Cell-Based Versus Enzyme-Linked Immunosorbent Assay for the Detection of Acetylcholine Receptor Antibodies in Chinese Juvenile Myasthenia Gravis

Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset m...

Full description

Saved in:
Bibliographic Details
Published inPediatric neurology Vol. 98; pp. 74 - 79
Main Authors Yan, Chong, Li, Wenhui, Song, Jie, Feng, Xuelin, Xi, Jianying, Lu, Jiahong, Zhou, Shuizhen, Zhao, Chongbo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated. Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified. Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles. The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass.
AbstractList Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated. Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified. Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles. The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass.
Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.BACKGROUNDPatients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low antibody seropositivity. Antibody detection using a cell-based assay has been reported to increase the diagnostic sensitivity in adult-onset myasthenia gravis. However, this method in patients with juvenile-onset myasthenia gravis has not been investigated.Patients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.METHODSPatients with juvenile-onset myasthenia gravis who had not received prednisone or immunosuppressive therapy were recruited between June 2015 and April 2018 at the Huashan Hospital. Clinical information was collected. Serum anti-acetylcholine receptor antibodies were detected via cell-based assay with HEK293T cells expressing acetylcholine receptor subunits and rapsyn. Additionally, the IgG antibody subclass was identified.Eighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.RESULTSEighty-two patients with juvenile-onset myasthenia gravis were enrolled in the current study. Among them, 48 patients were anti-acetylcholine receptor positive (58.5%) and 34 were seronegative (41.5%), as assessed via enzyme-linked immunosorbent assay. Cell-based assay yielded 63 positive subjects (76.8%) and 19 seronegative subjects (23.2%). All the enzyme-linked immunosorbent assay-positive samples showed robust immunofluorescence in the cell-based assay, whereas 15 of 34 enzyme-linked immunosorbent assay-negative patients (44.1%) were found to have low-affinity acetylcholine receptor antibodies. Among all the cell-based assay-positive patients, 41 were positive for both adult and fetal acetylcholine receptor antibodies (50.0%), 18 were found positive for only adult acetylcholine receptor antibodies (21.9%), and four were found to possess only fetal acetylcholine receptor antibodies (4.9%). Fifteen antibody-positive samples underwent subclassification and were confirmed to be IgG1 subclass predominant (n = 15, including eight adult and fetal acetylcholine receptor antibody positive, five only adult acetylcholine receptor antibody positive, and two only fetal acetylcholine receptor antibody positive). There were no significant differences in clinical features among patients with different antibody profiles.The cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass.CONCLUSIONSThe cell-based assay showed increased sensitivity in acetylcholine receptor antibody detection in Chinese patients with juvenile-onset myasthenia gravis, and most cases of Chinese juvenile-onset myasthenia gravis are still acetylcholine receptor autoantibody mediated. Furthermore, the antibodies detected are predominately of the IgG1 subclass.
Author Song, Jie
Lu, Jiahong
Zhou, Shuizhen
Xi, Jianying
Zhao, Chongbo
Yan, Chong
Li, Wenhui
Feng, Xuelin
Author_xml – sequence: 1
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 2
  givenname: Wenhui
  surname: Li
  fullname: Li, Wenhui
  organization: Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
– sequence: 3
  givenname: Jie
  surname: Song
  fullname: Song, Jie
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 4
  givenname: Xuelin
  surname: Feng
  fullname: Feng, Xuelin
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 5
  givenname: Jianying
  surname: Xi
  fullname: Xi, Jianying
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Jiahong
  surname: Lu
  fullname: Lu, Jiahong
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 7
  givenname: Shuizhen
  surname: Zhou
  fullname: Zhou, Shuizhen
  organization: Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
– sequence: 8
  givenname: Chongbo
  surname: Zhao
  fullname: Zhao, Chongbo
  email: zhao_chongbo@fudan.edu.cn
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31307830$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FSTgiy-zJvMnm8GncVzbyoog6mvIJHfYbGeSNcksjJ_Cj9ws2z7Yp4ULF27O-QXOuUIX1llA6B0lS0oo-7Bb7kEbGb2FybthmRNaLwlNw16gBeWrIqtoRS7QgnC-ynhdl5foKoQdIaSq8_IVuixoQVa8IAv0r4VhyD7JABr_Bh-mgNf27zxCtjH2Ph3vxnGyLjjfgY24CUHOuHcexy3gzxBBReMsdj1uFMR5UFs3GAv4ByjYx6RrbDSd0wYCNha32_QYAH-dDmDNAPjbLENCWSPxjZcHE16jl70cArx53Nfo15f1z_Y223y_uWubTabKsogZ40pSpYu-zwnrql5yoGXBJOi8IkpDB0rqTtWa5QRYCYz3PdM67-qi5x2ri2v0_sTde_dnghDFaIJKYUgLbgoizyu-KnmiJenbR-nUjaDF3ptR-lk8pZgEzUmgvAvBQy-UifIYTPTSDIIScWxO7MR_zYljc4LQNCwxPj5jPH1znnt9ckOK7GDAi6AMWJUMPlUktDNnctpnHJXqNEoO9zCfTXkAPc3Ziw
CitedBy_id crossref_primary_10_1016_j_isci_2024_109123
crossref_primary_10_5664_jcsm_11056
crossref_primary_10_3389_fneur_2022_858998
crossref_primary_10_3389_fneur_2020_00743
crossref_primary_10_15844_pedneurbriefs_34_24
crossref_primary_10_3389_fimmu_2021_666046
crossref_primary_10_1016_j_ejpn_2023_08_002
crossref_primary_10_1016_j_jneuroim_2020_577403
crossref_primary_10_3389_fneur_2020_596981
crossref_primary_10_3389_fimmu_2020_00212
Cites_doi 10.1056/NEJMc1701027
10.1212/WNL.0000000000002790
10.1212/WNL.30.7.732
10.1016/j.jneuroim.2008.06.016
10.1016/j.spen.2017.04.003
10.1007/s11910-013-0421-9
10.1001/jamaneurol.2015.0203
10.1001/jamaneurol.2014.17
10.1007/s12264-012-1256-0
10.1196/annals.1254.007
10.1055/s-0033-1364181
10.3233/CH-151999
10.1016/j.jns.2014.05.037
10.1055/s-0038-1660500
10.1002/mus.25154
10.1001/archneurol.2012.437
10.1016/j.jneuroim.2007.01.010
10.1136/jnnp.2006.100545
10.1016/j.jns.2010.10.023
10.1111/j.1749-6632.1987.tb51301.x
10.1038/srep10193
10.1016/S1474-4422(15)00145-3
10.1212/WNL.42.10.1888
10.1016/j.jaut.2013.12.004
10.1111/ene.12270
10.1007/BF01959485
10.1007/s10072-012-1157-z
10.1542/peds.2013-0814
10.1016/j.jneuroim.2007.07.018
10.1038/315761a0
10.1097/TP.0000000000001816
10.1111/j.1468-1331.2005.01137.x
10.3109/08916930903541208
10.1002/ana.20341
10.1093/brain/awg223
10.1177/0883073816666206
10.1097/WCO.0b013e328357a829
10.1038/85520
10.1016/j.expneurol.2015.01.011
10.1111/joim.12163
10.1093/brain/awn092
10.1016/S1388-2457(00)00307-2
10.1212/01.WNL.0000065882.63904.53
10.1002/mus.21195
10.1007/s10072-012-1159-x
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.pediatrneurol.2019.01.016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5150
EndPage 79
ExternalDocumentID 31307830
10_1016_j_pediatrneurol_2019_01_016
S0887899418312451
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81870988
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2016YFC0901504
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABPPZ
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEF
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M29
M2V
M32
M41
MO0
MOBAO
N4W
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
WOW
WUQ
XPP
Z5R
ZGI
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c443t-68ca1cd3ff206b5fa8e1436aed250cdebecadbc9d620e64e68ff6dd2b93f8b693
IEDL.DBID .~1
ISSN 0887-8994
1873-5150
IngestDate Thu Aug 07 15:01:22 EDT 2025
Wed Feb 19 02:31:20 EST 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 04:00:52 EDT 2025
Fri Feb 23 02:21:55 EST 2024
Tue Aug 26 19:46:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Juvenile myasthenia gravis
Diagnosis
cell-based assay
Acetylcholine receptor
ELISA
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-68ca1cd3ff206b5fa8e1436aed250cdebecadbc9d620e64e68ff6dd2b93f8b693
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 31307830
PQID 2258748250
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2258748250
pubmed_primary_31307830
crossref_citationtrail_10_1016_j_pediatrneurol_2019_01_016
crossref_primary_10_1016_j_pediatrneurol_2019_01_016
elsevier_sciencedirect_doi_10_1016_j_pediatrneurol_2019_01_016
elsevier_clinicalkey_doi_10_1016_j_pediatrneurol_2019_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pediatric neurology
PublicationTitleAlternate Pediatr Neurol
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Evoli, Tonali, Padua (bib43) 2003; 126
George, Noack, Vanek (bib38) 2015; 61
Padua, Stalberg, LoMonaco, Evoli, Batocchi, Tonali (bib28) 2000; 111
Lindner, Schalke, Toyka (bib6) 1997; 244
Snead, Benton, Dwyer (bib8) 1980; 30
Della, Trippe, Lutz, Schara (bib3) 2014; 45
Lee, Kang, Lee (bib14) 2016; 31
Sanders, Wolfe, Benatar (bib12) 2016; 87
Romi, Aarli, Gilhus (bib46) 2005; 12
Maclennan, Vincent, Marx (bib37) 2008; 201-202
Valenzuela, Schaub (bib42) 2018; 102
Rodriguez, Al-Hajjar, Huda (bib26) 2015; 72
Vincent, Newsom-Davis (bib39) 1982; 49
Cetin, Vincent (bib49) 2018; 38
Huijbers, Lipka, Plomp, Niks, van der Maarel, Verschuuren (bib40) 2014; 275
Liew, Powell, Sloan (bib9) 2014; 71
Engel, Arahata (bib41) 1987; 505
Zisimopoulou, Evangelakou, Tzartos (bib48) 2014; 52
Gilhus, Verschuuren (bib2) 2015; 14
Feng, Wang, Liu (bib16) 2013; 34
Leite, Jacob, Viegas (bib17) 2008; 131
Takai, Noda, Mishina (bib33) 1985; 315
Gui, Luo, Lin (bib30) 2015; 262
Rodriguez, Huda, Lopez-Ruiz, Vincent (bib19) 2015; 270
Sanders, El-Salem, Massey, McConville, Vincent (bib44) 2003; 60
Lindstrom (bib34) 2003; 998
Shi, Wang, Ma (bib21) 2012; 28
Huang, Liu, Men (bib10) 2013; 34
Leite, Waters, Vincent (bib18) 2010; 43
Shiraishi, Motomura, Yoshimura (bib45) 2005; 57
Yang, Maxwell, Leite (bib20) 2011; 301
Chiang, Darras, Kang (bib4) 2009; 39
Zhang, Yang, Xu (bib11) 2007; 78
Chang, Leite, Senanayake (bib23) 2014; 343
Hoch, McConville, Helms, Newsom-Davis, Melms, Vincent (bib47) 2001; 7
Gilhus (bib1) 2017; 376
Peragallo (bib27) 2017; 24
Tzartos, Morel, Efthimiadis (bib35) 1988; 74
Raksadawan, Kankirawatana, Balankura, Prateepratana, Sangruchi, Atchaneeyasakul (bib15) 2002; 85
Huda, Woodhall, Vincent, Heckmann (bib25) 2016; 54
Batocchi, Evoli, Palmisani, Lo, Bartoccioni, Tonali (bib7) 1990; 150
Jacob, Viegas, Leite (bib32) 2012; 69
Phillips, Torner, Anderson, Cox (bib5) 1992; 42
Farrugia, Bonifati, Clover, Cossins, Beeson, Vincent (bib31) 2007; 185
Kostelidou, Trakas, Tzartos (bib36) 2007; 190
Devic, Petiot, Simonet (bib22) 2014; 21
Zhao, Wang, Yu, Zhang, Guan, Jiang (bib24) 2015; 5
Wong, Huda, Vincent, Plant (bib13) 2014; 14
Cavalcante, Bernasconi, Mantegazza (bib50) 2012; 25
VanderPluym, Vajsar, Jacob, Mah, Grenier, Kolski (bib29) 2013; 132
Valenzuela (10.1016/j.pediatrneurol.2019.01.016_bib42) 2018; 102
George (10.1016/j.pediatrneurol.2019.01.016_bib38) 2015; 61
Romi (10.1016/j.pediatrneurol.2019.01.016_bib46) 2005; 12
Lindstrom (10.1016/j.pediatrneurol.2019.01.016_bib34) 2003; 998
Snead (10.1016/j.pediatrneurol.2019.01.016_bib8) 1980; 30
Rodriguez (10.1016/j.pediatrneurol.2019.01.016_bib26) 2015; 72
Shi (10.1016/j.pediatrneurol.2019.01.016_bib21) 2012; 28
Farrugia (10.1016/j.pediatrneurol.2019.01.016_bib31) 2007; 185
Huijbers (10.1016/j.pediatrneurol.2019.01.016_bib40) 2014; 275
Lee (10.1016/j.pediatrneurol.2019.01.016_bib14) 2016; 31
Cetin (10.1016/j.pediatrneurol.2019.01.016_bib49) 2018; 38
Batocchi (10.1016/j.pediatrneurol.2019.01.016_bib7) 1990; 150
Zhang (10.1016/j.pediatrneurol.2019.01.016_bib11) 2007; 78
Feng (10.1016/j.pediatrneurol.2019.01.016_bib16) 2013; 34
Gilhus (10.1016/j.pediatrneurol.2019.01.016_bib2) 2015; 14
Huang (10.1016/j.pediatrneurol.2019.01.016_bib10) 2013; 34
Vincent (10.1016/j.pediatrneurol.2019.01.016_bib39) 1982; 49
Sanders (10.1016/j.pediatrneurol.2019.01.016_bib12) 2016; 87
Evoli (10.1016/j.pediatrneurol.2019.01.016_bib43) 2003; 126
Maclennan (10.1016/j.pediatrneurol.2019.01.016_bib37) 2008; 201-202
Takai (10.1016/j.pediatrneurol.2019.01.016_bib33) 1985; 315
Padua (10.1016/j.pediatrneurol.2019.01.016_bib28) 2000; 111
Hoch (10.1016/j.pediatrneurol.2019.01.016_bib47) 2001; 7
Della (10.1016/j.pediatrneurol.2019.01.016_bib3) 2014; 45
VanderPluym (10.1016/j.pediatrneurol.2019.01.016_bib29) 2013; 132
Yang (10.1016/j.pediatrneurol.2019.01.016_bib20) 2011; 301
Tzartos (10.1016/j.pediatrneurol.2019.01.016_bib35) 1988; 74
Kostelidou (10.1016/j.pediatrneurol.2019.01.016_bib36) 2007; 190
Zisimopoulou (10.1016/j.pediatrneurol.2019.01.016_bib48) 2014; 52
Rodriguez (10.1016/j.pediatrneurol.2019.01.016_bib19) 2015; 270
Phillips (10.1016/j.pediatrneurol.2019.01.016_bib5) 1992; 42
Chang (10.1016/j.pediatrneurol.2019.01.016_bib23) 2014; 343
Chiang (10.1016/j.pediatrneurol.2019.01.016_bib4) 2009; 39
Cavalcante (10.1016/j.pediatrneurol.2019.01.016_bib50) 2012; 25
Shiraishi (10.1016/j.pediatrneurol.2019.01.016_bib45) 2005; 57
Jacob (10.1016/j.pediatrneurol.2019.01.016_bib32) 2012; 69
Wong (10.1016/j.pediatrneurol.2019.01.016_bib13) 2014; 14
Raksadawan (10.1016/j.pediatrneurol.2019.01.016_bib15) 2002; 85
Gilhus (10.1016/j.pediatrneurol.2019.01.016_bib1) 2017; 376
Zhao (10.1016/j.pediatrneurol.2019.01.016_bib24) 2015; 5
Huda (10.1016/j.pediatrneurol.2019.01.016_bib25) 2016; 54
Liew (10.1016/j.pediatrneurol.2019.01.016_bib9) 2014; 71
Engel (10.1016/j.pediatrneurol.2019.01.016_bib41) 1987; 505
Gui (10.1016/j.pediatrneurol.2019.01.016_bib30) 2015; 262
Peragallo (10.1016/j.pediatrneurol.2019.01.016_bib27) 2017; 24
Lindner (10.1016/j.pediatrneurol.2019.01.016_bib6) 1997; 244
Leite (10.1016/j.pediatrneurol.2019.01.016_bib18) 2010; 43
Devic (10.1016/j.pediatrneurol.2019.01.016_bib22) 2014; 21
Sanders (10.1016/j.pediatrneurol.2019.01.016_bib44) 2003; 60
Leite (10.1016/j.pediatrneurol.2019.01.016_bib17) 2008; 131
References_xml – volume: 69
  start-page: 994
  year: 2012
  end-page: 1001
  ident: bib32
  article-title: Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis
  publication-title: Arch Neurol
– volume: 49
  start-page: 257
  year: 1982
  end-page: 265
  ident: bib39
  article-title: Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles
  publication-title: Clin Exp Immunol
– volume: 54
  start-page: 1023
  year: 2016
  end-page: 1029
  ident: bib25
  article-title: Characteristics Of acetylcholine-receptor-antibody-negative myasthenia gravis in a South African cohort
  publication-title: Muscle Nerve
– volume: 78
  start-page: 386
  year: 2007
  end-page: 390
  ident: bib11
  article-title: Clinical and serological study of myasthenia gravis in HuBei Province, China
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 61
  start-page: 385
  year: 2015
  end-page: 396
  ident: bib38
  article-title: Expression of nicotinic acetylcholine receptor subunits in HEp-2 cells for immunodetection of autoantibody specificities in sera from Myasthenia gravis patients
  publication-title: Clin Hemorheol Microcirc
– volume: 24
  start-page: 116
  year: 2017
  end-page: 121
  ident: bib27
  article-title: Pediatric myasthenia gravis
  publication-title: Semin Pediatr Neurol
– volume: 275
  start-page: 12
  year: 2014
  end-page: 26
  ident: bib40
  article-title: Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis
  publication-title: J Intern Med
– volume: 28
  start-page: 469
  year: 2012
  end-page: 474
  ident: bib21
  article-title: Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis
  publication-title: Neurosci Bull
– volume: 998
  start-page: 41
  year: 2003
  end-page: 52
  ident: bib34
  article-title: Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology
  publication-title: Ann N Y Acad Sci
– volume: 505
  start-page: 326
  year: 1987
  end-page: 332
  ident: bib41
  article-title: The membrane attack complex of complement at the endplate in myasthenia gravis
  publication-title: Ann N Y Acad Sci
– volume: 52
  start-page: 139
  year: 2014
  end-page: 145
  ident: bib48
  article-title: A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis
  publication-title: J Autoimmun
– volume: 343
  start-page: 82
  year: 2014
  end-page: 87
  ident: bib23
  article-title: Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population
  publication-title: J Neurol Sci
– volume: 57
  start-page: 289
  year: 2005
  end-page: 293
  ident: bib45
  article-title: Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis
  publication-title: Ann Neurol
– volume: 201-202
  start-page: 28
  year: 2008
  end-page: 32
  ident: bib37
  article-title: Preferential expression of AChR epsilon-subunit in thymomas from patients with myasthenia gravis
  publication-title: J Neuroimmunol
– volume: 31
  start-page: 1561
  year: 2016
  end-page: 1568
  ident: bib14
  article-title: Juvenile myasthenia gravis in Korea: subgroup analysis according to sex and onset age
  publication-title: J Child Neurol
– volume: 34
  start-page: 919
  year: 2013
  end-page: 924
  ident: bib16
  article-title: The high frequency and clinical feature of seronegative myasthenia gravis in Southern China
  publication-title: Neurol Sci
– volume: 60
  start-page: 1978
  year: 2003
  end-page: 1980
  ident: bib44
  article-title: Clinical aspects of MuSK antibody positive seronegative MG
  publication-title: Neurology
– volume: 71
  start-page: 575
  year: 2014
  end-page: 580
  ident: bib9
  article-title: Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis
  publication-title: JAMA Neurol
– volume: 102
  start-page: S7
  year: 2018
  end-page: S13
  ident: bib42
  article-title: The biology of IgG subclasses and their clinical relevance to transplantation
  publication-title: Transplantation
– volume: 45
  start-page: 75
  year: 2014
  end-page: 83
  ident: bib3
  article-title: Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment
  publication-title: Neuropediatrics
– volume: 262
  start-page: 823
  year: 2015
  end-page: 830
  ident: bib30
  article-title: Long-term outcome of 424 childhood-onset myasthenia gravis patients
  publication-title: J Neurol
– volume: 150
  start-page: 66
  year: 1990
  end-page: 68
  ident: bib7
  article-title: Early-onset myasthenia gravis: clinical characteristics and response to therapy
  publication-title: Eur J Pediatr
– volume: 270
  start-page: 66
  year: 2015
  end-page: 71
  ident: bib19
  article-title: Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases
  publication-title: Exp Neurol
– volume: 111
  start-page: 1203
  year: 2000
  end-page: 1207
  ident: bib28
  article-title: SFEMG in ocular myasthenia gravis diagnosis
  publication-title: Clin Neurophysiol
– volume: 14
  start-page: 421
  year: 2014
  ident: bib13
  article-title: Ocular myasthenia gravis: controversies and updates
  publication-title: Curr Neurol Neurosci Rep
– volume: 74
  start-page: 80
  year: 1988
  end-page: 86
  ident: bib35
  article-title: Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis
  publication-title: Clin Exp Immunol
– volume: 5
  start-page: 10193
  year: 2015
  ident: bib24
  article-title: Clinical application of clustered-AChR for the detection of SNMG
  publication-title: Sci Rep
– volume: 376
  start-page: e25
  year: 2017
  ident: bib1
  article-title: Myasthenia gravis
  publication-title: N Engl J Med
– volume: 72
  start-page: 642
  year: 2015
  end-page: 649
  ident: bib26
  article-title: Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis
  publication-title: JAMA Neurol
– volume: 190
  start-page: 44
  year: 2007
  end-page: 52
  ident: bib36
  article-title: Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency
  publication-title: J Neuroimmunol
– volume: 301
  start-page: 71
  year: 2011
  end-page: 76
  ident: bib20
  article-title: Non-radioactive serological diagnosis of myasthenia gravis and clinical features of patients from Tianjin, China
  publication-title: J Neurol Sci
– volume: 85
  start-page: S769
  year: 2002
  end-page: S777
  ident: bib15
  article-title: Childhood onset myasthenia gravis
  publication-title: J Med Assoc Thai
– volume: 12
  start-page: 413
  year: 2005
  end-page: 418
  ident: bib46
  article-title: Seronegative myasthenia gravis: disease severity and prognosis
  publication-title: Eur J Neurol
– volume: 315
  start-page: 761
  year: 1985
  end-page: 764
  ident: bib33
  article-title: Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle
  publication-title: Nature
– volume: 21
  start-page: 130
  year: 2014
  end-page: 134
  ident: bib22
  article-title: Antibodies to clustered acetylcholine receptor: expanding the phenotype
  publication-title: Eur J Neurol
– volume: 43
  start-page: 371
  year: 2010
  end-page: 379
  ident: bib18
  article-title: Diagnostic use of autoantibodies in myasthenia gravis
  publication-title: Autoimmunity
– volume: 132
  start-page: e939
  year: 2013
  end-page: e944
  ident: bib29
  article-title: Clinical characteristics of pediatric myasthenia: a surveillance study
  publication-title: Pediatrics
– volume: 87
  start-page: 419
  year: 2016
  end-page: 425
  ident: bib12
  article-title: International consensus guidance for management of myasthenia gravis: executive summary
  publication-title: Neurology
– volume: 126
  start-page: 2304
  year: 2003
  end-page: 2311
  ident: bib43
  article-title: Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis
  publication-title: Brain
– volume: 42
  start-page: 1888
  year: 1992
  end-page: 1893
  ident: bib5
  article-title: The epidemiology of myasthenia gravis in central and western Virginia
  publication-title: Neurology
– volume: 131
  start-page: 1940
  year: 2008
  end-page: 1952
  ident: bib17
  article-title: IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis
  publication-title: Brain
– volume: 38
  start-page: 344
  year: 2018
  end-page: 354
  ident: bib49
  article-title: Pathogenic mechanisms and clinical correlations in autoimmune myasthenic syndromes
  publication-title: Semin Neurol
– volume: 244
  start-page: 515
  year: 1997
  end-page: 520
  ident: bib6
  article-title: Outcome in juvenile-onset myasthenia gravis: a retrospective study with long-term follow-up of 79 patients
  publication-title: J Neurol
– volume: 30
  start-page: 732
  year: 1980
  end-page: 739
  ident: bib8
  article-title: Juvenile myasthenia gravis
  publication-title: Neurology
– volume: 14
  start-page: 1023
  year: 2015
  end-page: 1036
  ident: bib2
  article-title: Myasthenia gravis: subgroup classification and therapeutic strategies
  publication-title: Lancet Neurol
– volume: 39
  start-page: 423
  year: 2009
  end-page: 431
  ident: bib4
  article-title: Juvenile myasthenia gravis
  publication-title: Muscle Nerve
– volume: 34
  start-page: 911
  year: 2013
  end-page: 917
  ident: bib10
  article-title: Clinical features of myasthenia gravis in southern China: a retrospective review of 2,154 cases over 22 years
  publication-title: Neurol Sci
– volume: 7
  start-page: 365
  year: 2001
  end-page: 368
  ident: bib47
  article-title: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies
  publication-title: Nat Med
– volume: 185
  start-page: 136
  year: 2007
  end-page: 144
  ident: bib31
  article-title: Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures
  publication-title: J Neuroimmunol
– volume: 25
  start-page: 621
  year: 2012
  end-page: 629
  ident: bib50
  article-title: Autoimmune mechanisms in myasthenia gravis
  publication-title: Curr Opin Neurol
– volume: 376
  start-page: e25
  year: 2017
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib1
  article-title: Myasthenia gravis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc1701027
– volume: 87
  start-page: 419
  year: 2016
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib12
  article-title: International consensus guidance for management of myasthenia gravis: executive summary
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002790
– volume: 30
  start-page: 732
  year: 1980
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib8
  article-title: Juvenile myasthenia gravis
  publication-title: Neurology
  doi: 10.1212/WNL.30.7.732
– volume: 201-202
  start-page: 28
  year: 2008
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib37
  article-title: Preferential expression of AChR epsilon-subunit in thymomas from patients with myasthenia gravis
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2008.06.016
– volume: 262
  start-page: 823
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib30
  article-title: Long-term outcome of 424 childhood-onset myasthenia gravis patients
  publication-title: J Neurol
– volume: 24
  start-page: 116
  year: 2017
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib27
  article-title: Pediatric myasthenia gravis
  publication-title: Semin Pediatr Neurol
  doi: 10.1016/j.spen.2017.04.003
– volume: 14
  start-page: 421
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib13
  article-title: Ocular myasthenia gravis: controversies and updates
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-013-0421-9
– volume: 72
  start-page: 642
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib26
  article-title: Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2015.0203
– volume: 71
  start-page: 575
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib9
  article-title: Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2014.17
– volume: 28
  start-page: 469
  year: 2012
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib21
  article-title: Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-012-1256-0
– volume: 998
  start-page: 41
  year: 2003
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib34
  article-title: Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1254.007
– volume: 45
  start-page: 75
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib3
  article-title: Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment
  publication-title: Neuropediatrics
  doi: 10.1055/s-0033-1364181
– volume: 61
  start-page: 385
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib38
  article-title: Expression of nicotinic acetylcholine receptor subunits in HEp-2 cells for immunodetection of autoantibody specificities in sera from Myasthenia gravis patients
  publication-title: Clin Hemorheol Microcirc
  doi: 10.3233/CH-151999
– volume: 343
  start-page: 82
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib23
  article-title: Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2014.05.037
– volume: 38
  start-page: 344
  year: 2018
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib49
  article-title: Pathogenic mechanisms and clinical correlations in autoimmune myasthenic syndromes
  publication-title: Semin Neurol
  doi: 10.1055/s-0038-1660500
– volume: 54
  start-page: 1023
  year: 2016
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib25
  article-title: Characteristics Of acetylcholine-receptor-antibody-negative myasthenia gravis in a South African cohort
  publication-title: Muscle Nerve
  doi: 10.1002/mus.25154
– volume: 69
  start-page: 994
  year: 2012
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib32
  article-title: Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2012.437
– volume: 185
  start-page: 136
  year: 2007
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib31
  article-title: Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2007.01.010
– volume: 78
  start-page: 386
  year: 2007
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib11
  article-title: Clinical and serological study of myasthenia gravis in HuBei Province, China
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2006.100545
– volume: 301
  start-page: 71
  year: 2011
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib20
  article-title: Non-radioactive serological diagnosis of myasthenia gravis and clinical features of patients from Tianjin, China
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2010.10.023
– volume: 244
  start-page: 515
  year: 1997
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib6
  article-title: Outcome in juvenile-onset myasthenia gravis: a retrospective study with long-term follow-up of 79 patients
  publication-title: J Neurol
– volume: 505
  start-page: 326
  year: 1987
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib41
  article-title: The membrane attack complex of complement at the endplate in myasthenia gravis
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1987.tb51301.x
– volume: 74
  start-page: 80
  year: 1988
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib35
  article-title: Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis
  publication-title: Clin Exp Immunol
– volume: 85
  start-page: S769
  year: 2002
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib15
  article-title: Childhood onset myasthenia gravis
  publication-title: J Med Assoc Thai
– volume: 5
  start-page: 10193
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib24
  article-title: Clinical application of clustered-AChR for the detection of SNMG
  publication-title: Sci Rep
  doi: 10.1038/srep10193
– volume: 14
  start-page: 1023
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib2
  article-title: Myasthenia gravis: subgroup classification and therapeutic strategies
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)00145-3
– volume: 42
  start-page: 1888
  year: 1992
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib5
  article-title: The epidemiology of myasthenia gravis in central and western Virginia
  publication-title: Neurology
  doi: 10.1212/WNL.42.10.1888
– volume: 52
  start-page: 139
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib48
  article-title: A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2013.12.004
– volume: 21
  start-page: 130
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib22
  article-title: Antibodies to clustered acetylcholine receptor: expanding the phenotype
  publication-title: Eur J Neurol
  doi: 10.1111/ene.12270
– volume: 150
  start-page: 66
  year: 1990
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib7
  article-title: Early-onset myasthenia gravis: clinical characteristics and response to therapy
  publication-title: Eur J Pediatr
  doi: 10.1007/BF01959485
– volume: 34
  start-page: 911
  year: 2013
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib10
  article-title: Clinical features of myasthenia gravis in southern China: a retrospective review of 2,154 cases over 22 years
  publication-title: Neurol Sci
  doi: 10.1007/s10072-012-1157-z
– volume: 132
  start-page: e939
  year: 2013
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib29
  article-title: Clinical characteristics of pediatric myasthenia: a surveillance study
  publication-title: Pediatrics
  doi: 10.1542/peds.2013-0814
– volume: 190
  start-page: 44
  year: 2007
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib36
  article-title: Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2007.07.018
– volume: 315
  start-page: 761
  year: 1985
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib33
  article-title: Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle
  publication-title: Nature
  doi: 10.1038/315761a0
– volume: 102
  start-page: S7
  year: 2018
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib42
  article-title: The biology of IgG subclasses and their clinical relevance to transplantation
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000001816
– volume: 12
  start-page: 413
  year: 2005
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib46
  article-title: Seronegative myasthenia gravis: disease severity and prognosis
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2005.01137.x
– volume: 43
  start-page: 371
  year: 2010
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib18
  article-title: Diagnostic use of autoantibodies in myasthenia gravis
  publication-title: Autoimmunity
  doi: 10.3109/08916930903541208
– volume: 57
  start-page: 289
  year: 2005
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib45
  article-title: Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis
  publication-title: Ann Neurol
  doi: 10.1002/ana.20341
– volume: 126
  start-page: 2304
  year: 2003
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib43
  article-title: Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis
  publication-title: Brain
  doi: 10.1093/brain/awg223
– volume: 31
  start-page: 1561
  year: 2016
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib14
  article-title: Juvenile myasthenia gravis in Korea: subgroup analysis according to sex and onset age
  publication-title: J Child Neurol
  doi: 10.1177/0883073816666206
– volume: 25
  start-page: 621
  year: 2012
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib50
  article-title: Autoimmune mechanisms in myasthenia gravis
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e328357a829
– volume: 49
  start-page: 257
  year: 1982
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib39
  article-title: Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles
  publication-title: Clin Exp Immunol
– volume: 7
  start-page: 365
  year: 2001
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib47
  article-title: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies
  publication-title: Nat Med
  doi: 10.1038/85520
– volume: 270
  start-page: 66
  year: 2015
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib19
  article-title: Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2015.01.011
– volume: 275
  start-page: 12
  year: 2014
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib40
  article-title: Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis
  publication-title: J Intern Med
  doi: 10.1111/joim.12163
– volume: 131
  start-page: 1940
  year: 2008
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib17
  article-title: IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis
  publication-title: Brain
  doi: 10.1093/brain/awn092
– volume: 111
  start-page: 1203
  year: 2000
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib28
  article-title: SFEMG in ocular myasthenia gravis diagnosis
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00307-2
– volume: 60
  start-page: 1978
  year: 2003
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib44
  article-title: Clinical aspects of MuSK antibody positive seronegative MG
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000065882.63904.53
– volume: 39
  start-page: 423
  year: 2009
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib4
  article-title: Juvenile myasthenia gravis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.21195
– volume: 34
  start-page: 919
  year: 2013
  ident: 10.1016/j.pediatrneurol.2019.01.016_bib16
  article-title: The high frequency and clinical feature of seronegative myasthenia gravis in Southern China
  publication-title: Neurol Sci
  doi: 10.1007/s10072-012-1159-x
SSID ssj0005924
Score 2.3015375
Snippet Patients in China with juvenile-onset myasthenia gravis present early, with a high prevalence of purely ocular symptoms, spontaneous remission rates, and low...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Acetylcholine receptor
cell-based assay
Diagnosis
ELISA
Juvenile myasthenia gravis
Title Cell-Based Versus Enzyme-Linked Immunosorbent Assay for the Detection of Acetylcholine Receptor Antibodies in Chinese Juvenile Myasthenia Gravis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0887899418312451
https://dx.doi.org/10.1016/j.pediatrneurol.2019.01.016
https://www.ncbi.nlm.nih.gov/pubmed/31307830
https://www.proquest.com/docview/2258748250
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WFRYv4tvxsbToNU4ePZ1ERBjHXWdXZi-6sLem010NWcZkmGQO48Hf4E-2qpOMLigMCLmkSefR9foqVV3F2OtUWphMChvoFNBB0SnKXKLjAHyt8zC10odiFhdyfinOryZXB2w27IWhtMpe93c63WvrfmTcr-Z4VZbjLyQf6C0IZEo0Un4btRApcfmbH3-keeS-sa0XJrr6iL36neO16tph-NKRFIeIcl_Dk5qf_91K_QuFemt0epfd6WEkn3Zveo8dQHWfHS36QPkD9nMGy2XwAU2U5fRLbNPwk-r79hsE5Hzi4BntC6mbel2g1eFIJL3liF854kH-EVqfoFXx2vGpgXa7JCWJN-aIMmGFbjqfVm1Z1JSCyMuKUxduaICfb1B3op7hi61uqK5CqfmnNRUyeMguT0--zuZB33whMEIkbSAzoyNjE-fiUBYTpzNAaCU1WARNxhLttS1MbmUcghRIW-ektXGRJy4rZJ48YodVXcETxgHHpDYIDawVRehyEcfGGaujyBkTJyP2dlhsZfrK5NQgY6mGFLRrdYNSiiilwggPOWJiN3nVFejYb9q7gapq2IOKWlOhIdlv-vvd9Bvsuv8NXg6spFCgKUqjK6g3jUIFm6UCHfdwxB53PLb7sAQRR5ol4dP_ffwzdpvOumS55-ywXW_gBaKrtjj24nPMbk3PPs8vfgEYGCwH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6CA2kvJX3GTR9b2quwHquVVErBdZPaSexLE8ht2SeouJKx5IP7K_qTO6OHQ6AFQ0GnFbOSdnZmvtHMzhDyIeHGxrEynkwsOCgyAZmLZOjZpta5nxjehGLmCz69YRe38e0BmfRnYTCtstP9rU5vtHU3MupWc7TK89F3lA_wFhhsSjBSeIz6EKtTxQNyOJ5dThd3mR5Z09u2kSckOCLv79K8Vm1HjKZ6JIYigqwp44n9z_9uqP4FRBuDdH5MHnVIko7bl31MDmzxhBzNu1j5U_J7YpdL7wtYKUPxr9imomfFr-1P66H_CYMzPBpSVuVageGhwCe5pQBhKUBC-tXWTY5WQUtHx9rW2yXqSZiYAtC0K_DU6bioc1ViFiLNC4qNuG1l6cUG1CeoGjrfygpLK-SSfltjLYNn5Ob87Hoy9br-C55mLKo9nmoZaBM5F_pcxU6mFtAVl9YAbtIG2S-N0pnhoW85A_Y6x40JVRa5VPEsek4GRVnYE0ItjHGpAR0Yw5TvMhaG2mkjg8BpHUZD8rFfbKG74uTYI2Mp-iy0H-IepwRySvgBXHxI2I541dbo2I_sU89V0R9DBcUpwJbsR_55R35vx-4_wbt-KwmQaQzUyMKWm0qAjk0TBr67PyQv2j22-7AIQEeSRv7L_338W_Jgej2_ElezxeUpeYh32ty5V2RQrzf2NYCtWr3phOkPMuMuuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-Based+Versus+Enzyme-Linked+Immunosorbent+Assay+for+the+Detection+of+Acetylcholine+Receptor+Antibodies+in+Chinese+Juvenile+Myasthenia+Gravis&rft.jtitle=Pediatric+neurology&rft.au=Yan%2C+Chong&rft.au=Li%2C+Wenhui&rft.au=Song%2C+Jie&rft.au=Feng%2C+Xuelin&rft.date=2019-09-01&rft.issn=1873-5150&rft.eissn=1873-5150&rft.volume=98&rft.spage=74&rft_id=info:doi/10.1016%2Fj.pediatrneurol.2019.01.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-8994&client=summon