The photobiology of the human circadian clock

In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 13; pp. 1 - 8
Main Authors Schoonderwoerd, Robin A., de Rover, Mischa, Janse, Jan A. M., Hirschler, Lydiane, Willemse, Channa R., Scholten, Leonie, Klop, Ilse, van Berloo, Sander, van Osch, Matthias J. P., Swaab, Dick F., Meijer, Johanna H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.03.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2118803119

Cover

Loading…
Abstract In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive.
AbstractList The function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms. In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λ max : 470 nm) but remarkably, also in response to green (λ max : 515 nm) and orange (λ max : 590 nm), but not to violet light (λ max : 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive.
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive.
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Author Scholten, Leonie
Klop, Ilse
Schoonderwoerd, Robin A.
Meijer, Johanna H.
van Berloo, Sander
Hirschler, Lydiane
van Osch, Matthias J. P.
Willemse, Channa R.
Janse, Jan A. M.
de Rover, Mischa
Swaab, Dick F.
Author_xml – sequence: 1
  givenname: Robin A.
  surname: Schoonderwoerd
  fullname: Schoonderwoerd, Robin A.
– sequence: 2
  givenname: Mischa
  surname: de Rover
  fullname: de Rover, Mischa
– sequence: 3
  givenname: Jan A. M.
  surname: Janse
  fullname: Janse, Jan A. M.
– sequence: 4
  givenname: Lydiane
  surname: Hirschler
  fullname: Hirschler, Lydiane
– sequence: 5
  givenname: Channa R.
  surname: Willemse
  fullname: Willemse, Channa R.
– sequence: 6
  givenname: Leonie
  surname: Scholten
  fullname: Scholten, Leonie
– sequence: 7
  givenname: Ilse
  surname: Klop
  fullname: Klop, Ilse
– sequence: 8
  givenname: Sander
  surname: van Berloo
  fullname: van Berloo, Sander
– sequence: 9
  givenname: Matthias J. P.
  surname: van Osch
  fullname: van Osch, Matthias J. P.
– sequence: 10
  givenname: Dick F.
  surname: Swaab
  fullname: Swaab, Dick F.
– sequence: 11
  givenname: Johanna H.
  surname: Meijer
  fullname: Meijer, Johanna H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35312355$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LJDEQxcOirKO7Z0_KgBcvPVZ1vi-CiK6C4MU9h3Qm7WTs6YxJt-B_bzfjuKvgKUXye4-Xevtkp42tJ-QQYYYg6dm6tXlWIioFFFH_IBMEjYVgGnbIBKCUhWIl2yP7OS8BQHMFP8ke5RRLyvmEFA8LP10vYherEJv4-DqN9bQb7hb9yrZTF5Kz8zBOTXRPv8hubZvsf7-fB-Tv9dXD5U1xd__n9vLirnCM0a4QHCuGHCqt5lyLqgYlUQL3jFOqpK1Urb3gVgtqGdSy5mJeS1RSU-0daHpAzje-675a-bnzbZdsY9YprGx6NdEG8_mlDQvzGF-MBgFMy8Hg9N0gxefe586sQna-aWzrY59NKRgqziUd0ZMv6DL2qR2-N1JCyyHYmOj4_0QfUbabHAC-AVyKOSdfGxc624U4BgyNQTBjY2ZszPxrbNCdfdFtrb9XHG0Uy9zF9IGXEjmiYPQNqUKgGw
CitedBy_id crossref_primary_10_1242_jeb_247793
crossref_primary_10_2139_ssrn_4174993
crossref_primary_10_3390_clockssleep5010012
crossref_primary_10_1038_s42003_022_03774_2
crossref_primary_10_3389_fpsyt_2023_1154095
crossref_primary_10_1016_j_nbd_2022_105944
crossref_primary_10_33549_physiolres_935304
crossref_primary_10_7554_eLife_96576
crossref_primary_10_1096_fj_202200477R
crossref_primary_10_1161_CIRCRESAHA_124_323515
crossref_primary_10_1111_jsr_13885
crossref_primary_10_1073_pnas_2212123119
crossref_primary_10_1073_pnas_2215410119
crossref_primary_10_7554_eLife_96576_3
crossref_primary_10_1523_JNEUROSCI_1856_23_2024
crossref_primary_10_1016_j_jpap_2023_100199
crossref_primary_10_3389_fendo_2022_975509
crossref_primary_10_1016_j_neuroimage_2024_120833
crossref_primary_10_3389_fnins_2023_1257004
Cites_doi 10.1016/j.neuroimage.2009.06.060
10.1007/s00429-017-1442-y
10.1111/j.1469-7793.2001.t01-1-00261.x
10.1016/j.neuroimage.2017.04.006
10.1016/S0006-8993(98)01218-9
10.1371/journal.pbio.1002127
10.1002/cne.24181
10.1038/s41583-018-0026-z
10.1210/jc.2003-030570
10.1016/0006-8993(86)90117-4
10.1038/nature01761
10.1016/j.neuron.2010.04.037
10.1081/CBI-100107515
10.1038/nn1395
10.1126/science.1167337
10.1109/TMI.2009.2035616
10.1073/pnas.2024500118
10.1177/074873049000500101
10.1113/jphysiol.2003.040477
10.1038/nrg.2016.150
10.1097/OPX.0000000000001485
10.1016/S0042-6989(00)00021-3
10.1016/0006-8993(89)90648-3
10.1038/nn1675
10.1126/science.1076848
10.1126/science.aaz0898
10.1016/j.neuroimage.2017.07.002
10.1126/science.1076701
10.1016/j.physbeh.2017.05.008
10.1016/j.cub.2004.09.082
10.1177/0748730402239679
10.1016/j.neuroimage.2019.01.064
10.1038/nrn3086
10.1113/jphysiol.1980.sp013097
10.3389/fneur.2018.01022
10.1016/0006-8993(85)91350-2
10.1371/journal.pone.0252350
10.1523/JNEUROSCI.18-21-09078.1998
10.1016/j.neuroimage.2015.02.064
10.1016/j.neuroimage.2004.07.051
10.1523/JNEUROSCI.21-16-06405.2001
10.2147/NSS.S287097
10.1126/science.1069609
10.1038/nn.2617
10.1126/scitranslmed.3000741
10.1016/j.neuron.2007.02.005
10.5935/1984-0063.20190074
10.1111/j.1460-9568.2008.06582.x
10.1109/ICPR.2016.7899978
10.1126/science.aay3152
10.1523/JNEUROSCI.20-02-00600.2000
10.1038/nature03387
10.1136/oemed-2016-103818
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Mar 29, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Mar 29, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2118803119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8
ExternalDocumentID PMC9060497
35312355
10_1073_pnas_2118803119
27151164
Genre Journal Article
GrantInformation_xml – fundername: Velux Stiftung
  grantid: 1131
– fundername: ERC Advanced
  grantid: 834513
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-651b4150b98d596bf0871705e453387ab8f9e65a963a40f7f56df7187939ec093
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:42:05 EDT 2025
Thu Jul 10 23:53:54 EDT 2025
Mon Jun 30 09:52:10 EDT 2025
Thu Apr 03 06:57:39 EDT 2025
Tue Jul 01 01:03:14 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Thu May 29 08:49:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords melanopsin
photoreceptors
fMRI
suprachiasmatic nucleus
cones
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-651b4150b98d596bf0871705e453387ab8f9e65a963a40f7f56df7187939ec093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: R.A.S., L.H., C.R.W., L.S., M.J.P.v.O., and J.H.M. designed research; R.A.S., M.d.R., L.H., C.R.W., L.S., I.K., M.J.P.v.O., and J.H.M. performed research; S.v.B. contributed new reagents/analytic tools; R.A.S., M.d.R., L.H., C.R.W., L.S., I.K., M.J.P.v.O., and D.F.S. analyzed data; J.A.M.J., S.v.B., and J.H.M. developed the LED device; D.F.S. was responsible for the performance and analysis of human histology; and R.A.S., M.d.R., J.A.M.J., and J.H.M. wrote the paper.
Edited by Joseph Takahashi, The University of Texas Southwestern Medical Center, Dallas, TX; received October 15, 2021; accepted February 8, 2022
ORCID 0000-0001-7034-8959
0000-0001-9702-2094
0000-0001-6619-5312
0000-0002-9632-993X
0000-0003-2379-0861
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9060497
PMID 35312355
PQID 2646977189
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9060497
proquest_miscellaneous_2641855737
proquest_journals_2646977189
pubmed_primary_35312355
crossref_citationtrail_10_1073_pnas_2118803119
crossref_primary_10_1073_pnas_2118803119
jstor_primary_27151164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-29
PublicationDateYYYYMMDD 2022-03-29
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
Foster R. G. (e_1_3_4_12_2) 2020; 9
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
36445962 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2215410119
36445960 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2212123119
References_xml – ident: e_1_3_4_52_2
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_3_4_54_2
  doi: 10.1007/s00429-017-1442-y
– ident: e_1_3_4_13_2
  doi: 10.1111/j.1469-7793.2001.t01-1-00261.x
– ident: e_1_3_4_26_2
  doi: 10.1016/j.neuroimage.2017.04.006
– ident: e_1_3_4_42_2
  doi: 10.1016/S0006-8993(98)01218-9
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pbio.1002127
– ident: e_1_3_4_27_2
  doi: 10.1002/cne.24181
– ident: e_1_3_4_1_2
  doi: 10.1038/s41583-018-0026-z
– ident: e_1_3_4_14_2
  doi: 10.1210/jc.2003-030570
– ident: e_1_3_4_40_2
  doi: 10.1016/0006-8993(86)90117-4
– ident: e_1_3_4_5_2
  doi: 10.1038/nature01761
– ident: e_1_3_4_11_2
  doi: 10.1016/j.neuron.2010.04.037
– ident: e_1_3_4_16_2
  doi: 10.1081/CBI-100107515
– ident: e_1_3_4_47_2
  doi: 10.1038/nn1395
– ident: e_1_3_4_24_2
  doi: 10.1126/science.1167337
– ident: e_1_3_4_53_2
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_3_4_9_2
  doi: 10.1073/pnas.2024500118
– ident: e_1_3_4_46_2
  doi: 10.1177/074873049000500101
– ident: e_1_3_4_29_2
  doi: 10.1113/jphysiol.2003.040477
– ident: e_1_3_4_2_2
  doi: 10.1038/nrg.2016.150
– ident: e_1_3_4_18_2
  doi: 10.1097/OPX.0000000000001485
– ident: e_1_3_4_30_2
  doi: 10.1016/S0042-6989(00)00021-3
– ident: e_1_3_4_41_2
  doi: 10.1016/0006-8993(89)90648-3
– ident: e_1_3_4_35_2
  doi: 10.1038/nn1675
– ident: e_1_3_4_34_2
  doi: 10.1126/science.1076848
– ident: e_1_3_4_7_2
  doi: 10.1126/science.aaz0898
– ident: e_1_3_4_36_2
  doi: 10.1016/j.neuroimage.2017.07.002
– volume: 9
  start-page: 45
  year: 2020
  ident: e_1_3_4_12_2
  article-title: Circadian photoentrainment in mice and humans
  publication-title: Biology (Basel)
– ident: e_1_3_4_32_2
  doi: 10.1126/science.1076701
– ident: e_1_3_4_20_2
  doi: 10.1016/j.physbeh.2017.05.008
– ident: e_1_3_4_39_2
  doi: 10.1016/j.cub.2004.09.082
– ident: e_1_3_4_48_2
  doi: 10.1177/0748730402239679
– ident: e_1_3_4_37_2
  doi: 10.1016/j.neuroimage.2019.01.064
– ident: e_1_3_4_44_2
  doi: 10.1038/nrn3086
– ident: e_1_3_4_8_2
  doi: 10.1113/jphysiol.1980.sp013097
– ident: e_1_3_4_25_2
  doi: 10.3389/fneur.2018.01022
– ident: e_1_3_4_28_2
  doi: 10.1016/0006-8993(85)91350-2
– ident: e_1_3_4_38_2
  doi: 10.1371/journal.pone.0252350
– ident: e_1_3_4_43_2
  doi: 10.1523/JNEUROSCI.18-21-09078.1998
– ident: e_1_3_4_49_2
  doi: 10.1016/j.neuroimage.2015.02.064
– ident: e_1_3_4_50_2
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_3_4_15_2
  doi: 10.1523/JNEUROSCI.21-16-06405.2001
– ident: e_1_3_4_22_2
  doi: 10.2147/NSS.S287097
– ident: e_1_3_4_4_2
  doi: 10.1126/science.1069609
– ident: e_1_3_4_10_2
  doi: 10.1038/nn.2617
– ident: e_1_3_4_17_2
  doi: 10.1126/scitranslmed.3000741
– ident: e_1_3_4_33_2
  doi: 10.1016/j.neuron.2007.02.005
– ident: e_1_3_4_19_2
  doi: 10.5935/1984-0063.20190074
– ident: e_1_3_4_23_2
  doi: 10.1111/j.1460-9568.2008.06582.x
– ident: e_1_3_4_51_2
  doi: 10.1109/ICPR.2016.7899978
– ident: e_1_3_4_45_2
  doi: 10.1126/science.aay3152
– ident: e_1_3_4_3_2
  doi: 10.1523/JNEUROSCI.20-02-00600.2000
– ident: e_1_3_4_6_2
  doi: 10.1038/nature03387
– ident: e_1_3_4_21_2
  doi: 10.1136/oemed-2016-103818
– reference: 36445960 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2212123119
– reference: 36445962 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2215410119
SSID ssj0009580
Score 2.4839694
Snippet In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock....
The function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but...
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biological clocks
Biological Sciences
Broadband
Circadian Clocks
Circadian rhythm
Circadian Rhythm - physiology
Circadian rhythms
Functional magnetic resonance imaging
Humans
Light
Light emitting diodes
Light levels
Medical imaging
Narrowband
Neuroimaging
Photobiology
Suprachiasmatic nucleus
Suprachiasmatic Nucleus - physiology
Wavelengths
Title The photobiology of the human circadian clock
URI https://www.jstor.org/stable/27151164
https://www.ncbi.nlm.nih.gov/pubmed/35312355
https://www.proquest.com/docview/2646977189
https://www.proquest.com/docview/2641855737
https://pubmed.ncbi.nlm.nih.gov/PMC9060497
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkNBeEAMGGQMFiYehyiWJHTt5rCagmmjVh03qW5Q4jlYBSdWmQuNf8I85x46TVgXBXqIo8SWW78v5zvF9h9C7SAQheEMch7QIMIUJGKc-E5gWccxzloJXrtY7pjM2uaFXi3AxGPzq7Vra1tlI_DyYV3IfrcI10KvKkv0PzdqHwgU4B_3CETQMx3_W8eq2qi2VkvnhrwvvieVaaOYBATPW174bOrfT1qaVmbWrguMux8R8-JshHs5nXcXihrlTJcX8qKTeGd9kkQ3Ho7ZFLuGS2Rs6XUIAbY3_FUyNetk-VQLDqZWZLNfQ0CQmfrlTHZf9NQkIZz2Cg87y_a3HfWMcwARJdQr1SGr7C-4LZlRXELUG2hhVg0Ry0PKDqVLlist0M4KYFqwSMWI9HKy-N0AgYHcCotmB98i259PLWNEJxfwBehhA5KGKYnxe-D0e50hnNZm-t2xRnHzYe_cxetS-aMfn0dteDwU0-_tye47O9RP02EQo7ljD7QQNZPkUnbQD614YovL3zxAG_Ll9_LlV4QKW3AZ_rsWf2-DvObr59PH6coJN-Q0sKCU1ZqGfgXvnZXGUhzHLCg-Ca-6FkkKIEPE0i4pYsjAFE55Sr-BFyPKCq-r1JJbCi8kpOiqrUr5ErmJc8otAZpRwmqV-RiLhBzKHp4ZSFMRBo3aAEmG46VWJlG9Js0eCk0QNbtINroMurMBK07L8uelpM-K2XcDBy_UZddB5q4LEfNQgxyiDkMiPQO6tvQ0mV_1HA9xX26YNeLkhJ9xBL7TG7MNblTuI7-jSNlB07rt3yuVtQ-tugHd2b8lX6Lj7GM_RUb3eytfgMtfZmwbEvwGdBr4M
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photobiology+of+the+human+circadian+clock&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schoonderwoerd%2C+Robin+A.&rft.au=de+Rover%2C+Mischa&rft.au=Janse%2C+Jan+A.+M.&rft.au=Hirschler%2C+Lydiane&rft.date=2022-03-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=13&rft_id=info:doi/10.1073%2Fpnas.2118803119&rft_id=info%3Apmid%2F35312355&rft.externalDocID=PMC9060497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon