N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease

Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae–soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject o...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27685 - 27693
Main Authors Xia, Yeqiang, Ma, Zhenchuan, Qiu, Min, Guo, Baodian, Zhang, Qi, Jiang, Haibin, Zhang, Baiyu, Lin, Yachun, Xuan, Mingrun, Sun, Liang, Shu, Haidong, Xiao, Junhua, Ye, Wenwu, Wang, Yan, Wang, Yiming, Dong, Suomeng, Tyler, Brett M., Wang, Yuanchao
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae–soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1’s full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslationalmodification in Phytophthora-host coevolutionary conflict.
AbstractList Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae–soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In -soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for 's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT but not against deletion strains of The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in -host coevolutionary conflict.
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.
The apoplastic space is the initial battlefield in plant–microbe interactions. However, the molecular mechanisms underlying how apoplastic immunity controls pathogen invasion is still largely unknown. Here, we show that soybean secretes an apoplastic aspartic protease, GmAP5, that binds to and degrades PsXEG1 to block its contribution to virulence. Phytophthora sojae , however, employs N-glycosylation as a shield to protect PsXEG1 from degradation by GmAP5. N-glycosylation of PsXEG1 also attenuates the binding by the inhibitor GmGIP1. Our result uncovers an additional layer of defense and counterdefense centered on PsXEG1, highlighting an example in which N - glycosylation of a pathogen virulence factor tips the balance of an arms race in host–pathogen conflicts. Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae –soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1 ’s full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora -host coevolutionary conflict.
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae–soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1’s full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslationalmodification in Phytophthora-host coevolutionary conflict.
Author Xiao, Junhua
Zhang, Qi
Lin, Yachun
Zhang, Baiyu
Tyler, Brett M.
Wang, Yan
Wang, Yiming
Dong, Suomeng
Qiu, Min
Ma, Zhenchuan
Ye, Wenwu
Sun, Liang
Shu, Haidong
Xia, Yeqiang
Guo, Baodian
Wang, Yuanchao
Jiang, Haibin
Xuan, Mingrun
Author_xml – sequence: 1
  givenname: Yeqiang
  surname: Xia
  fullname: Xia, Yeqiang
– sequence: 2
  givenname: Zhenchuan
  surname: Ma
  fullname: Ma, Zhenchuan
– sequence: 3
  givenname: Min
  surname: Qiu
  fullname: Qiu, Min
– sequence: 4
  givenname: Baodian
  surname: Guo
  fullname: Guo, Baodian
– sequence: 5
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 6
  givenname: Haibin
  surname: Jiang
  fullname: Jiang, Haibin
– sequence: 7
  givenname: Baiyu
  surname: Zhang
  fullname: Zhang, Baiyu
– sequence: 8
  givenname: Yachun
  surname: Lin
  fullname: Lin, Yachun
– sequence: 9
  givenname: Mingrun
  surname: Xuan
  fullname: Xuan, Mingrun
– sequence: 10
  givenname: Liang
  surname: Sun
  fullname: Sun, Liang
– sequence: 11
  givenname: Haidong
  surname: Shu
  fullname: Shu, Haidong
– sequence: 12
  givenname: Junhua
  surname: Xiao
  fullname: Xiao, Junhua
– sequence: 13
  givenname: Wenwu
  surname: Ye
  fullname: Ye, Wenwu
– sequence: 14
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 15
  givenname: Yiming
  surname: Wang
  fullname: Wang, Yiming
– sequence: 16
  givenname: Suomeng
  surname: Dong
  fullname: Dong, Suomeng
– sequence: 17
  givenname: Brett M.
  surname: Tyler
  fullname: Tyler, Brett M.
– sequence: 18
  givenname: Yuanchao
  surname: Wang
  fullname: Wang, Yuanchao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33082226$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rFTEUhoNU7G117UoZ6MbNtPmazGQjSKlVKNqFhe5CJnPSySV3Mia5wv33zXjbqgVXWZznfTmHJ0foYAoTIPSW4FOCW3Y2TzqdUkwo4ZKQ9gVaESxJLbjEB2iFMW3rjlN-iI5SWmOMZdPhV-iQMdxRSsUK-W_1nd-ZkHZeZxemKo0O_JCq63GXwzzmMURdpbDWUOk5zF6n7EwF1oLJIVbX6fbiklQ2hk1VuBmMs2U-hpQrnWYdF3qOIYNO8Bq9tNonePPwHqObzxc_zr_UV98vv55_uqoN5yzXQmBG-nYgIIUchOaYih6EYANjve77phzCSAdmkNpgC9xSzgwhQLTm1nJ2jD7ue-dtv4HBwJSj9mqObqPjTgXt1L-TyY3qLvxSrWxkI9pS8OGhIIafW0hZbVwy4L2eIGyToryhsmNcyIKePEPXYRunct5CdbIlgi3U-783elrlUUQBmj1gYkgpglXG5d9GyoLOK4LVIlwtwtUf4SV39iz3WP3_xLt9Yp2KwCecCtmW70HYPRpWuXM
CitedBy_id crossref_primary_10_1002_ps_7131
crossref_primary_10_1111_mpp_13377
crossref_primary_10_3389_fpls_2022_928176
crossref_primary_10_1016_j_molp_2021_07_013
crossref_primary_10_1186_s13567_024_01398_4
crossref_primary_10_1038_s41579_022_00710_3
crossref_primary_10_1093_plphys_kiad638
crossref_primary_10_1111_pce_15005
crossref_primary_10_3390_ijms25052693
crossref_primary_10_1007_s11427_024_2724_5
crossref_primary_10_1038_s41467_024_54470_0
crossref_primary_10_1111_jipb_13337
crossref_primary_10_3390_horticulturae9020250
crossref_primary_10_3389_fpls_2021_646425
crossref_primary_10_3390_biology10020075
crossref_primary_10_1016_j_pbi_2024_102630
crossref_primary_10_1111_nph_19755
crossref_primary_10_1093_femsre_fuab002
crossref_primary_10_1111_nph_19194
crossref_primary_10_1002_rcm_9690
crossref_primary_10_1016_j_fbr_2022_10_002
crossref_primary_10_3390_pathogens11091026
crossref_primary_10_3389_fmicb_2022_1001327
crossref_primary_10_3390_ijms23073762
crossref_primary_10_1093_plcell_koad002
crossref_primary_10_1111_mpp_13155
crossref_primary_10_1186_s42483_023_00167_z
crossref_primary_10_3389_fmicb_2024_1341803
crossref_primary_10_1111_nph_17961
crossref_primary_10_3389_fpls_2022_853106
crossref_primary_10_3389_fpls_2021_700200
crossref_primary_10_1080_07388551_2023_2171850
crossref_primary_10_1111_nph_20337
crossref_primary_10_1111_pbi_13728
crossref_primary_10_1186_s12870_023_04685_y
crossref_primary_10_1111_pce_14893
crossref_primary_10_1016_j_jprot_2022_104725
crossref_primary_10_1111_pce_15386
crossref_primary_10_1111_jipb_13436
crossref_primary_10_1111_nph_17207
crossref_primary_10_1038_s41467_022_29788_2
crossref_primary_10_1007_s11032_023_01398_w
crossref_primary_10_1016_j_pmpp_2024_102220
crossref_primary_10_1042_EBC20220159
crossref_primary_10_1111_tpj_16156
crossref_primary_10_1016_j_ijbiomac_2024_133943
crossref_primary_10_1111_nph_17554
crossref_primary_10_1038_s41579_023_00999_8
crossref_primary_10_3389_fgene_2022_889795
crossref_primary_10_1038_s41586_022_05214_x
crossref_primary_10_1093_plcell_koae142
crossref_primary_10_3390_jof9101040
crossref_primary_10_1016_j_molp_2022_10_008
crossref_primary_10_1111_ppa_13713
crossref_primary_10_1080_17429145_2022_2041743
crossref_primary_10_3390_genes15060819
crossref_primary_10_3390_plants11121611
crossref_primary_10_1128_spectrum_03515_22
crossref_primary_10_7554_eLife_92913
crossref_primary_10_3389_fpls_2024_1491495
Cites_doi 10.1007/978-1-61737-998-7_15
10.1111/tpj.12590
10.1111/ppa.12983
10.1126/science.aav0748
10.1038/nrg2812
10.1104/pp.106.090050
10.1111/j.1462-5822.2004.00438.x
10.1038/nprot.2007.141
10.1105/tpc.15.00390
10.1105/tpc.111.086082
10.1105/tpc.114.123588
10.1038/ncomms12632
10.1126/science.1128796
10.1038/s41467-018-03010-8
10.1094/MPMI-02-18-0048-R
10.1074/jbc.M112.350520
10.1111/j.1364-3703.2006.00373.x
10.1126/science.1246300
10.1105/tpc.107.056093
10.1146/annurev.arplant.59.032607.092835
10.1111/nph.12277
10.1126/science.aai7919
10.1104/pp.104.057257
10.1105/tpc.107.056325
10.1126/science.1171647
10.1146/annurev-micro-020518-120022
10.1038/ncomms11685
10.1111/mpp.12318
10.1104/pp.105.061226
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 3, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 3, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2012149117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 27693
ExternalDocumentID PMC7959567
33082226
10_1073_pnas_2012149117
26970951
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-66031b7d1e969d6a4026be663d33babb5000318ecd9ac0fe4f243c11e1aa4ff43
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:38:10 EDT 2025
Fri Jul 11 02:40:22 EDT 2025
Mon Jun 30 07:33:41 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 03:40:33 EDT 2025
Thu May 29 09:15:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords P. sojae
immunity
apoplast
N-glycosylation
aspartic protease
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-66031b7d1e969d6a4026be663d33babb5000318ecd9ac0fe4f243c11e1aa4ff43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1Present address: No.1 Weigang, Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China.
Edited by Sheng Yang He, Duke University, Durham, NC, and approved September 17, 2020 (received for review June 12, 2020)
Author contributions: Y.X., Z.M., and Yuanchao Wang designed research; Y.X., Z.M., M.Q., B.G., Q.Z., H.J., B.Z., Y.L., M.X., L.S., H.S., J.X., W.Y., S.D., B.M.T., and Yuanchao Wang performed research; Y.X., Z.M., M.Q., B.G., Q.Z., H.J., H.S., W.Y., Yan Wang, Yiming Wang, B.M.T., and Yuanchao Wang analyzed data; and Y.X., Z.M., M.Q., Yan Wang, Yiming Wang, S.D., B.M.T., and Yuanchao Wang wrote the paper.
ORCID 0000-0002-9623-6776
0000-0001-7347-8935
0000-0002-8478-2833
0000-0001-7353-8918
0000-0003-1549-2987
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7959567
PMID 33082226
PQID 2458971639
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959567
proquest_miscellaneous_2452983469
proquest_journals_2458971639
pubmed_primary_33082226
crossref_citationtrail_10_1073_pnas_2012149117
crossref_primary_10_1073_pnas_2012149117
jstor_primary_26970951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_10_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_29_2
  doi: 10.1007/978-1-61737-998-7_15
– ident: e_1_3_4_25_2
  doi: 10.1111/tpj.12590
– ident: e_1_3_4_15_2
  doi: 10.1111/ppa.12983
– ident: e_1_3_4_12_2
  doi: 10.1126/science.aav0748
– ident: e_1_3_4_5_2
  doi: 10.1038/nrg2812
– ident: e_1_3_4_20_2
  doi: 10.1104/pp.106.090050
– ident: e_1_3_4_17_2
  doi: 10.1111/j.1462-5822.2004.00438.x
– ident: e_1_3_4_23_2
  doi: 10.1038/nprot.2007.141
– ident: e_1_3_4_9_2
  doi: 10.1105/tpc.15.00390
– ident: e_1_3_4_26_2
  doi: 10.1105/tpc.111.086082
– ident: e_1_3_4_16_2
  doi: 10.1105/tpc.114.123588
– ident: e_1_3_4_11_2
  doi: 10.1038/ncomms12632
– ident: e_1_3_4_2_2
  doi: 10.1126/science.1128796
– ident: e_1_3_4_7_2
  doi: 10.1038/s41467-018-03010-8
– ident: e_1_3_4_14_2
  doi: 10.1094/MPMI-02-18-0048-R
– ident: e_1_3_4_10_2
  doi: 10.1074/jbc.M112.350520
– ident: e_1_3_4_6_2
  doi: 10.1111/j.1364-3703.2006.00373.x
– ident: e_1_3_4_28_2
  doi: 10.1126/science.1246300
– ident: e_1_3_4_22_2
  doi: 10.1105/tpc.107.056093
– ident: e_1_3_4_18_2
  doi: 10.1146/annurev.arplant.59.032607.092835
– ident: e_1_3_4_3_2
  doi: 10.1111/nph.12277
– ident: e_1_3_4_8_2
  doi: 10.1126/science.aai7919
– ident: e_1_3_4_24_2
  doi: 10.1104/pp.104.057257
– ident: e_1_3_4_27_2
  doi: 10.1105/tpc.107.056325
– ident: e_1_3_4_1_2
  doi: 10.1126/science.1171647
– ident: e_1_3_4_4_2
  doi: 10.1146/annurev-micro-020518-120022
– ident: e_1_3_4_21_2
  doi: 10.1038/ncomms11685
– ident: e_1_3_4_13_2
  doi: 10.1111/mpp.12318
– ident: e_1_3_4_19_2
  doi: 10.1104/pp.105.061226
SSID ssj0009580
Score 2.5613756
Snippet Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In...
The apoplastic space is the initial battlefield in plant–microbe interactions. However, the molecular mechanisms underlying how apoplastic immunity controls...
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In -soybean...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27685
SubjectTerms Apoplast
Aspartic Acid Endopeptidases - genetics
Aspartic Acid Endopeptidases - metabolism
Aspartic endopeptidase
Binding
Biological Sciences
Cellulase - genetics
Cellulase - metabolism
Disease Resistance - genetics
Endoglucanase
Gene Knockdown Techniques
Glycine max - enzymology
Glycine max - genetics
Glycine max - microbiology
Glycosylation
Host-Pathogen Interactions - genetics
Pathogens
Phytophthora - metabolism
Phytophthora - pathogenicity
Phytophthora sojae
Plant Diseases - microbiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Protease
Protein Binding
Protein Processing, Post-Translational
Proteolysis
Soybeans
Virulence
Title N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease
URI https://www.jstor.org/stable/26970951
https://www.ncbi.nlm.nih.gov/pubmed/33082226
https://www.proquest.com/docview/2458971639
https://www.proquest.com/docview/2452983469
https://pubmed.ncbi.nlm.nih.gov/PMC7959567
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGkNBeEAMGhYGMxMNQlJHEjpM8TmhsQqIa0iaVpypOnHXTSMrSPIx_gX-au_hH2qqTgJeoss9O1ft6vrPP3xHyPoCoB5bxyi9jFvgc1lA_w2ruioMvmydSBiVu6H8di9ML_mUST7a2fi9lLXULeVj82niv5H-0Cm2gV7wl-w-adZNCA3wG_cITNAzPv9Lx2PO9y5u7omnvdEqb184wI63FkjbIGLCYgYa9trnOlZfPmzm4ykjQqpM4mlswf5Pjk1DfMQE5rEVfIel102IBmnn_Sq-ncrCHOMaPPXPrXmuzDMZ2W_FouKRiLEcL3_NsPJQ8nugM3e_qJ4DzctgU709KZjBi1g2g_XbV6fx-13LSNfqopHHgNvsWEKTiXqy2ZUrbWnBVfMF1tVBnjPVNToM6zpdtK0RG8UarD2YKSxXXOfKvhxEEfWaaJQzMf_QgYKwvYb7Gvq3Xc9P1gDyMIOaI7NaPY3BOA8sNlbCPa2_bIY_s-BUPRye5bgpf1rNwl9ya8yfksYlH6JEG1y7ZUvVTsmv1Rg8MLfmHZ6QeU5-uoI0atNFltNEebXRAG7VooxptFNFGQc6gjSLaqEUbtWh7Ti4-H59_OvVNtQ6_4JwtfIH1ymVShioTWSlyDtG9VODQlozJXEqsvAELiCrKLC-CSvEq4qwIQxXmOa8qzvbIdt3U6iWhpQqKMuKiwnviMg3SIkizOBBFIspAKTkih_YXnhaGyh4rqtxM-5SKhE1RO9NBOyNy4AbMNYvL_aJ7vcqcXCSyBOOQEdm3OpwaGwDjeJwiCRvLRuSd6wYLjcduea2arpeJspRxATIvtMrd5BYzI5KsgMEJIPv7ak99NetZ4JMszmKRvLp3ztdkZ_jf7ZPtxW2n3oAHvZBve2T_AZwcx74
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N+-+glycosylation+shields+Phytophthora+sojae+apoplastic+effector+PsXEG1+from+a+specific+host+aspartic+protease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Xia%2C+Yeqiang&rft.au=Ma%2C+Zhenchuan&rft.au=Qiu%2C+Min&rft.au=Guo%2C+Baodian&rft.date=2020-11-03&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27685&rft_id=info:doi/10.1073%2Fpnas.2012149117&rft_id=info%3Apmid%2F33082226&rft.externalDocID=33082226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon