Recent Advances in Grey Wolf Optimizer, its Versions and Applications: Review
The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO's appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adapt...
Saved in:
Published in | IEEE access Vol. 12; pp. 22991 - 23028 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO's appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adaptable, flexible, and robust. Its efficacy has been demonstrated across a wide range of optimization problems in diverse domains, including engineering, bioinformatics, biomedical, scheduling and planning, and business. Given the substantial growth and effectiveness of GWO, it is essential to conduct a recent review to provide updated insights. This review delves into the GWO-related research conducted between 2019 and 2022, encompassing over 200 research articles. It explores the growth of GWO in terms of publications, citations, and the domains that leverage its potential. The review thoroughly examines the latest versions of GWO, categorizing them based on their contributions. Additionally, it highlights the primary applications of GWO, with computer science and engineering emerging as the dominant research domains. A critical analysis of the accomplishments and limitations of GWO is presented, offering valuable insights. Finally, the review concludes with a brief summary and outlines potential future developments in GWO theory and applications. Researchers seeking to employ GWO as a problem-solving tool will find this comprehensive review immensely beneficial in advancing their research endeavors. |
---|---|
AbstractList | The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO’s appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adaptable, flexible, and robust. Its efficacy has been demonstrated across a wide range of optimization problems in diverse domains, including engineering, bioinformatics, biomedical, scheduling and planning, and business. Given the substantial growth and effectiveness of GWO, it is essential to conduct a recent review to provide updated insights. This review delves into the GWO-related research conducted between 2019 and 2022, encompassing over 200 research articles. It explores the growth of GWO in terms of publications, citations, and the domains that leverage its potential. The review thoroughly examines the latest versions of GWO, categorizing them based on their contributions. Additionally, it highlights the primary applications of GWO, with computer science and engineering emerging as the dominant research domains. A critical analysis of the accomplishments and limitations of GWO is presented, offering valuable insights. Finally, the review concludes with a brief summary and outlines potential future developments in GWO theory and applications. Researchers seeking to employ GWO as a problem-solving tool will find this comprehensive review immensely beneficial in advancing their research endeavors. |
Author | Awadallah, Mohammed A. Al-Betar, Mohammed Azmi Zitar, Raed Abu Kassaymeh, Sofian Makhadmeh, Sharif Naser Doush, Iyad Abu Mirjalili, Seyedali |
Author_xml | – sequence: 1 givenname: Sharif Naser orcidid: 0000-0002-2894-7998 surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates – sequence: 2 givenname: Mohammed Azmi orcidid: 0000-0003-1980-1791 surname: Al-Betar fullname: Al-Betar, Mohammed Azmi email: m.albetar@ajman.ac.ae organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates – sequence: 3 givenname: Iyad Abu surname: Doush fullname: Doush, Iyad Abu organization: Department of Computing, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait – sequence: 4 givenname: Mohammed A. orcidid: 0000-0002-7815-8946 surname: Awadallah fullname: Awadallah, Mohammed A. organization: Department of Computer Science, Al-Aqsa University, Gaza, Palestine – sequence: 5 givenname: Sofian orcidid: 0000-0003-0586-1961 surname: Kassaymeh fullname: Kassaymeh, Sofian organization: Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates – sequence: 6 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia – sequence: 7 givenname: Raed Abu orcidid: 0000-0003-2693-2132 surname: Zitar fullname: Zitar, Raed Abu organization: Sorbonne Center of Artificial Intelligence, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates |
BackLink | https://hal.science/hal-04181229$$DView record in HAL |
BookMark | eNp9kc1q3DAUhUVJoGmaJ2gXgq4KmamkK-unOzOkSWBKIBPapZDl61aDY7uSMyV9-nriFNIsos0Vh_MdpHvekIOu75CQd5wtOWf2U7lanW02S8EELAGYNMa-IkeCK7uAAtTBk_trcpLzlk3HTFKhj8jXawzYjbSsd74LmGns6HnCe_q9bxt6NYzxNv7BdErjmOk3TDn2Xaa-q2k5DG0MftwLn-k17iL-fksOG99mPHmcx2Tz5exmdbFYX51frsr1IkgJ40JxVJwrIb30UElRmdqDxqow0rLGINSN4BpRMltL0KoprEeGBrRkwcAxuZxT695v3ZDirU_3rvfRPQh9-uF8GmNo0VlRKKECNFWBErX2EISWTWOYqmuo_JT1cc766dv_oi7KtdtrTHLDhbA7Pnk_zN4h9b_uMI9u29-lbvqoE1ZopZgGmFx2doXU55ywcSGOD2sak4-t48zta3NzbW5fm3usbWLhGfvvSS9T72cqIuITQvACTAF_AbcBozA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s41693_024_00135_9 crossref_primary_10_1007_s10462_023_10618_w crossref_primary_10_1109_ACCESS_2024_3350269 crossref_primary_10_3390_en17225689 crossref_primary_10_1007_s00521_024_10131_3 crossref_primary_10_1007_s12652_025_04951_x crossref_primary_10_1007_s00521_024_10782_2 crossref_primary_10_1016_j_asoc_2024_112561 crossref_primary_10_1016_j_enconman_2025_119626 crossref_primary_10_7717_peerj_cs_1735 crossref_primary_10_7717_peerj_cs_2407 crossref_primary_10_1016_j_aej_2024_12_057 crossref_primary_10_1109_ACCESS_2024_3506977 crossref_primary_10_3390_rs16244637 crossref_primary_10_32604_cmes_2025_061028 crossref_primary_10_1007_s00521_025_10982_4 crossref_primary_10_1016_j_asoc_2023_111008 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1007_s13243_024_00142_7 crossref_primary_10_4018_JOEUC_360350 crossref_primary_10_1155_2024_4105224 crossref_primary_10_3390_pr12092032 crossref_primary_10_1080_0305215X_2024_2390130 crossref_primary_10_1109_ACCESS_2024_3405071 crossref_primary_10_46223_HCMCOUJS_acs_en_14_2_61_2024 crossref_primary_10_1080_21642583_2024_2449156 crossref_primary_10_21595_jme_2025_24577 crossref_primary_10_1007_s43926_024_00089_y crossref_primary_10_1002_oca_3101 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1016_j_autcon_2024_105655 crossref_primary_10_1002_dac_5829 crossref_primary_10_1051_e3sconf_202449604004 crossref_primary_10_3390_agriculture14081372 crossref_primary_10_1109_OAJPE_2025_3529944 crossref_primary_10_3390_aerospace12020101 crossref_primary_10_1002_vzj2_20379 crossref_primary_10_1007_s13369_024_09589_z crossref_primary_10_3390_polym16111508 crossref_primary_10_1093_jcde_qwae046 crossref_primary_10_3390_agronomy14061320 crossref_primary_10_1016_j_ins_2025_121943 crossref_primary_10_1038_s41598_025_85751_3 crossref_primary_10_54021_seesv5n2_718 |
Cites_doi | 10.1007/s11042-020-09433-0 10.1007/978-3-642-21515-5_36 10.1109/ACCESS.2020.3014114 10.1023/A:1008202821328 10.1109/ACCESS.2020.3047912 10.1007/978-3-319-26532-2_67 10.1016/j.compstruc.2012.09.003 10.1126/science.220.4598.671 10.1016/j.asoc.2018.11.043 10.1016/j.rser.2020.109856 10.1109/ACCESS.2020.3005182 10.3390/app121910057 10.1155/2022/3603607 10.1007/s12652-020-02153-1 10.3390/en13081923 10.1109/ACCESS.2019.2894524 10.1109/ACCESS.2023.3243164 10.1002/mma.6382 10.1007/s00500-019-03939-y 10.1016/j.heliyon.2020.e03585 10.1016/j.cie.2020.106280 10.1109/ACCESS.2020.3006469 10.1016/j.asoc.2019.105706 10.1016/j.enconman.2019.112243 10.1109/tevc.2008.919004 10.1364/AO.444593 10.1007/s00500-022-07280-9 10.3390/w13010091 10.1016/j.knosys.2022.108511 10.1016/j.apm.2021.03.047 10.1016/j.engappai.2019.08.025 10.1016/j.swevo.2018.10.008 10.1016/j.eswa.2018.12.003 10.1007/s00521-022-07662-y 10.1108/EC-05-2020-0235 10.1007/s12555-019-0154-x 10.1007/s11227-021-03943-w 10.1016/j.conbuildmat.2019.117266 10.1109/ACCESS.2021.3060096 10.1007/s00170-022-09835-4 10.1016/j.jestch.2021.03.011 10.1109/ACCESS.2019.2921793 10.1007/s00521-020-05296-6 10.1016/j.energy.2018.12.213 10.1007/s12652-020-01919-x 10.1016/j.swevo.2018.01.001 10.1016/j.eswa.2020.113702 10.1007/978-3-319-11857-4_10 10.1016/j.asoc.2018.12.037 10.1016/j.asoc.2020.106560 10.1016/j.asoc.2022.109000 10.1109/ACCESS.2021.3070044 10.1155/2019/7189653 10.1364/AO.403408 10.1109/ACCESS.2019.2958964 10.1007/s00521-021-06885-9 10.1109/ACCESS.2019.2919116 10.1016/j.knosys.2020.105709 10.1016/j.chemolab.2020.104041 10.1007/s00366-020-01217-2 10.1109/CEC.1999.782657 10.1016/j.eswa.2021.116450 10.1016/j.cma.2022.114570 10.1007/s10586-022-03675-3 10.1109/ACCESS.2022.3147821 10.1016/j.asoc.2019.105645 10.1016/j.oceaneng.2019.106425 10.1109/ACCESS.2018.2889816 10.3390/s22176420 10.1007/s00366-020-01081-0 10.1007/s12065-020-00446-0 10.1016/j.jocs.2021.101454 10.1016/j.ins.2009.03.004 10.1007/s00521-021-05980-1 10.1007/s00034-021-01872-w 10.1007/s12652-020-02228-z 10.1007/s12293-020-00313-6 10.1007/s10489-018-1384-y 10.1016/j.asoc.2020.106367 10.1109/ACCESS.2020.2984321 10.1109/ACCESS.2020.2982441 10.1109/ACCESS.2020.2999311 10.1109/ACCESS.2020.3018722 10.1109/4235.771163 10.1016/j.yofte.2021.102720 10.1007/s12652-020-02580-0 10.1007/s10846-021-01490-3 10.1016/j.jhydrol.2021.126607 10.1109/ACCESS.2020.3021527 10.1155/2020/6549572 10.1016/j.knosys.2019.105190 10.1109/ACCESS.2021.3051452 10.1145/937503.937505 10.1016/j.asoc.2022.108429 10.1109/ICCSCE.2018.8685003 10.3390/math10132234 10.1016/j.eswa.2020.113917 10.1007/s00521-019-04284-9 10.1007/s11269-020-02737-8 10.1007/s00521-019-04368-6 10.1109/ACCESS.2019.2949582 10.1109/ACCESS.2019.2942352 10.1504/IJBIC.2016.081335 10.1007/s00500-020-04745-7 10.1007/s00366-020-00996-y 10.1109/ACCESS.2019.2917803 10.3390/sym14071442 10.1016/j.eswa.2019.113134 10.1016/j.conbuildmat.2021.123268 10.1080/10298436.2021.2005056 10.1007/s11356-021-12736-w 10.1016/j.bspc.2022.103860 10.1007/s11227-022-04325-6 10.1007/s10915-022-01955-z 10.1080/0305215X.2018.1509963 10.1016/j.jocs.2019.07.006 10.1007/s00521-015-1920-1 10.1016/j.solener.2019.06.002 10.1017/S0263574719000882 10.1109/JEEIT.2019.8717468 10.1155/2022/2721490 10.1007/BF02125421 10.1007/s13369-019-03806-w 10.1007/s00521-022-07080-0 10.1038/s41598-019-43546-3 10.1109/ACCESS.2020.3000040 10.1007/978-981-15-5281-6_34 10.1016/j.eswa.2020.113246 10.1016/j.knosys.2021.107297 10.1016/S0305-0548(97)00031-2 10.1016/j.cie.2021.107809 10.1016/j.eswa.2021.114920 10.1155/2020/4516132 10.1109/JSYST.2019.2931829 10.3390/electronics10040447 10.3390/en13195013 10.1016/j.catena.2018.12.033 10.1016/j.cma.2020.113609 10.1016/j.asoc.2021.108345 10.3390/math8091457 10.1007/s00521-016-2328-2 10.1007/s10462-012-9314-6 10.1007/s13042-017-0765-6 10.1007/978-3-319-07124-4_8 10.1016/j.ins.2021.11.051 10.1109/TAP.2019.2938703 10.1016/j.eswa.2020.113338 10.1016/j.fuel.2022.124670 10.1109/4235.585893 10.1016/j.asoc.2020.106099 10.3390/en14020501 10.1007/s12293-012-0075-1 10.3390/e22111192 10.1109/ACCESS.2021.3117853 10.1007/s10973-020-09895-2 10.3390/s22051826 10.1109/ACCESS.2021.3135805 10.1016/j.future.2019.07.015 10.1201/9780429422614-13 10.1016/j.asoc.2018.11.047 10.1016/j.asoc.2018.10.019 10.1007/s00521-021-06099-z 10.1109/ACCESS.2020.3013706 10.1007/s10586-023-03979-y 10.1007/s10462-022-10137-0 10.1049/iet-gtd.2019.0801 10.1016/j.asoc.2018.11.039 10.1109/ACCESS.2022.3222516 10.1364/AO.391731 10.1016/j.jhydrol.2020.125060 10.1002/int.22744 10.1108/DTA-06-2019-0084 10.1016/j.eswa.2019.112824 10.1007/s10489-021-02795-4 10.3390/en12122274 10.1007/s00170-021-07696-x 10.1007/s12530-019-09291-8 10.1007/BF01096763 10.1109/ACCESS.2021.3134202 10.1016/j.cie.2018.12.061 10.1007/s12652-020-02701-9 10.3390/math10030351 10.1007/s10489-020-02018-2 10.1016/j.advengsoft.2016.01.008 10.1007/s11269-019-02472-9 10.1016/j.asoc.2021.108043 10.1016/j.asoc.2019.02.037 10.1007/s13369-019-04025-z 10.1080/21642583.2019.1708830 10.1016/j.energy.2022.124090 10.1007/s00366-019-00795-0 10.1016/j.eswa.2021.115078 10.1016/j.asoc.2019.105521 10.1109/ACCESS.2020.3001151 10.1007/s12065-020-00441-5 10.1007/s00521-018-3812-7 10.1016/j.knosys.2021.107034 10.1016/j.jocs.2022.101636 10.1016/j.energy.2019.04.096 10.3390/en13010215 10.1016/j.apm.2020.12.016 10.1016/j.neucom.2020.01.107 10.1016/j.knosys.2022.108457 10.1109/ICNN.1995.488968 10.1007/s11063-021-10607-6 10.1016/j.cie.2021.107738 10.1007/s00521-021-06143-y 10.1016/j.knosys.2022.108701 10.1109/ACCESS.2019.2934994 10.1016/j.measurement.2022.112302 10.1111/tgis.12517 10.1007/s11042-019-07876-8 10.1109/ACCESS.2019.2958288 10.1007/s00500-018-3665-0 10.1016/j.asoc.2021.107113 10.1016/j.gexplo.2020.106639 10.1016/j.advengsoft.2013.12.007 10.1007/978-3-319-91341-4 10.1016/j.asoc.2022.108947 10.1016/j.knosys.2018.10.021 10.1016/j.eswa.2022.116971 10.1080/01431161.2018.1541366 10.1109/TGRS.2022.3167888 10.1007/s12652-018-1085-8 10.1016/j.advengsoft.2015.01.010 10.1016/j.petrol.2020.106952 10.1007/s12065-020-00509-2 10.3390/en14185735 10.1016/j.measurement.2020.107901 10.1007/s11431-022-2096-6 10.1016/j.cnsns.2012.05.010 10.1007/s00521-021-06392-x 10.1080/0952813X.2018.1554712 10.1016/j.jestch.2021.01.011 10.1007/s10462-018-09676-2 10.1016/j.asoc.2019.01.025 10.1109/NABIC.2009.5393690 10.1109/ACCESS.2020.3012633 10.1109/TPEL.2019.2920971 10.1287/inte.20.4.74 10.1016/j.istruc.2020.07.058 10.1007/s00170-018-3028-0 10.1016/j.knosys.2020.106711 10.1007/s12652-020-02224-3 10.1109/ACCESS.2020.3021693 10.1016/j.dsp.2020.102711 10.3390/en15113904 10.1109/TASE.2021.3133601 10.1007/s00521-017-3272-5 10.1371/journal.pone.0213237 10.1016/j.knosys.2020.105746 10.1016/j.knosys.2015.07.006 10.1016/j.asoc.2018.10.044 10.1016/j.engstruct.2020.110657 10.3390/en14113029 10.1016/j.swevo.2020.100793 10.1007/s00521-021-05805-1 10.3390/w11010080 10.1007/978-3-319-91337-7_13 10.1109/ACCESS.2019.2955993 10.3390/sym14091871 10.1109/ACCESS.2019.2935300 10.3390/e23081065 10.1016/j.jhydrol.2019.05.045 10.4249/scholarpedia.1482 10.1007/s00521-022-07704-5 10.3390/en15082915 10.1016/j.epsr.2019.04.001 10.1016/j.eswa.2019.113125 10.1016/j.suscom.2022.100770 10.1016/j.fuel.2020.117784 10.1016/j.ins.2014.08.053 10.1177/003754970107600201 10.1016/j.cad.2010.12.015 10.1016/j.engappai.2021.104183 10.1016/j.asoc.2019.106003 10.21533/pen.v9i2.1818 10.1109/TEC.2021.3121650 10.1007/s10772-021-09870-8 10.1007/s00500-020-05494-3 10.1016/j.asoc.2021.108351 10.1109/JSEN.2021.3097004 10.1109/TAP.2020.2981736 10.1007/s00366-019-00837-7 10.1016/j.swevo.2019.04.006 10.1109/ACCESS.2019.2910813 10.1109/ACCESS.2021.3063723 10.1109/CSIEC.2016.7482120 10.1016/j.fuel.2020.118701 10.1016/j.knosys.2022.108320 10.1007/s00500-021-06375-z 10.1016/j.asoc.2020.106602 10.1109/ACCESS.2020.2981186 10.1007/s00170-019-04449-9 10.1016/j.enbuild.2021.111439 10.1007/s00202-022-01533-4 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: Attribution - NonCommercial - NoDerivatives |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC DOA |
DOI | 10.1109/ACCESS.2023.3304889 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2169-3536 |
EndPage | 23028 |
ExternalDocumentID | oai_doaj_org_article_925626c3fb5e4e77a3c274ff806dd3ba oai_HAL_hal_04181229v1 10_1109_ACCESS_2023_3304889 10215385 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c443t-61e611624a4a3b42b8da37eb58490f8e3df217ee409d4376f59ae0e83740c83 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:34 EDT 2025 Fri May 09 12:21:21 EDT 2025 Mon Jun 30 04:30:37 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 02:49:15 EDT 2025 Wed Aug 27 02:17:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Evolutionary Computation Grey wolf Optimizer Optimization Swarm Intelligence |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-61e611624a4a3b42b8da37eb58490f8e3df217ee409d4376f59ae0e83740c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2894-7998 0000-0003-1980-1791 0000-0002-7815-8946 0000-0002-1443-9458 0000-0003-2693-2132 0000-0003-0586-1961 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10215385 |
PQID | 2927660733 |
PQPubID | 4845423 |
PageCount | 38 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3304889 proquest_journals_2927660733 doaj_primary_oai_doaj_org_article_925626c3fb5e4e77a3c274ff806dd3ba ieee_primary_10215385 crossref_primary_10_1109_ACCESS_2023_3304889 hal_primary_oai_HAL_hal_04181229v1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref300 ref32 ref39 ref38 Karaboga (ref48) 2005 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref253 ref250 ref130 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 ref82 ref144 ref265 ref81 ref145 ref266 ref84 ref142 ref263 ref83 ref143 ref264 ref140 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref236 ref63 ref116 ref237 ref66 ref113 ref234 ref65 ref114 ref235 ref60 ref122 ref243 ref123 ref244 ref62 ref120 ref241 ref61 ref121 ref242 ref240 ref168 ref289 ref169 ref290 ref170 ref291 ref177 ref298 ref178 ref299 ref175 ref296 ref176 ref297 ref173 ref294 ref174 ref171 ref292 ref172 ref293 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref269 ref149 ref146 ref267 Kennedy (ref43); 4 ref147 ref268 ref155 ref276 ref156 ref277 ref153 ref274 ref154 ref275 ref151 ref272 ref152 ref273 Baluja (ref19) 1994 ref270 ref150 ref271 ref159 ref157 ref278 ref158 ref279 ref280 Abed-Alguni (ref295) 2018; 4 ref166 ref287 ref167 ref288 ref164 ref285 ref165 ref286 ref162 ref283 ref163 ref284 ref160 ref281 ref161 ref282 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref18 Koza (ref16) 1992; 1 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
References_xml | – ident: ref274 doi: 10.1007/s11042-020-09433-0 – ident: ref29 doi: 10.1007/978-3-642-21515-5_36 – ident: ref175 doi: 10.1109/ACCESS.2020.3014114 – ident: ref17 doi: 10.1023/A:1008202821328 – ident: ref22 doi: 10.1109/ACCESS.2020.3047912 – ident: ref299 doi: 10.1007/978-3-319-26532-2_67 – ident: ref21 doi: 10.1016/j.compstruc.2012.09.003 – ident: ref6 doi: 10.1126/science.220.4598.671 – ident: ref86 doi: 10.1016/j.asoc.2018.11.043 – ident: ref215 doi: 10.1016/j.rser.2020.109856 – ident: ref145 doi: 10.1109/ACCESS.2020.3005182 – ident: ref63 doi: 10.3390/app121910057 – ident: ref79 doi: 10.1155/2022/3603607 – ident: ref112 doi: 10.1007/s12652-020-02153-1 – ident: ref265 doi: 10.3390/en13081923 – ident: ref232 doi: 10.1109/ACCESS.2019.2894524 – ident: ref134 doi: 10.1109/ACCESS.2023.3243164 – ident: ref227 doi: 10.1002/mma.6382 – ident: ref292 doi: 10.1007/s00500-019-03939-y – ident: ref208 doi: 10.1016/j.heliyon.2020.e03585 – ident: ref210 doi: 10.1016/j.cie.2020.106280 – ident: ref146 doi: 10.1109/ACCESS.2020.3006469 – ident: ref249 doi: 10.1016/j.asoc.2019.105706 – ident: ref178 doi: 10.1016/j.enconman.2019.112243 – ident: ref18 doi: 10.1109/tevc.2008.919004 – ident: ref234 doi: 10.1364/AO.444593 – ident: ref60 doi: 10.1007/s00500-022-07280-9 – ident: ref255 doi: 10.3390/w13010091 – ident: ref13 doi: 10.1016/j.knosys.2022.108511 – ident: ref281 doi: 10.1016/j.apm.2021.03.047 – ident: ref40 doi: 10.1016/j.engappai.2019.08.025 – ident: ref82 doi: 10.1016/j.swevo.2018.10.008 – ident: ref205 doi: 10.1016/j.eswa.2018.12.003 – ident: ref5 doi: 10.1007/s00521-022-07662-y – ident: ref20 doi: 10.1108/EC-05-2020-0235 – ident: ref127 doi: 10.1007/s12555-019-0154-x – ident: ref39 doi: 10.1007/s11227-021-03943-w – ident: ref228 doi: 10.1016/j.conbuildmat.2019.117266 – ident: ref173 doi: 10.1109/ACCESS.2021.3060096 – ident: ref219 doi: 10.1007/s00170-022-09835-4 – ident: ref209 doi: 10.1016/j.jestch.2021.03.011 – ident: ref118 doi: 10.1109/ACCESS.2019.2921793 – ident: ref37 doi: 10.1007/s00521-020-05296-6 – ident: ref201 doi: 10.1016/j.energy.2018.12.213 – ident: ref187 doi: 10.1007/s12652-020-01919-x – ident: ref66 doi: 10.1016/j.swevo.2018.01.001 – ident: ref30 doi: 10.1016/j.eswa.2020.113702 – ident: ref49 doi: 10.1007/978-3-319-11857-4_10 – ident: ref152 doi: 10.1016/j.asoc.2018.12.037 – ident: ref179 doi: 10.1016/j.asoc.2020.106560 – ident: ref122 doi: 10.1016/j.asoc.2022.109000 – ident: ref188 doi: 10.1109/ACCESS.2021.3070044 – ident: ref104 doi: 10.1155/2019/7189653 – ident: ref167 doi: 10.1364/AO.403408 – ident: ref279 doi: 10.1109/ACCESS.2019.2958964 – ident: ref94 doi: 10.1007/s00521-021-06885-9 – ident: ref171 doi: 10.1109/ACCESS.2019.2919116 – ident: ref32 doi: 10.1016/j.knosys.2020.105709 – ident: ref225 doi: 10.1016/j.chemolab.2020.104041 – ident: ref194 doi: 10.1007/s00366-020-01217-2 – ident: ref42 doi: 10.1109/CEC.1999.782657 – ident: ref133 doi: 10.1016/j.eswa.2021.116450 – ident: ref62 doi: 10.1016/j.cma.2022.114570 – ident: ref220 doi: 10.1007/s10586-022-03675-3 – ident: ref35 doi: 10.1109/ACCESS.2022.3147821 – ident: ref81 doi: 10.1016/j.asoc.2019.105645 – ident: ref119 doi: 10.1016/j.oceaneng.2019.106425 – ident: ref131 doi: 10.1109/ACCESS.2018.2889816 – ident: ref157 doi: 10.3390/s22176420 – ident: ref196 doi: 10.1007/s00366-020-01081-0 – ident: ref200 doi: 10.1007/s12065-020-00446-0 – ident: ref294 doi: 10.1016/j.jocs.2021.101454 – ident: ref24 doi: 10.1016/j.ins.2009.03.004 – ident: ref270 doi: 10.1007/s00521-021-05980-1 – ident: ref176 doi: 10.1007/s00034-021-01872-w – ident: ref293 doi: 10.1007/s12652-020-02228-z – ident: ref95 doi: 10.1007/s12293-020-00313-6 – ident: ref271 doi: 10.1007/s10489-018-1384-y – ident: ref137 doi: 10.1016/j.asoc.2020.106367 – ident: ref148 doi: 10.1109/ACCESS.2020.2984321 – ident: ref149 doi: 10.1109/ACCESS.2020.2982441 – ident: ref147 doi: 10.1109/ACCESS.2020.2999311 – ident: ref207 doi: 10.1109/ACCESS.2020.3018722 – ident: ref15 doi: 10.1109/4235.771163 – ident: ref286 doi: 10.1016/j.yofte.2021.102720 – ident: ref56 doi: 10.1007/s12652-020-02580-0 – ident: ref139 doi: 10.1007/s10846-021-01490-3 – ident: ref256 doi: 10.1016/j.jhydrol.2021.126607 – ident: ref237 doi: 10.1109/ACCESS.2020.3021527 – ident: ref287 doi: 10.1155/2020/6549572 – ident: ref23 doi: 10.1016/j.knosys.2019.105190 – ident: ref132 doi: 10.1109/ACCESS.2021.3051452 – ident: ref2 doi: 10.1145/937503.937505 – ident: ref78 doi: 10.1016/j.asoc.2022.108429 – ident: ref240 doi: 10.1109/ICCSCE.2018.8685003 – ident: ref264 doi: 10.3390/math10132234 – ident: ref135 doi: 10.1016/j.eswa.2020.113917 – ident: ref166 doi: 10.1007/s00521-019-04284-9 – ident: ref130 doi: 10.1007/s11269-020-02737-8 – ident: ref80 doi: 10.1007/s00521-019-04368-6 – ident: ref107 doi: 10.1109/ACCESS.2019.2949582 – ident: ref283 doi: 10.1109/ACCESS.2019.2942352 – ident: ref52 doi: 10.1504/IJBIC.2016.081335 – ident: ref278 doi: 10.1007/s00500-020-04745-7 – year: 1994 ident: ref19 article-title: Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning – ident: ref180 doi: 10.1007/s00366-020-00996-y – ident: ref276 doi: 10.1109/ACCESS.2019.2917803 – ident: ref102 doi: 10.3390/sym14071442 – ident: ref217 doi: 10.1016/j.eswa.2019.113134 – ident: ref229 doi: 10.1016/j.conbuildmat.2021.123268 – ident: ref267 doi: 10.1080/10298436.2021.2005056 – ident: ref261 doi: 10.1007/s11356-021-12736-w – ident: ref184 doi: 10.1016/j.bspc.2022.103860 – ident: ref182 doi: 10.1007/s11227-022-04325-6 – ident: ref158 doi: 10.1007/s10915-022-01955-z – ident: ref263 doi: 10.1080/0305215X.2018.1509963 – ident: ref143 doi: 10.1016/j.jocs.2019.07.006 – ident: ref55 doi: 10.1007/s00521-015-1920-1 – ident: ref247 doi: 10.1016/j.solener.2019.06.002 – ident: ref126 doi: 10.1017/S0263574719000882 – ident: ref242 doi: 10.1109/JEEIT.2019.8717468 – ident: ref117 doi: 10.1155/2022/2721490 – ident: ref1 doi: 10.1007/BF02125421 – ident: ref236 doi: 10.1007/s13369-019-03806-w – ident: ref181 doi: 10.1007/s00521-022-07080-0 – ident: ref185 doi: 10.1038/s41598-019-43546-3 – ident: ref74 doi: 10.1109/ACCESS.2020.3000040 – ident: ref239 doi: 10.1007/978-981-15-5281-6_34 – ident: ref34 doi: 10.1016/j.eswa.2020.113246 – ident: ref97 doi: 10.1016/j.knosys.2021.107297 – ident: ref9 doi: 10.1016/S0305-0548(97)00031-2 – ident: ref75 doi: 10.1016/j.cie.2021.107809 – ident: ref101 doi: 10.1016/j.eswa.2021.114920 – ident: ref91 doi: 10.1155/2020/4516132 – ident: ref202 doi: 10.1109/JSYST.2019.2931829 – ident: ref243 doi: 10.3390/electronics10040447 – ident: ref251 doi: 10.3390/en13195013 – ident: ref269 doi: 10.1016/j.catena.2018.12.033 – ident: ref38 doi: 10.1016/j.cma.2020.113609 – ident: ref222 doi: 10.1016/j.asoc.2021.108345 – ident: ref124 doi: 10.3390/math8091457 – ident: ref11 doi: 10.1007/s00521-016-2328-2 – ident: ref297 doi: 10.1007/s10462-012-9314-6 – ident: ref72 doi: 10.1007/s13042-017-0765-6 – ident: ref10 doi: 10.1007/978-3-319-07124-4_8 – ident: ref195 doi: 10.1016/j.ins.2021.11.051 – ident: ref284 doi: 10.1109/TAP.2019.2938703 – ident: ref61 doi: 10.1016/j.eswa.2020.113338 – ident: ref128 doi: 10.1016/j.fuel.2022.124670 – ident: ref296 doi: 10.1109/4235.585893 – ident: ref172 doi: 10.1016/j.asoc.2020.106099 – ident: ref282 doi: 10.3390/en14020501 – ident: ref27 doi: 10.1007/s12293-012-0075-1 – ident: ref223 doi: 10.3390/e22111192 – ident: ref288 doi: 10.1109/ACCESS.2021.3117853 – ident: ref121 doi: 10.1007/s10973-020-09895-2 – ident: ref160 doi: 10.3390/s22051826 – ident: ref85 doi: 10.1109/ACCESS.2021.3135805 – ident: ref26 doi: 10.1016/j.future.2019.07.015 – ident: ref46 doi: 10.1201/9780429422614-13 – ident: ref151 doi: 10.1016/j.asoc.2018.11.047 – ident: ref233 doi: 10.1016/j.asoc.2018.10.019 – ident: ref254 doi: 10.1007/s00521-021-06099-z – ident: ref275 doi: 10.1109/ACCESS.2020.3013706 – ident: ref65 doi: 10.1007/s10586-023-03979-y – ident: ref114 doi: 10.1007/s10462-022-10137-0 – ident: ref177 doi: 10.1049/iet-gtd.2019.0801 – ident: ref90 doi: 10.1016/j.asoc.2018.11.039 – ident: ref170 doi: 10.1109/ACCESS.2022.3222516 – ident: ref214 doi: 10.1364/AO.391731 – ident: ref226 doi: 10.1016/j.jhydrol.2020.125060 – ident: ref99 doi: 10.1002/int.22744 – ident: ref109 doi: 10.1108/DTA-06-2019-0084 – ident: ref83 doi: 10.1016/j.eswa.2019.112824 – ident: ref105 doi: 10.1007/s10489-021-02795-4 – ident: ref169 doi: 10.3390/en12122274 – ident: ref154 doi: 10.1007/s00170-021-07696-x – ident: ref186 doi: 10.1007/s12530-019-09291-8 – ident: ref8 doi: 10.1007/BF01096763 – ident: ref144 doi: 10.1109/ACCESS.2021.3134202 – ident: ref168 doi: 10.1016/j.cie.2018.12.061 – ident: ref70 doi: 10.1007/s12652-020-02701-9 – ident: ref116 doi: 10.3390/math10030351 – ident: ref216 doi: 10.1007/s10489-020-02018-2 – ident: ref58 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref230 doi: 10.1007/s11269-019-02472-9 – ident: ref59 doi: 10.1016/j.asoc.2021.108043 – ident: ref100 doi: 10.1016/j.asoc.2019.02.037 – ident: ref76 doi: 10.1007/s13369-019-04025-z – ident: ref53 doi: 10.1080/21642583.2019.1708830 – ident: ref277 doi: 10.1016/j.energy.2022.124090 – ident: ref138 doi: 10.1007/s00366-019-00795-0 – ident: ref123 doi: 10.1016/j.eswa.2021.115078 – ident: ref291 doi: 10.1016/j.asoc.2019.105521 – ident: ref164 doi: 10.1109/ACCESS.2020.3001151 – ident: ref71 doi: 10.1007/s12065-020-00441-5 – ident: ref224 doi: 10.1007/s00521-018-3812-7 – ident: ref156 doi: 10.1016/j.knosys.2021.107034 – ident: ref159 doi: 10.1016/j.jocs.2022.101636 – ident: ref129 doi: 10.1016/j.energy.2019.04.096 – ident: ref268 doi: 10.3390/en13010215 – ident: ref120 doi: 10.1016/j.apm.2020.12.016 – ident: ref272 doi: 10.1016/j.neucom.2020.01.107 – ident: ref47 doi: 10.1016/j.knosys.2022.108457 – volume: 4 start-page: 1942 volume-title: Proc. Int. Conf. Neural Netw. (ICNN) ident: ref43 article-title: Particle swarm optimization doi: 10.1109/ICNN.1995.488968 – ident: ref3 doi: 10.1007/s11063-021-10607-6 – ident: ref110 doi: 10.1016/j.cie.2021.107738 – ident: ref67 doi: 10.1007/s00521-021-06143-y – ident: ref84 doi: 10.1016/j.knosys.2022.108701 – ident: ref106 doi: 10.1109/ACCESS.2019.2934994 – ident: ref258 doi: 10.1016/j.measurement.2022.112302 – ident: ref87 doi: 10.1111/tgis.12517 – ident: ref273 doi: 10.1007/s11042-019-07876-8 – ident: ref141 doi: 10.1109/ACCESS.2019.2958288 – ident: ref285 doi: 10.1007/s00500-018-3665-0 – ident: ref298 doi: 10.1016/j.asoc.2021.107113 – ident: ref231 doi: 10.1016/j.gexplo.2020.106639 – volume: 4 start-page: 21 issue: 3 year: 2018 ident: ref295 article-title: Distributed grey wolf optimizer for numerical optimization problems publication-title: Jordanian J. Comput. Inf. Technol. – ident: ref64 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref41 doi: 10.1007/978-3-319-91341-4 – ident: ref113 doi: 10.1016/j.asoc.2022.108947 – ident: ref203 doi: 10.1016/j.knosys.2018.10.021 – ident: ref93 doi: 10.1016/j.eswa.2022.116971 – ident: ref289 doi: 10.1080/01431161.2018.1541366 – ident: ref235 doi: 10.1109/TGRS.2022.3167888 – ident: ref241 doi: 10.1007/s12652-018-1085-8 – year: 2005 ident: ref48 article-title: An idea based on honey bee swarm for numerical optimization – ident: ref51 doi: 10.1016/j.advengsoft.2015.01.010 – ident: ref212 doi: 10.1016/j.petrol.2020.106952 – ident: ref218 doi: 10.1007/s12065-020-00509-2 – ident: ref246 doi: 10.3390/en14185735 – ident: ref253 doi: 10.1016/j.measurement.2020.107901 – ident: ref191 doi: 10.1007/s11431-022-2096-6 – ident: ref44 doi: 10.1016/j.cnsns.2012.05.010 – ident: ref33 doi: 10.1007/s00521-021-06392-x – ident: ref111 doi: 10.1080/0952813X.2018.1554712 – ident: ref89 doi: 10.1016/j.jestch.2021.01.011 – ident: ref4 doi: 10.1007/s10462-018-09676-2 – ident: ref103 doi: 10.1016/j.asoc.2019.01.025 – ident: ref45 doi: 10.1109/NABIC.2009.5393690 – ident: ref163 doi: 10.1109/ACCESS.2020.3012633 – ident: ref244 doi: 10.1109/TPEL.2019.2920971 – ident: ref7 doi: 10.1287/inte.20.4.74 – ident: ref25 doi: 10.1016/j.istruc.2020.07.058 – ident: ref190 doi: 10.1007/s00170-018-3028-0 – ident: ref54 doi: 10.1016/j.knosys.2020.106711 – ident: ref98 doi: 10.1007/s12652-020-02224-3 – ident: ref174 doi: 10.1109/ACCESS.2020.3021693 – ident: ref204 doi: 10.1016/j.dsp.2020.102711 – ident: ref140 doi: 10.3390/en15113904 – ident: ref162 doi: 10.1109/TASE.2021.3133601 – ident: ref69 doi: 10.1007/s00521-017-3272-5 – volume: 1 volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection year: 1992 ident: ref16 – ident: ref88 doi: 10.1371/journal.pone.0213237 – ident: ref73 doi: 10.1016/j.knosys.2020.105746 – ident: ref57 doi: 10.1016/j.knosys.2015.07.006 – ident: ref96 doi: 10.1016/j.asoc.2018.10.044 – ident: ref266 doi: 10.1016/j.engstruct.2020.110657 – ident: ref153 doi: 10.3390/en14113029 – ident: ref161 doi: 10.1016/j.swevo.2020.100793 – ident: ref300 doi: 10.1007/s00521-021-05805-1 – ident: ref142 doi: 10.3390/w11010080 – ident: ref197 doi: 10.1007/978-3-319-91337-7_13 – ident: ref250 doi: 10.1109/ACCESS.2019.2955993 – ident: ref115 doi: 10.3390/sym14091871 – ident: ref262 doi: 10.1109/ACCESS.2019.2935300 – ident: ref165 doi: 10.3390/e23081065 – ident: ref68 doi: 10.1016/j.jhydrol.2019.05.045 – ident: ref14 doi: 10.4249/scholarpedia.1482 – ident: ref198 doi: 10.1007/s00521-022-07704-5 – ident: ref221 doi: 10.3390/en15082915 – ident: ref280 doi: 10.1016/j.epsr.2019.04.001 – ident: ref183 doi: 10.1016/j.eswa.2019.113125 – ident: ref192 doi: 10.1016/j.suscom.2022.100770 – ident: ref259 doi: 10.1016/j.fuel.2020.117784 – ident: ref12 doi: 10.1016/j.ins.2014.08.053 – ident: ref28 doi: 10.1177/003754970107600201 – ident: ref31 doi: 10.1016/j.cad.2010.12.015 – ident: ref136 doi: 10.1016/j.engappai.2021.104183 – ident: ref211 doi: 10.1016/j.asoc.2019.106003 – ident: ref189 doi: 10.21533/pen.v9i2.1818 – ident: ref193 doi: 10.1109/TEC.2021.3121650 – ident: ref238 doi: 10.1007/s10772-021-09870-8 – ident: ref245 doi: 10.1007/s00500-020-05494-3 – ident: ref248 doi: 10.1016/j.asoc.2021.108351 – ident: ref252 doi: 10.1109/JSEN.2021.3097004 – ident: ref213 doi: 10.1109/TAP.2020.2981736 – ident: ref150 doi: 10.1007/s00366-019-00837-7 – ident: ref199 doi: 10.1016/j.swevo.2019.04.006 – ident: ref108 doi: 10.1109/ACCESS.2019.2910813 – ident: ref206 doi: 10.1109/ACCESS.2021.3063723 – ident: ref36 doi: 10.1109/CSIEC.2016.7482120 – ident: ref260 doi: 10.1016/j.fuel.2020.118701 – ident: ref50 doi: 10.1016/j.knosys.2022.108320 – ident: ref290 doi: 10.1007/s00500-021-06375-z – ident: ref125 doi: 10.1016/j.asoc.2020.106602 – ident: ref77 doi: 10.1109/ACCESS.2020.2981186 – ident: ref155 doi: 10.1007/s00170-019-04449-9 – ident: ref92 doi: 10.1016/j.enbuild.2021.111439 – ident: ref257 doi: 10.1007/s00202-022-01533-4 |
SSID | ssj0000816957 |
Score | 2.525148 |
Snippet | The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf... |
SourceID | doaj hal proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22991 |
SubjectTerms | Artificial intelligence Bioinformatics Biomedical engineering Classification algorithms Computer Science COVID-19 Evolutionary computation Grey Wolf Optimizer Mathematical models Optimization Particle swarm optimization Search problems Swarm intelligence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6urBPFotU2TtPFWF2URVw8qegvNCxe0K7tV0F_vpO0uFUEvXkNakpnJzHyT8A1ChxCBtI4pC1VBdUiZgjNnRBpSw2LNnC81-Drk8JoP7unlI3vstPryb8IaeuBGcCcCYjLhOnGKWWrTtEg0ACnnsogbk6g6NYKY1wFTtQ_OYi5Y2tIMxZE4yft92NGx7xZ-7DF85hu7d0JRzdgPAebJv4esG6388M51yLlYRSttrojzZo1raMGW62i5wyC4gYaQ9kHYwHlzlT_FoxID6v_AD-Nnh2_AH7yMPu3kCI-qKW5rY1NclAbnnZvrU9xcEWyi24vzu_4gbDskhJrSpALcZ3kcc0ILWiSKEpWZIkmtgqxCRC6ziXEAOawFEGcouBLHRGEjC6CURjpLttBiOS7tNsLcaKOYcqBQQSMjMmELGFMc0LNjKQkQmYlK6pY83PeweJY1iIiEbOQrvXxlK98AHc0_em24M36ffuZ1MJ_qia_rATAH2ZqD_MscAnQAGvz2j0F-Jf1YRH02Q8R7HKBNr-DOooh3_CxAvZnGZXuUp5IIknLue1vu_McCd9ESbJo2VZweWqwmb3YP8ppK7dcm_AX24vAB priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Advances in Grey Wolf Optimizer, its Versions and Applications: Review |
URI | https://ieeexplore.ieee.org/document/10215385 https://www.proquest.com/docview/2927660733 https://hal.science/hal-04181229 https://doaj.org/article/925626c3fb5e4e77a3c274ff806dd3ba |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDAs4hAqSzEsUnzsJ2YW1hRVoiWAyB6s_xUV5Qs6mY59NcztrOrBQTiFllxZOcbj-cbj2cAXuIOZExFWa4VNTllGtecFW1OLasM88HVEPyQZ-d8_pm-u2AX02X1eBfGOReDz1wRHuNZvl2adXCVnYQy1LhA2R7sIXNLl7W2DpVQQUKwdsosVJXipJ_NcBJFKBBeBNrehVruO7tPTNKPe8plCIGMtVX-UMhxlzm9B-eb8aXgkq_FetSFufktdeN_T-A-3J3sTdInAXkAt9zwEO7sZCF8BGdoOmI30qdwgBVZDOQtIky-LK88-YA65dvixl0fk8W4IpN_bUXUYEm_c_r9iqRjhgP4ePrm02yeT1UWckNpMyJ3dLyqeE0VVY2mte6salqn0TIRpe9cYz3SFueQCFqK6sgzoVzpkNjS0nTNY9gfloN7AoRbYzXTHoVC0NKKTjiFbZojA_esrTOoN_9emikBeaiDcSUjESmFTIDJAJicAMvgeNvpe8q_8e_XXwdQt6-G5NmxAWGQ01qUAs28mpvGa-aoa1vVGOTm3nclt7bRKoMXKBK_fGPev5ehraTBIqrFjyqDg4DvzqAStBkcbkRITupgJWtRt5yH-phP_9LtGdzGedDk3DmE_fF67Z6juTPqo-gmOIrC_hMNvvpt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPIsItGAhjk2ah-3E3NJVywK7y4EierPil1jRZlE3y6G_nnHiXS2gIm6RFUd2vrHn4fF8AG9QA2mdURarhuqYMoVrzogypoZlmjkfavBxyOmMj7_QD-fsPFxW7-_CWGv75DOb-Mf-LN8s9MqHyo48DTUuUHYb7qDiZ9lwXWsTUvEcEoKVobZQloqjejTCaSSeIjzxjnvl2dy39E9fph-1yjefBNmzq_y1Jfd65vQBzNYjHNJLvierTiX6-o_ijf89hYdwP1icpB5E5BHcsu1j2N2qQ_gEpmg8YjdSDwkBSzJvyTvEmHxdXDjyCXeVy_m1vTok825JQoRtSZrWkHrr_PstGQ4a9uDz6cnZaBwHnoVYU1p06D1anmU8pw1tCkVzVZmmKK1C20SkrrKFcei4WIuuoKG4ITkmGptadG1pqqviKey0i9Y-A8KNNooph2IhaGpEJWyDbYqjD-5YmUeQr_-91KEEuWfCuJC9K5IKOQAmPWAyABbB4abTj6ECx79fP_agbl715bP7BoRBhtUoBRp6OdeFU8xSW5ZNodE7d65KuTGFaiJ4jSLx2zfG9UT6tpR6mygXP7MI9jy-W4MaoI1gfy1CMmwIS5mLvOTcM2Q-v6HbK7g7PptO5OT97OMLuIdzokOoZx92uquVPUDjp1Mve5H_BVmr_ME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Grey+Wolf+Optimizer%2C+its+Versions+and+Applications%3A+Review&rft.jtitle=IEEE+access&rft.au=Makhadmeh%2C+Sharif+Naser&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Doush%2C+Iyad+Abu&rft.au=Awadallah%2C+Mohammed+A.&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=22991&rft.epage=23028&rft_id=info:doi/10.1109%2FACCESS.2023.3304889&rft.externalDocID=10215385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |