) 2014; 343 Hoch, McConville, Helms, Newsom-Davis, Melms, Vincent (bib47) 2001; 7 Gilhus (bib1) 2017; 376 Peragallo (bib27) 2017; 24 Tzartos, Morel, Efthimiadis (bib35) 1988; 74 Raksadawan, Kankirawatana, Balankura, Prateepratana, Sangruchi, Atchaneeyasakul (bib15) 2002; 85 Huda, Woodhall, Vincent, Heckmann (bib25) 2016; 54 Batocchi, Evoli, Palmisani, Lo, Bartoccioni, Tonali (bib7) 1990; 150 Jacob, Viegas, Leite (bib32) 2012; 69 Phillips, Torner, Anderson, Cox (bib5) 1992; 42 Farrugia, Bonifati, Clover, Cossins, Beeson, Vincent (bib31) 2007; 185 Kostelidou, Trakas, Tzartos (bib36) 2007; 190 Devic, Petiot, Simonet (bib22) 2014; 21 Zhao, Wang, Yu, Zhang, Guan, Jiang (bib24) 2015; 5 Wong, Huda, Vincent, Plant (bib13) 2014; 14 Cavalcante, Bernasconi, Mantegazza (bib50) 2012; 25 VanderPluym, Vajsar, Jacob, Mah, Grenier, Kolski (bib29) 2013; 132 Valenzuela (10.1016/j.pediatrneurol.2019.01.016_bib42) 2018; 102 George (10.1016/j.pediatrneurol.2019.01.016_bib38) 2015; 61 Romi (10.1016/j.pediatrneurol.2019.01.016_bib46) 2005; 12 Lindstrom (10.1016/j.pediatrneurol.2019.01.016_bib34) 2003; 998 Snead (10.1016/j.pediatrneurol.2019.01.016_bib8) 1980; 30 Rodriguez (10.1016/j.pediatrneurol.2019.01.016_bib26) 2015; 72 Shi (10.1016/j.pediatrneurol.2019.01.016_bib21) 2012; 28 Farrugia (10.1016/j.pediatrneurol.2019.01.016_bib31) 2007; 185 Huijbers (10.1016/j.pediatrneurol.2019.01.016_bib40) 2014; 275 Lee (10.1016/j.pediatrneurol.2019.01.016_bib14) 2016; 31 Cetin (10.1016/j.pediatrneurol.2019.01.016_bib49) 2018; 38 Batocchi (10.1016/j.pediatrneurol.2019.01.016_bib7) 1990; 150 Zhang (10.1016/j.pediatrneurol.2019.01.016_bib11) 2007; 78 Feng (10.1016/j.pediatrneurol.2019.01.016_bib16) 2013; 34 Gilhus (10.1016/j.pediatrneurol.2019.01.016_bib2) 2015; 14 Huang (10.1016/j.pediatrneurol.2019.01.016_bib10) 2013; 34 Vincent (10.1016/j.pediatrneurol.2019.01.016_bib39) 1982; 49 Sanders (10.1016/j.pediatrneurol.2019.01.016_bib12) 2016; 87 Evoli (10.1016/j.pediatrneurol.2019.01.016_bib43) 2003; 126 Maclennan (10.1016/j.pediatrneurol.2019.01.016_bib37) 2008; 201-202 Takai (10.1016/j.pediatrneurol.2019.01.016_bib33) 1985; 315 Padua (10.1016/j.pediatrneurol.2019.01.016_bib28) 2000; 111 Hoch (10.1016/j.pediatrneurol.2019.01.016_bib47) 2001; 7 Della (10.1016/j.pediatrneurol.2019.01.016_bib3) 2014; 45 VanderPluym (10.1016/j.pediatrneurol.2019.01.016_bib29) 2013; 132 Yang (10.1016/j.pediatrneurol.2019.01.016_bib20) 2011; 301 Tzartos (10.1016/j.pediatrneurol.2019.01.016_bib35) 1988; 74 Kostelidou (10.1016/j.pediatrneurol.2019.01.016_bib36) 2007; 190 Zisimopoulou (10.1016/j.pediatrneurol.2019.01.016_bib48) 2014; 52 Rodriguez (10.1016/j.pediatrneurol.2019.01.016_bib19) 2015; 270 Phillips (10.1016/j.pediatrneurol.2019.01.016_bib5) 1992; 42 Chang (10.1016/j.pediatrneurol.2019.01.016_bib23) 2014; 343 Chiang (10.1016/j.pediatrneurol.2019.01.016_bib4) 2009; 39 Cavalcante (10.1016/j.pediatrneurol.2019.01.016_bib50) 2012; 25 Shiraishi (10.1016/j.pediatrneurol.2019.01.016_bib45) 2005; 57 Jacob (10.1016/j.pediatrneurol.2019.01.016_bib32) 2012; 69 Wong (10.1016/j.pediatrneurol.2019.01.016_bib13) 2014; 14 Raksadawan (10.1016/j.pediatrneurol.2019.01.016_bib15) 2002; 85 Gilhus (10.1016/j.pediatrneurol.2019.01.016_bib1) 2017; 376 Zhao (10.1016/j.pediatrneurol.2019.01.016_bib24) 2015; 5 Huda (10.1016/j.pediatrneurol.2019.01.016_bib25) 2016; 54 Liew (10.1016/j.pediatrneurol.2019.01.016_bib9) 2014; 71 Engel (10.1016/j.pediatrneurol.2019.01.016_bib41) 1987; 505 Gui (10.1016/j.pediatrneurol.2019.01.016_bib30) 2015; 262 Peragallo (10.1016/j.pediatrneurol.2019.01.016_bib27) 2017; 24 Lindner (10.1016/j.pediatrneurol.2019.01.016_bib6) 1997; 244 Leite (10.1016/j.pediatrneurol.2019.01.016_bib18) 2010; 43 Devic (10.1016/j.pediatrneurol.2019.01.016_bib22) 2014; 21 Sanders (10.1016/j.pediatrneurol.2019.01.016_bib44) 2003; 60 Leite (10.1016/j.pediatrneurol.2019.01.016_bib17) 2008; 131 |
References_xml | – volume: 69 start-page: 994 year: 2012 end-page: 1001 ident: bib32 article-title: Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis publication-title: Arch Neurol – volume: 49 start-page: 257 year: 1982 end-page: 265 ident: bib39 article-title: Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles publication-title: Clin Exp Immunol – volume: 54 start-page: 1023 year: 2016 end-page: 1029 ident: bib25 article-title: Characteristics Of acetylcholine-receptor-antibody-negative myasthenia gravis in a South African cohort publication-title: Muscle Nerve – volume: 78 start-page: 386 year: 2007 end-page: 390 ident: bib11 article-title: Clinical and serological study of myasthenia gravis in HuBei Province, China publication-title: J Neurol Neurosurg Psychiatry – volume: 61 start-page: 385 year: 2015 end-page: 396 ident: bib38 article-title: Expression of nicotinic acetylcholine receptor subunits in HEp-2 cells for immunodetection of autoantibody specificities in sera from Myasthenia gravis patients publication-title: Clin Hemorheol Microcirc – volume: 24 start-page: 116 year: 2017 end-page: 121 ident: bib27 article-title: Pediatric myasthenia gravis publication-title: Semin Pediatr Neurol – volume: 275 start-page: 12 year: 2014 end-page: 26 ident: bib40 article-title: Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis publication-title: J Intern Med – volume: 28 start-page: 469 year: 2012 end-page: 474 ident: bib21 article-title: Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis publication-title: Neurosci Bull – volume: 998 start-page: 41 year: 2003 end-page: 52 ident: bib34 article-title: Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology publication-title: Ann N Y Acad Sci – volume: 505 start-page: 326 year: 1987 end-page: 332 ident: bib41 article-title: The membrane attack complex of complement at the endplate in myasthenia gravis publication-title: Ann N Y Acad Sci – volume: 52 start-page: 139 year: 2014 end-page: 145 ident: bib48 article-title: A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis publication-title: J Autoimmun – volume: 343 start-page: 82 year: 2014 end-page: 87 ident: bib23 article-title: Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population publication-title: J Neurol Sci – volume: 57 start-page: 289 year: 2005 end-page: 293 ident: bib45 article-title: Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis publication-title: Ann Neurol – volume: 201-202 start-page: 28 year: 2008 end-page: 32 ident: bib37 article-title: Preferential expression of AChR epsilon-subunit in thymomas from patients with myasthenia gravis publication-title: J Neuroimmunol – volume: 31 start-page: 1561 year: 2016 end-page: 1568 ident: bib14 article-title: Juvenile myasthenia gravis in Korea: subgroup analysis according to sex and onset age publication-title: J Child Neurol – volume: 34 start-page: 919 year: 2013 end-page: 924 ident: bib16 article-title: The high frequency and clinical feature of seronegative myasthenia gravis in Southern China publication-title: Neurol Sci – volume: 60 start-page: 1978 year: 2003 end-page: 1980 ident: bib44 article-title: Clinical aspects of MuSK antibody positive seronegative MG publication-title: Neurology – volume: 71 start-page: 575 year: 2014 end-page: 580 ident: bib9 article-title: Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis publication-title: JAMA Neurol – volume: 102 start-page: S7 year: 2018 end-page: S13 ident: bib42 article-title: The biology of IgG subclasses and their clinical relevance to transplantation publication-title: Transplantation – volume: 45 start-page: 75 year: 2014 end-page: 83 ident: bib3 article-title: Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment publication-title: Neuropediatrics – volume: 262 start-page: 823 year: 2015 end-page: 830 ident: bib30 article-title: Long-term outcome of 424 childhood-onset myasthenia gravis patients publication-title: J Neurol – volume: 150 start-page: 66 year: 1990 end-page: 68 ident: bib7 article-title: Early-onset myasthenia gravis: clinical characteristics and response to therapy publication-title: Eur J Pediatr – volume: 270 start-page: 66 year: 2015 end-page: 71 ident: bib19 article-title: Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases publication-title: Exp Neurol – volume: 111 start-page: 1203 year: 2000 end-page: 1207 ident: bib28 article-title: SFEMG in ocular myasthenia gravis diagnosis publication-title: Clin Neurophysiol – volume: 14 start-page: 421 year: 2014 ident: bib13 article-title: Ocular myasthenia gravis: controversies and updates publication-title: Curr Neurol Neurosci Rep – volume: 74 start-page: 80 year: 1988 end-page: 86 ident: bib35 article-title: Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis publication-title: Clin Exp Immunol – volume: 5 start-page: 10193 year: 2015 ident: bib24 article-title: Clinical application of clustered-AChR for the detection of SNMG publication-title: Sci Rep – volume: 376 start-page: e25 year: 2017 ident: bib1 article-title: Myasthenia gravis publication-title: N Engl J Med – volume: 72 start-page: 642 year: 2015 end-page: 649 ident: bib26 article-title: Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis publication-title: JAMA Neurol – volume: 190 start-page: 44 year: 2007 end-page: 52 ident: bib36 article-title: Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency publication-title: J Neuroimmunol – volume: 301 start-page: 71 year: 2011 end-page: 76 ident: bib20 article-title: Non-radioactive serological diagnosis of myasthenia gravis and clinical features of patients from Tianjin, China publication-title: J Neurol Sci – volume: 85 start-page: S769 year: 2002 end-page: S777 ident: bib15 article-title: Childhood onset myasthenia gravis publication-title: J Med Assoc Thai – volume: 12 start-page: 413 year: 2005 end-page: 418 ident: bib46 article-title: Seronegative myasthenia gravis: disease severity and prognosis publication-title: Eur J Neurol – volume: 315 start-page: 761 year: 1985 end-page: 764 ident: bib33 article-title: Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle publication-title: Nature – volume: 21 start-page: 130 year: 2014 end-page: 134 ident: bib22 article-title: Antibodies to clustered acetylcholine receptor: expanding the phenotype publication-title: Eur J Neurol – volume: 43 start-page: 371 year: 2010 end-page: 379 ident: bib18 article-title: Diagnostic use of autoantibodies in myasthenia gravis publication-title: Autoimmunity – volume: 132 start-page: e939 year: 2013 end-page: e944 ident: bib29 article-title: Clinical characteristics of pediatric myasthenia: a surveillance study publication-title: Pediatrics – volume: 87 start-page: 419 year: 2016 end-page: 425 ident: bib12 article-title: International consensus guidance for management of myasthenia gravis: executive summary publication-title: Neurology – volume: 126 start-page: 2304 year: 2003 end-page: 2311 ident: bib43 article-title: Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis publication-title: Brain – volume: 42 start-page: 1888 year: 1992 end-page: 1893 ident: bib5 article-title: The epidemiology of myasthenia gravis in central and western Virginia publication-title: Neurology – volume: 131 start-page: 1940 year: 2008 end-page: 1952 ident: bib17 article-title: IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis publication-title: Brain – volume: 38 start-page: 344 year: 2018 end-page: 354 ident: bib49 article-title: Pathogenic mechanisms and clinical correlations in autoimmune myasthenic syndromes publication-title: Semin Neurol – volume: 244 start-page: 515 year: 1997 end-page: 520 ident: bib6 article-title: Outcome in juvenile-onset myasthenia gravis: a retrospective study with long-term follow-up of 79 patients publication-title: J Neurol – volume: 30 start-page: 732 year: 1980 end-page: 739 ident: bib8 article-title: Juvenile myasthenia gravis publication-title: Neurology – volume: 14 start-page: 1023 year: 2015 end-page: 1036 ident: bib2 article-title: Myasthenia gravis: subgroup classification and therapeutic strategies publication-title: Lancet Neurol – volume: 39 start-page: 423 year: 2009 end-page: 431 ident: bib4 article-title: Juvenile myasthenia gravis publication-title: Muscle Nerve – volume: 34 start-page: 911 year: 2013 end-page: 917 ident: bib10 article-title: Clinical features of myasthenia gravis in southern China: a retrospective review of 2,154 cases over 22 years publication-title: Neurol Sci – volume: 7 start-page: 365 year: 2001 end-page: 368 ident: bib47 article-title: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies publication-title: Nat Med – volume: 185 start-page: 136 year: 2007 end-page: 144 ident: bib31 article-title: Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures publication-title: J Neuroimmunol – volume: 25 start-page: 621 year: 2012 end-page: 629 ident: bib50 article-title: Autoimmune mechanisms in myasthenia gravis publication-title: Curr Opin Neurol – volume: 376 start-page: e25 year: 2017 ident: 10.1016/j.pediatrneurol.2019.01.016_bib1 article-title: Myasthenia gravis publication-title: N Engl J Med doi: 10.1056/NEJMc1701027 – volume: 87 start-page: 419 year: 2016 ident: 10.1016/j.pediatrneurol.2019.01.016_bib12 article-title: International consensus guidance for management of myasthenia gravis: executive summary publication-title: Neurology doi: 10.1212/WNL.0000000000002790 – volume: 30 start-page: 732 year: 1980 ident: 10.1016/j.pediatrneurol.2019.01.016_bib8 article-title: Juvenile myasthenia gravis publication-title: Neurology doi: 10.1212/WNL.30.7.732 – volume: 201-202 start-page: 28 year: 2008 ident: 10.1016/j.pediatrneurol.2019.01.016_bib37 article-title: Preferential expression of AChR epsilon-subunit in thymomas from patients with myasthenia gravis publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2008.06.016 – volume: 262 start-page: 823 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib30 article-title: Long-term outcome of 424 childhood-onset myasthenia gravis patients publication-title: J Neurol – volume: 24 start-page: 116 year: 2017 ident: 10.1016/j.pediatrneurol.2019.01.016_bib27 article-title: Pediatric myasthenia gravis publication-title: Semin Pediatr Neurol doi: 10.1016/j.spen.2017.04.003 – volume: 14 start-page: 421 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib13 article-title: Ocular myasthenia gravis: controversies and updates publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-013-0421-9 – volume: 72 start-page: 642 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib26 article-title: Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2015.0203 – volume: 71 start-page: 575 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib9 article-title: Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2014.17 – volume: 28 start-page: 469 year: 2012 ident: 10.1016/j.pediatrneurol.2019.01.016_bib21 article-title: Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis publication-title: Neurosci Bull doi: 10.1007/s12264-012-1256-0 – volume: 998 start-page: 41 year: 2003 ident: 10.1016/j.pediatrneurol.2019.01.016_bib34 article-title: Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1254.007 – volume: 45 start-page: 75 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib3 article-title: Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment publication-title: Neuropediatrics doi: 10.1055/s-0033-1364181 – volume: 61 start-page: 385 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib38 article-title: Expression of nicotinic acetylcholine receptor subunits in HEp-2 cells for immunodetection of autoantibody specificities in sera from Myasthenia gravis patients publication-title: Clin Hemorheol Microcirc doi: 10.3233/CH-151999 – volume: 343 start-page: 82 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib23 article-title: Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population publication-title: J Neurol Sci doi: 10.1016/j.jns.2014.05.037 – volume: 38 start-page: 344 year: 2018 ident: 10.1016/j.pediatrneurol.2019.01.016_bib49 article-title: Pathogenic mechanisms and clinical correlations in autoimmune myasthenic syndromes publication-title: Semin Neurol doi: 10.1055/s-0038-1660500 – volume: 54 start-page: 1023 year: 2016 ident: 10.1016/j.pediatrneurol.2019.01.016_bib25 article-title: Characteristics Of acetylcholine-receptor-antibody-negative myasthenia gravis in a South African cohort publication-title: Muscle Nerve doi: 10.1002/mus.25154 – volume: 69 start-page: 994 year: 2012 ident: 10.1016/j.pediatrneurol.2019.01.016_bib32 article-title: Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis publication-title: Arch Neurol doi: 10.1001/archneurol.2012.437 – volume: 185 start-page: 136 year: 2007 ident: 10.1016/j.pediatrneurol.2019.01.016_bib31 article-title: Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2007.01.010 – volume: 78 start-page: 386 year: 2007 ident: 10.1016/j.pediatrneurol.2019.01.016_bib11 article-title: Clinical and serological study of myasthenia gravis in HuBei Province, China publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2006.100545 – volume: 301 start-page: 71 year: 2011 ident: 10.1016/j.pediatrneurol.2019.01.016_bib20 article-title: Non-radioactive serological diagnosis of myasthenia gravis and clinical features of patients from Tianjin, China publication-title: J Neurol Sci doi: 10.1016/j.jns.2010.10.023 – volume: 244 start-page: 515 year: 1997 ident: 10.1016/j.pediatrneurol.2019.01.016_bib6 article-title: Outcome in juvenile-onset myasthenia gravis: a retrospective study with long-term follow-up of 79 patients publication-title: J Neurol – volume: 505 start-page: 326 year: 1987 ident: 10.1016/j.pediatrneurol.2019.01.016_bib41 article-title: The membrane attack complex of complement at the endplate in myasthenia gravis publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1987.tb51301.x – volume: 74 start-page: 80 year: 1988 ident: 10.1016/j.pediatrneurol.2019.01.016_bib35 article-title: Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis publication-title: Clin Exp Immunol – volume: 85 start-page: S769 year: 2002 ident: 10.1016/j.pediatrneurol.2019.01.016_bib15 article-title: Childhood onset myasthenia gravis publication-title: J Med Assoc Thai – volume: 5 start-page: 10193 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib24 article-title: Clinical application of clustered-AChR for the detection of SNMG publication-title: Sci Rep doi: 10.1038/srep10193 – volume: 14 start-page: 1023 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib2 article-title: Myasthenia gravis: subgroup classification and therapeutic strategies publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)00145-3 – volume: 42 start-page: 1888 year: 1992 ident: 10.1016/j.pediatrneurol.2019.01.016_bib5 article-title: The epidemiology of myasthenia gravis in central and western Virginia publication-title: Neurology doi: 10.1212/WNL.42.10.1888 – volume: 52 start-page: 139 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib48 article-title: A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis publication-title: J Autoimmun doi: 10.1016/j.jaut.2013.12.004 – volume: 21 start-page: 130 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib22 article-title: Antibodies to clustered acetylcholine receptor: expanding the phenotype publication-title: Eur J Neurol doi: 10.1111/ene.12270 – volume: 150 start-page: 66 year: 1990 ident: 10.1016/j.pediatrneurol.2019.01.016_bib7 article-title: Early-onset myasthenia gravis: clinical characteristics and response to therapy publication-title: Eur J Pediatr doi: 10.1007/BF01959485 – volume: 34 start-page: 911 year: 2013 ident: 10.1016/j.pediatrneurol.2019.01.016_bib10 article-title: Clinical features of myasthenia gravis in southern China: a retrospective review of 2,154 cases over 22 years publication-title: Neurol Sci doi: 10.1007/s10072-012-1157-z – volume: 132 start-page: e939 year: 2013 ident: 10.1016/j.pediatrneurol.2019.01.016_bib29 article-title: Clinical characteristics of pediatric myasthenia: a surveillance study publication-title: Pediatrics doi: 10.1542/peds.2013-0814 – volume: 190 start-page: 44 year: 2007 ident: 10.1016/j.pediatrneurol.2019.01.016_bib36 article-title: Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2007.07.018 – volume: 315 start-page: 761 year: 1985 ident: 10.1016/j.pediatrneurol.2019.01.016_bib33 article-title: Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle publication-title: Nature doi: 10.1038/315761a0 – volume: 102 start-page: S7 year: 2018 ident: 10.1016/j.pediatrneurol.2019.01.016_bib42 article-title: The biology of IgG subclasses and their clinical relevance to transplantation publication-title: Transplantation doi: 10.1097/TP.0000000000001816 – volume: 12 start-page: 413 year: 2005 ident: 10.1016/j.pediatrneurol.2019.01.016_bib46 article-title: Seronegative myasthenia gravis: disease severity and prognosis publication-title: Eur J Neurol doi: 10.1111/j.1468-1331.2005.01137.x – volume: 43 start-page: 371 year: 2010 ident: 10.1016/j.pediatrneurol.2019.01.016_bib18 article-title: Diagnostic use of autoantibodies in myasthenia gravis publication-title: Autoimmunity doi: 10.3109/08916930903541208 – volume: 57 start-page: 289 year: 2005 ident: 10.1016/j.pediatrneurol.2019.01.016_bib45 article-title: Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis publication-title: Ann Neurol doi: 10.1002/ana.20341 – volume: 126 start-page: 2304 year: 2003 ident: 10.1016/j.pediatrneurol.2019.01.016_bib43 article-title: Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis publication-title: Brain doi: 10.1093/brain/awg223 – volume: 31 start-page: 1561 year: 2016 ident: 10.1016/j.pediatrneurol.2019.01.016_bib14 article-title: Juvenile myasthenia gravis in Korea: subgroup analysis according to sex and onset age publication-title: J Child Neurol doi: 10.1177/0883073816666206 – volume: 25 start-page: 621 year: 2012 ident: 10.1016/j.pediatrneurol.2019.01.016_bib50 article-title: Autoimmune mechanisms in myasthenia gravis publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e328357a829 – volume: 49 start-page: 257 year: 1982 ident: 10.1016/j.pediatrneurol.2019.01.016_bib39 article-title: Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles publication-title: Clin Exp Immunol – volume: 7 start-page: 365 year: 2001 ident: 10.1016/j.pediatrneurol.2019.01.016_bib47 article-title: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies publication-title: Nat Med doi: 10.1038/85520 – volume: 270 start-page: 66 year: 2015 ident: 10.1016/j.pediatrneurol.2019.01.016_bib19 article-title: Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases publication-title: Exp Neurol doi: 10.1016/j.expneurol.2015.01.011 – volume: 275 start-page: 12 year: 2014 ident: 10.1016/j.pediatrneurol.2019.01.016_bib40 article-title: Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis publication-title: J Intern Med doi: 10.1111/joim.12163 – volume: 131 start-page: 1940 year: 2008 ident: 10.1016/j.pediatrneurol.2019.01.016_bib17 article-title: IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis publication-title: Brain doi: 10.1093/brain/awn092 – volume: 111 start-page: 1203 year: 2000 ident: 10.1016/j.pediatrneurol.2019.01.016_bib28 article-title: SFEMG in ocular myasthenia gravis diagnosis publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00307-2 – volume: 60 start-page: 1978 year: 2003 ident: 10.1016/j.pediatrneurol.2019.01.016_bib44 article-title: Clinical aspects of MuSK antibody positive seronegative MG publication-title: Neurology doi: 10.1212/01.WNL.0000065882.63904.53 – volume: 39 start-page: 423 year: 2009 ident: 10.1016/j.pediatrneurol.2019.01.016_bib4 article-title: Juvenile myasthenia gravis publication-title: Muscle Nerve doi: 10.1002/mus.21195 – volume: 34 start-page: 919 year: 2013 ident: 10.1016/j.pediatrneurol.2019.01.016_bib16 article-title: The high frequency and clinical feature of seronegative myasthenia gravis in Southern China publication-title: Neurol Sci doi: 10.1007/s10072-012-1159-x |
SSID | ssj0005924 |
Score | 2.3015375 |
Snippet | Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 74 |
SubjectTerms | Acetylcholine receptor cell-based assay Diagnosis ELISA Juvenile myasthenia gravis |
Title | Cell-Based Versus Enzyme-Linked Immunosorbent Assay for the Detection of Acetylcholine Receptor Antibodies in Chinese Juvenile Myasthenia Gravis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0887899418312451 https://dx.doi.org/10.1016/j.pediatrneurol.2019.01.016 https://www.ncbi.nlm.nih.gov/pubmed/31307830 https://www.proquest.com/docview/2258748250 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WFRYv4tvxsbToNU4ePZ1ERBjHXWdXZi-6sLem010NWcZkmGQO48Hf4E-2qpOMLigMCLmkSefR9foqVV3F2OtUWphMChvoFNBB0SnKXKLjAHyt8zC10odiFhdyfinOryZXB2w27IWhtMpe93c63WvrfmTcr-Z4VZbjLyQf6C0IZEo0Un4btRApcfmbH3-keeS-sa0XJrr6iL36neO16tph-NKRFIeIcl_Dk5qf_91K_QuFemt0epfd6WEkn3Zveo8dQHWfHS36QPkD9nMGy2XwAU2U5fRLbNPwk-r79hsE5Hzi4BntC6mbel2g1eFIJL3liF854kH-EVqfoFXx2vGpgXa7JCWJN-aIMmGFbjqfVm1Z1JSCyMuKUxduaICfb1B3op7hi61uqK5CqfmnNRUyeMguT0--zuZB33whMEIkbSAzoyNjE-fiUBYTpzNAaCU1WARNxhLttS1MbmUcghRIW-ektXGRJy4rZJ48YodVXcETxgHHpDYIDawVRehyEcfGGaujyBkTJyP2dlhsZfrK5NQgY6mGFLRrdYNSiiilwggPOWJiN3nVFejYb9q7gapq2IOKWlOhIdlv-vvd9Bvsuv8NXg6spFCgKUqjK6g3jUIFm6UCHfdwxB53PLb7sAQRR5ol4dP_ffwzdpvOumS55-ywXW_gBaKrtjj24nPMbk3PPs8vfgEYGCwH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6CA2kvJX3GTR9b2quwHquVVErBdZPaSexLE8ht2SeouJKx5IP7K_qTO6OHQ6AFQ0GnFbOSdnZmvtHMzhDyIeHGxrEynkwsOCgyAZmLZOjZpta5nxjehGLmCz69YRe38e0BmfRnYTCtstP9rU5vtHU3MupWc7TK89F3lA_wFhhsSjBSeIz6EKtTxQNyOJ5dThd3mR5Z09u2kSckOCLv79K8Vm1HjKZ6JIYigqwp44n9z_9uqP4FRBuDdH5MHnVIko7bl31MDmzxhBzNu1j5U_J7YpdL7wtYKUPxr9imomfFr-1P66H_CYMzPBpSVuVageGhwCe5pQBhKUBC-tXWTY5WQUtHx9rW2yXqSZiYAtC0K_DU6bioc1ViFiLNC4qNuG1l6cUG1CeoGjrfygpLK-SSfltjLYNn5Ob87Hoy9br-C55mLKo9nmoZaBM5F_pcxU6mFtAVl9YAbtIG2S-N0pnhoW85A_Y6x40JVRa5VPEsek4GRVnYE0ItjHGpAR0Yw5TvMhaG2mkjg8BpHUZD8rFfbKG74uTYI2Mp-iy0H-IepwRySvgBXHxI2I541dbo2I_sU89V0R9DBcUpwJbsR_55R35vx-4_wbt-KwmQaQzUyMKWm0qAjk0TBr67PyQv2j22-7AIQEeSRv7L_338W_Jgej2_ElezxeUpeYh32ty5V2RQrzf2NYCtWr3phOkPMuMuuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-Based+Versus+Enzyme-Linked+Immunosorbent+Assay+for+the+Detection+of+Acetylcholine+Receptor+Antibodies+in+Chinese+Juvenile+Myasthenia+Gravis&rft.jtitle=Pediatric+neurology&rft.au=Yan%2C+Chong&rft.au=Li%2C+Wenhui&rft.au=Song%2C+Jie&rft.au=Feng%2C+Xuelin&rft.date=2019-09-01&rft.issn=1873-5150&rft.eissn=1873-5150&rft.volume=98&rft.spage=74&rft_id=info:doi/10.1016%2Fj.pediatrneurol.2019.01.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-8994&client=summon |