The photobiology of the human circadian clock
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 13; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2118803119 |
Cover
Loading…
Abstract | In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive. |
---|---|
AbstractList | The function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λ
max
: 470 nm) but remarkably, also in response to green (λ
max
: 515 nm) and orange (λ
max
: 590 nm), but not to violet light (λ
max
: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive. In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive. SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms. SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms. |
Author | Scholten, Leonie Klop, Ilse Schoonderwoerd, Robin A. Meijer, Johanna H. van Berloo, Sander Hirschler, Lydiane van Osch, Matthias J. P. Willemse, Channa R. Janse, Jan A. M. de Rover, Mischa Swaab, Dick F. |
Author_xml | – sequence: 1 givenname: Robin A. surname: Schoonderwoerd fullname: Schoonderwoerd, Robin A. – sequence: 2 givenname: Mischa surname: de Rover fullname: de Rover, Mischa – sequence: 3 givenname: Jan A. M. surname: Janse fullname: Janse, Jan A. M. – sequence: 4 givenname: Lydiane surname: Hirschler fullname: Hirschler, Lydiane – sequence: 5 givenname: Channa R. surname: Willemse fullname: Willemse, Channa R. – sequence: 6 givenname: Leonie surname: Scholten fullname: Scholten, Leonie – sequence: 7 givenname: Ilse surname: Klop fullname: Klop, Ilse – sequence: 8 givenname: Sander surname: van Berloo fullname: van Berloo, Sander – sequence: 9 givenname: Matthias J. P. surname: van Osch fullname: van Osch, Matthias J. P. – sequence: 10 givenname: Dick F. surname: Swaab fullname: Swaab, Dick F. – sequence: 11 givenname: Johanna H. surname: Meijer fullname: Meijer, Johanna H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35312355$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LJDEQxcOirKO7Z0_KgBcvPVZ1vi-CiK6C4MU9h3Qm7WTs6YxJt-B_bzfjuKvgKUXye4-Xevtkp42tJ-QQYYYg6dm6tXlWIioFFFH_IBMEjYVgGnbIBKCUhWIl2yP7OS8BQHMFP8ke5RRLyvmEFA8LP10vYherEJv4-DqN9bQb7hb9yrZTF5Kz8zBOTXRPv8hubZvsf7-fB-Tv9dXD5U1xd__n9vLirnCM0a4QHCuGHCqt5lyLqgYlUQL3jFOqpK1Urb3gVgtqGdSy5mJeS1RSU-0daHpAzje-675a-bnzbZdsY9YprGx6NdEG8_mlDQvzGF-MBgFMy8Hg9N0gxefe586sQna-aWzrY59NKRgqziUd0ZMv6DL2qR2-N1JCyyHYmOj4_0QfUbabHAC-AVyKOSdfGxc624U4BgyNQTBjY2ZszPxrbNCdfdFtrb9XHG0Uy9zF9IGXEjmiYPQNqUKgGw |
CitedBy_id | crossref_primary_10_1242_jeb_247793 crossref_primary_10_2139_ssrn_4174993 crossref_primary_10_3390_clockssleep5010012 crossref_primary_10_1038_s42003_022_03774_2 crossref_primary_10_3389_fpsyt_2023_1154095 crossref_primary_10_1016_j_nbd_2022_105944 crossref_primary_10_33549_physiolres_935304 crossref_primary_10_7554_eLife_96576 crossref_primary_10_1096_fj_202200477R crossref_primary_10_1161_CIRCRESAHA_124_323515 crossref_primary_10_1111_jsr_13885 crossref_primary_10_1073_pnas_2212123119 crossref_primary_10_1073_pnas_2215410119 crossref_primary_10_7554_eLife_96576_3 crossref_primary_10_1523_JNEUROSCI_1856_23_2024 crossref_primary_10_1016_j_jpap_2023_100199 crossref_primary_10_3389_fendo_2022_975509 crossref_primary_10_1016_j_neuroimage_2024_120833 crossref_primary_10_3389_fnins_2023_1257004 |
Cites_doi | 10.1016/j.neuroimage.2009.06.060 10.1007/s00429-017-1442-y 10.1111/j.1469-7793.2001.t01-1-00261.x 10.1016/j.neuroimage.2017.04.006 10.1016/S0006-8993(98)01218-9 10.1371/journal.pbio.1002127 10.1002/cne.24181 10.1038/s41583-018-0026-z 10.1210/jc.2003-030570 10.1016/0006-8993(86)90117-4 10.1038/nature01761 10.1016/j.neuron.2010.04.037 10.1081/CBI-100107515 10.1038/nn1395 10.1126/science.1167337 10.1109/TMI.2009.2035616 10.1073/pnas.2024500118 10.1177/074873049000500101 10.1113/jphysiol.2003.040477 10.1038/nrg.2016.150 10.1097/OPX.0000000000001485 10.1016/S0042-6989(00)00021-3 10.1016/0006-8993(89)90648-3 10.1038/nn1675 10.1126/science.1076848 10.1126/science.aaz0898 10.1016/j.neuroimage.2017.07.002 10.1126/science.1076701 10.1016/j.physbeh.2017.05.008 10.1016/j.cub.2004.09.082 10.1177/0748730402239679 10.1016/j.neuroimage.2019.01.064 10.1038/nrn3086 10.1113/jphysiol.1980.sp013097 10.3389/fneur.2018.01022 10.1016/0006-8993(85)91350-2 10.1371/journal.pone.0252350 10.1523/JNEUROSCI.18-21-09078.1998 10.1016/j.neuroimage.2015.02.064 10.1016/j.neuroimage.2004.07.051 10.1523/JNEUROSCI.21-16-06405.2001 10.2147/NSS.S287097 10.1126/science.1069609 10.1038/nn.2617 10.1126/scitranslmed.3000741 10.1016/j.neuron.2007.02.005 10.5935/1984-0063.20190074 10.1111/j.1460-9568.2008.06582.x 10.1109/ICPR.2016.7899978 10.1126/science.aay3152 10.1523/JNEUROSCI.20-02-00600.2000 10.1038/nature03387 10.1136/oemed-2016-103818 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Mar 29, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Mar 29, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2118803119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8 |
ExternalDocumentID | PMC9060497 35312355 10_1073_pnas_2118803119 27151164 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Velux Stiftung grantid: 1131 – fundername: ERC Advanced grantid: 834513 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-651b4150b98d596bf0871705e453387ab8f9e65a963a40f7f56df7187939ec093 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:42:05 EDT 2025 Thu Jul 10 23:53:54 EDT 2025 Mon Jun 30 09:52:10 EDT 2025 Thu Apr 03 06:57:39 EDT 2025 Tue Jul 01 01:03:14 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Thu May 29 08:49:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | melanopsin photoreceptors fMRI suprachiasmatic nucleus cones |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-651b4150b98d596bf0871705e453387ab8f9e65a963a40f7f56df7187939ec093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: R.A.S., L.H., C.R.W., L.S., M.J.P.v.O., and J.H.M. designed research; R.A.S., M.d.R., L.H., C.R.W., L.S., I.K., M.J.P.v.O., and J.H.M. performed research; S.v.B. contributed new reagents/analytic tools; R.A.S., M.d.R., L.H., C.R.W., L.S., I.K., M.J.P.v.O., and D.F.S. analyzed data; J.A.M.J., S.v.B., and J.H.M. developed the LED device; D.F.S. was responsible for the performance and analysis of human histology; and R.A.S., M.d.R., J.A.M.J., and J.H.M. wrote the paper. Edited by Joseph Takahashi, The University of Texas Southwestern Medical Center, Dallas, TX; received October 15, 2021; accepted February 8, 2022 |
ORCID | 0000-0001-7034-8959 0000-0001-9702-2094 0000-0001-6619-5312 0000-0002-9632-993X 0000-0003-2379-0861 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9060497 |
PMID | 35312355 |
PQID | 2646977189 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9060497 proquest_miscellaneous_2641855737 proquest_journals_2646977189 pubmed_primary_35312355 crossref_citationtrail_10_1073_pnas_2118803119 crossref_primary_10_1073_pnas_2118803119 jstor_primary_27151164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-29 |
PublicationDateYYYYMMDD | 2022-03-29 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 Foster R. G. (e_1_3_4_12_2) 2020; 9 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 36445962 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2215410119 36445960 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2212123119 |
References_xml | – ident: e_1_3_4_52_2 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_3_4_54_2 doi: 10.1007/s00429-017-1442-y – ident: e_1_3_4_13_2 doi: 10.1111/j.1469-7793.2001.t01-1-00261.x – ident: e_1_3_4_26_2 doi: 10.1016/j.neuroimage.2017.04.006 – ident: e_1_3_4_42_2 doi: 10.1016/S0006-8993(98)01218-9 – ident: e_1_3_4_31_2 doi: 10.1371/journal.pbio.1002127 – ident: e_1_3_4_27_2 doi: 10.1002/cne.24181 – ident: e_1_3_4_1_2 doi: 10.1038/s41583-018-0026-z – ident: e_1_3_4_14_2 doi: 10.1210/jc.2003-030570 – ident: e_1_3_4_40_2 doi: 10.1016/0006-8993(86)90117-4 – ident: e_1_3_4_5_2 doi: 10.1038/nature01761 – ident: e_1_3_4_11_2 doi: 10.1016/j.neuron.2010.04.037 – ident: e_1_3_4_16_2 doi: 10.1081/CBI-100107515 – ident: e_1_3_4_47_2 doi: 10.1038/nn1395 – ident: e_1_3_4_24_2 doi: 10.1126/science.1167337 – ident: e_1_3_4_53_2 doi: 10.1109/TMI.2009.2035616 – ident: e_1_3_4_9_2 doi: 10.1073/pnas.2024500118 – ident: e_1_3_4_46_2 doi: 10.1177/074873049000500101 – ident: e_1_3_4_29_2 doi: 10.1113/jphysiol.2003.040477 – ident: e_1_3_4_2_2 doi: 10.1038/nrg.2016.150 – ident: e_1_3_4_18_2 doi: 10.1097/OPX.0000000000001485 – ident: e_1_3_4_30_2 doi: 10.1016/S0042-6989(00)00021-3 – ident: e_1_3_4_41_2 doi: 10.1016/0006-8993(89)90648-3 – ident: e_1_3_4_35_2 doi: 10.1038/nn1675 – ident: e_1_3_4_34_2 doi: 10.1126/science.1076848 – ident: e_1_3_4_7_2 doi: 10.1126/science.aaz0898 – ident: e_1_3_4_36_2 doi: 10.1016/j.neuroimage.2017.07.002 – volume: 9 start-page: 45 year: 2020 ident: e_1_3_4_12_2 article-title: Circadian photoentrainment in mice and humans publication-title: Biology (Basel) – ident: e_1_3_4_32_2 doi: 10.1126/science.1076701 – ident: e_1_3_4_20_2 doi: 10.1016/j.physbeh.2017.05.008 – ident: e_1_3_4_39_2 doi: 10.1016/j.cub.2004.09.082 – ident: e_1_3_4_48_2 doi: 10.1177/0748730402239679 – ident: e_1_3_4_37_2 doi: 10.1016/j.neuroimage.2019.01.064 – ident: e_1_3_4_44_2 doi: 10.1038/nrn3086 – ident: e_1_3_4_8_2 doi: 10.1113/jphysiol.1980.sp013097 – ident: e_1_3_4_25_2 doi: 10.3389/fneur.2018.01022 – ident: e_1_3_4_28_2 doi: 10.1016/0006-8993(85)91350-2 – ident: e_1_3_4_38_2 doi: 10.1371/journal.pone.0252350 – ident: e_1_3_4_43_2 doi: 10.1523/JNEUROSCI.18-21-09078.1998 – ident: e_1_3_4_49_2 doi: 10.1016/j.neuroimage.2015.02.064 – ident: e_1_3_4_50_2 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_3_4_15_2 doi: 10.1523/JNEUROSCI.21-16-06405.2001 – ident: e_1_3_4_22_2 doi: 10.2147/NSS.S287097 – ident: e_1_3_4_4_2 doi: 10.1126/science.1069609 – ident: e_1_3_4_10_2 doi: 10.1038/nn.2617 – ident: e_1_3_4_17_2 doi: 10.1126/scitranslmed.3000741 – ident: e_1_3_4_33_2 doi: 10.1016/j.neuron.2007.02.005 – ident: e_1_3_4_19_2 doi: 10.5935/1984-0063.20190074 – ident: e_1_3_4_23_2 doi: 10.1111/j.1460-9568.2008.06582.x – ident: e_1_3_4_51_2 doi: 10.1109/ICPR.2016.7899978 – ident: e_1_3_4_45_2 doi: 10.1126/science.aay3152 – ident: e_1_3_4_3_2 doi: 10.1523/JNEUROSCI.20-02-00600.2000 – ident: e_1_3_4_6_2 doi: 10.1038/nature03387 – ident: e_1_3_4_21_2 doi: 10.1136/oemed-2016-103818 – reference: 36445960 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2212123119 – reference: 36445962 - Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2215410119 |
SSID | ssj0009580 |
Score | 2.4839694 |
Snippet | In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock.... The function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but... SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Biological clocks Biological Sciences Broadband Circadian Clocks Circadian rhythm Circadian Rhythm - physiology Circadian rhythms Functional magnetic resonance imaging Humans Light Light emitting diodes Light levels Medical imaging Narrowband Neuroimaging Photobiology Suprachiasmatic nucleus Suprachiasmatic Nucleus - physiology Wavelengths |
Title | The photobiology of the human circadian clock |
URI | https://www.jstor.org/stable/27151164 https://www.ncbi.nlm.nih.gov/pubmed/35312355 https://www.proquest.com/docview/2646977189 https://www.proquest.com/docview/2641855737 https://pubmed.ncbi.nlm.nih.gov/PMC9060497 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkNBeEAMGGQMFiYehyiWJHTt5rCagmmjVh03qW5Q4jlYBSdWmQuNf8I85x46TVgXBXqIo8SWW78v5zvF9h9C7SAQheEMch7QIMIUJGKc-E5gWccxzloJXrtY7pjM2uaFXi3AxGPzq7Vra1tlI_DyYV3IfrcI10KvKkv0PzdqHwgU4B_3CETQMx3_W8eq2qi2VkvnhrwvvieVaaOYBATPW174bOrfT1qaVmbWrguMux8R8-JshHs5nXcXihrlTJcX8qKTeGd9kkQ3Ho7ZFLuGS2Rs6XUIAbY3_FUyNetk-VQLDqZWZLNfQ0CQmfrlTHZf9NQkIZz2Cg87y_a3HfWMcwARJdQr1SGr7C-4LZlRXELUG2hhVg0Ry0PKDqVLlist0M4KYFqwSMWI9HKy-N0AgYHcCotmB98i259PLWNEJxfwBehhA5KGKYnxe-D0e50hnNZm-t2xRnHzYe_cxetS-aMfn0dteDwU0-_tye47O9RP02EQo7ljD7QQNZPkUnbQD614YovL3zxAG_Ll9_LlV4QKW3AZ_rsWf2-DvObr59PH6coJN-Q0sKCU1ZqGfgXvnZXGUhzHLCg-Ca-6FkkKIEPE0i4pYsjAFE55Sr-BFyPKCq-r1JJbCi8kpOiqrUr5ErmJc8otAZpRwmqV-RiLhBzKHp4ZSFMRBo3aAEmG46VWJlG9Js0eCk0QNbtINroMurMBK07L8uelpM-K2XcDBy_UZddB5q4LEfNQgxyiDkMiPQO6tvQ0mV_1HA9xX26YNeLkhJ9xBL7TG7MNblTuI7-jSNlB07rt3yuVtQ-tugHd2b8lX6Lj7GM_RUb3eytfgMtfZmwbEvwGdBr4M |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photobiology+of+the+human+circadian+clock&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schoonderwoerd%2C+Robin+A.&rft.au=de+Rover%2C+Mischa&rft.au=Janse%2C+Jan+A.+M.&rft.au=Hirschler%2C+Lydiane&rft.date=2022-03-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=13&rft_id=info:doi/10.1073%2Fpnas.2118803119&rft_id=info%3Apmid%2F35312355&rft.externalDocID=PMC9060497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |