Recent Advances in Grey Wolf Optimizer, its Versions and Applications: Review

The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO's appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adapt...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 22991 - 23028
Main Authors Makhadmeh, Sharif Naser, Al-Betar, Mohammed Azmi, Doush, Iyad Abu, Awadallah, Mohammed A., Kassaymeh, Sofian, Mirjalili, Seyedali, Zitar, Raed Abu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO's appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adaptable, flexible, and robust. Its efficacy has been demonstrated across a wide range of optimization problems in diverse domains, including engineering, bioinformatics, biomedical, scheduling and planning, and business. Given the substantial growth and effectiveness of GWO, it is essential to conduct a recent review to provide updated insights. This review delves into the GWO-related research conducted between 2019 and 2022, encompassing over 200 research articles. It explores the growth of GWO in terms of publications, citations, and the domains that leverage its potential. The review thoroughly examines the latest versions of GWO, categorizing them based on their contributions. Additionally, it highlights the primary applications of GWO, with computer science and engineering emerging as the dominant research domains. A critical analysis of the accomplishments and limitations of GWO is presented, offering valuable insights. Finally, the review concludes with a brief summary and outlines potential future developments in GWO theory and applications. Researchers seeking to employ GWO as a problem-solving tool will find this comprehensive review immensely beneficial in advancing their research endeavors.
AbstractList The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf packs. GWO’s appeal lies in its remarkable characteristics: it is parameter-free, derivative-free, conceptually simple, user-friendly, adaptable, flexible, and robust. Its efficacy has been demonstrated across a wide range of optimization problems in diverse domains, including engineering, bioinformatics, biomedical, scheduling and planning, and business. Given the substantial growth and effectiveness of GWO, it is essential to conduct a recent review to provide updated insights. This review delves into the GWO-related research conducted between 2019 and 2022, encompassing over 200 research articles. It explores the growth of GWO in terms of publications, citations, and the domains that leverage its potential. The review thoroughly examines the latest versions of GWO, categorizing them based on their contributions. Additionally, it highlights the primary applications of GWO, with computer science and engineering emerging as the dominant research domains. A critical analysis of the accomplishments and limitations of GWO is presented, offering valuable insights. Finally, the review concludes with a brief summary and outlines potential future developments in GWO theory and applications. Researchers seeking to employ GWO as a problem-solving tool will find this comprehensive review immensely beneficial in advancing their research endeavors.
Author Awadallah, Mohammed A.
Al-Betar, Mohammed Azmi
Zitar, Raed Abu
Kassaymeh, Sofian
Makhadmeh, Sharif Naser
Doush, Iyad Abu
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Sharif Naser
  orcidid: 0000-0002-2894-7998
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
– sequence: 2
  givenname: Mohammed Azmi
  orcidid: 0000-0003-1980-1791
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  email: m.albetar@ajman.ac.ae
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
– sequence: 3
  givenname: Iyad Abu
  surname: Doush
  fullname: Doush, Iyad Abu
  organization: Department of Computing, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
– sequence: 4
  givenname: Mohammed A.
  orcidid: 0000-0002-7815-8946
  surname: Awadallah
  fullname: Awadallah, Mohammed A.
  organization: Department of Computer Science, Al-Aqsa University, Gaza, Palestine
– sequence: 5
  givenname: Sofian
  orcidid: 0000-0003-0586-1961
  surname: Kassaymeh
  fullname: Kassaymeh, Sofian
  organization: Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
– sequence: 6
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia
– sequence: 7
  givenname: Raed Abu
  orcidid: 0000-0003-2693-2132
  surname: Zitar
  fullname: Zitar, Raed Abu
  organization: Sorbonne Center of Artificial Intelligence, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
BackLink https://hal.science/hal-04181229$$DView record in HAL
BookMark eNp9kc1q3DAUhUVJoGmaJ2gXgq4KmamkK-unOzOkSWBKIBPapZDl61aDY7uSMyV9-nriFNIsos0Vh_MdpHvekIOu75CQd5wtOWf2U7lanW02S8EELAGYNMa-IkeCK7uAAtTBk_trcpLzlk3HTFKhj8jXawzYjbSsd74LmGns6HnCe_q9bxt6NYzxNv7BdErjmOk3TDn2Xaa-q2k5DG0MftwLn-k17iL-fksOG99mPHmcx2Tz5exmdbFYX51frsr1IkgJ40JxVJwrIb30UElRmdqDxqow0rLGINSN4BpRMltL0KoprEeGBrRkwcAxuZxT695v3ZDirU_3rvfRPQh9-uF8GmNo0VlRKKECNFWBErX2EISWTWOYqmuo_JT1cc766dv_oi7KtdtrTHLDhbA7Pnk_zN4h9b_uMI9u29-lbvqoE1ZopZgGmFx2doXU55ywcSGOD2sak4-t48zta3NzbW5fm3usbWLhGfvvSS9T72cqIuITQvACTAF_AbcBozA
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s41693_024_00135_9
crossref_primary_10_1007_s10462_023_10618_w
crossref_primary_10_1109_ACCESS_2024_3350269
crossref_primary_10_3390_en17225689
crossref_primary_10_1007_s00521_024_10131_3
crossref_primary_10_1007_s12652_025_04951_x
crossref_primary_10_1007_s00521_024_10782_2
crossref_primary_10_1016_j_asoc_2024_112561
crossref_primary_10_1016_j_enconman_2025_119626
crossref_primary_10_7717_peerj_cs_1735
crossref_primary_10_7717_peerj_cs_2407
crossref_primary_10_1016_j_aej_2024_12_057
crossref_primary_10_1109_ACCESS_2024_3506977
crossref_primary_10_3390_rs16244637
crossref_primary_10_32604_cmes_2025_061028
crossref_primary_10_1007_s00521_025_10982_4
crossref_primary_10_1016_j_asoc_2023_111008
crossref_primary_10_1038_s41598_025_89124_8
crossref_primary_10_1007_s13243_024_00142_7
crossref_primary_10_4018_JOEUC_360350
crossref_primary_10_1155_2024_4105224
crossref_primary_10_3390_pr12092032
crossref_primary_10_1080_0305215X_2024_2390130
crossref_primary_10_1109_ACCESS_2024_3405071
crossref_primary_10_46223_HCMCOUJS_acs_en_14_2_61_2024
crossref_primary_10_1080_21642583_2024_2449156
crossref_primary_10_21595_jme_2025_24577
crossref_primary_10_1007_s43926_024_00089_y
crossref_primary_10_1002_oca_3101
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1002_dac_5829
crossref_primary_10_1051_e3sconf_202449604004
crossref_primary_10_3390_agriculture14081372
crossref_primary_10_1109_OAJPE_2025_3529944
crossref_primary_10_3390_aerospace12020101
crossref_primary_10_1002_vzj2_20379
crossref_primary_10_1007_s13369_024_09589_z
crossref_primary_10_3390_polym16111508
crossref_primary_10_1093_jcde_qwae046
crossref_primary_10_3390_agronomy14061320
crossref_primary_10_1016_j_ins_2025_121943
crossref_primary_10_1038_s41598_025_85751_3
crossref_primary_10_54021_seesv5n2_718
Cites_doi 10.1007/s11042-020-09433-0
10.1007/978-3-642-21515-5_36
10.1109/ACCESS.2020.3014114
10.1023/A:1008202821328
10.1109/ACCESS.2020.3047912
10.1007/978-3-319-26532-2_67
10.1016/j.compstruc.2012.09.003
10.1126/science.220.4598.671
10.1016/j.asoc.2018.11.043
10.1016/j.rser.2020.109856
10.1109/ACCESS.2020.3005182
10.3390/app121910057
10.1155/2022/3603607
10.1007/s12652-020-02153-1
10.3390/en13081923
10.1109/ACCESS.2019.2894524
10.1109/ACCESS.2023.3243164
10.1002/mma.6382
10.1007/s00500-019-03939-y
10.1016/j.heliyon.2020.e03585
10.1016/j.cie.2020.106280
10.1109/ACCESS.2020.3006469
10.1016/j.asoc.2019.105706
10.1016/j.enconman.2019.112243
10.1109/tevc.2008.919004
10.1364/AO.444593
10.1007/s00500-022-07280-9
10.3390/w13010091
10.1016/j.knosys.2022.108511
10.1016/j.apm.2021.03.047
10.1016/j.engappai.2019.08.025
10.1016/j.swevo.2018.10.008
10.1016/j.eswa.2018.12.003
10.1007/s00521-022-07662-y
10.1108/EC-05-2020-0235
10.1007/s12555-019-0154-x
10.1007/s11227-021-03943-w
10.1016/j.conbuildmat.2019.117266
10.1109/ACCESS.2021.3060096
10.1007/s00170-022-09835-4
10.1016/j.jestch.2021.03.011
10.1109/ACCESS.2019.2921793
10.1007/s00521-020-05296-6
10.1016/j.energy.2018.12.213
10.1007/s12652-020-01919-x
10.1016/j.swevo.2018.01.001
10.1016/j.eswa.2020.113702
10.1007/978-3-319-11857-4_10
10.1016/j.asoc.2018.12.037
10.1016/j.asoc.2020.106560
10.1016/j.asoc.2022.109000
10.1109/ACCESS.2021.3070044
10.1155/2019/7189653
10.1364/AO.403408
10.1109/ACCESS.2019.2958964
10.1007/s00521-021-06885-9
10.1109/ACCESS.2019.2919116
10.1016/j.knosys.2020.105709
10.1016/j.chemolab.2020.104041
10.1007/s00366-020-01217-2
10.1109/CEC.1999.782657
10.1016/j.eswa.2021.116450
10.1016/j.cma.2022.114570
10.1007/s10586-022-03675-3
10.1109/ACCESS.2022.3147821
10.1016/j.asoc.2019.105645
10.1016/j.oceaneng.2019.106425
10.1109/ACCESS.2018.2889816
10.3390/s22176420
10.1007/s00366-020-01081-0
10.1007/s12065-020-00446-0
10.1016/j.jocs.2021.101454
10.1016/j.ins.2009.03.004
10.1007/s00521-021-05980-1
10.1007/s00034-021-01872-w
10.1007/s12652-020-02228-z
10.1007/s12293-020-00313-6
10.1007/s10489-018-1384-y
10.1016/j.asoc.2020.106367
10.1109/ACCESS.2020.2984321
10.1109/ACCESS.2020.2982441
10.1109/ACCESS.2020.2999311
10.1109/ACCESS.2020.3018722
10.1109/4235.771163
10.1016/j.yofte.2021.102720
10.1007/s12652-020-02580-0
10.1007/s10846-021-01490-3
10.1016/j.jhydrol.2021.126607
10.1109/ACCESS.2020.3021527
10.1155/2020/6549572
10.1016/j.knosys.2019.105190
10.1109/ACCESS.2021.3051452
10.1145/937503.937505
10.1016/j.asoc.2022.108429
10.1109/ICCSCE.2018.8685003
10.3390/math10132234
10.1016/j.eswa.2020.113917
10.1007/s00521-019-04284-9
10.1007/s11269-020-02737-8
10.1007/s00521-019-04368-6
10.1109/ACCESS.2019.2949582
10.1109/ACCESS.2019.2942352
10.1504/IJBIC.2016.081335
10.1007/s00500-020-04745-7
10.1007/s00366-020-00996-y
10.1109/ACCESS.2019.2917803
10.3390/sym14071442
10.1016/j.eswa.2019.113134
10.1016/j.conbuildmat.2021.123268
10.1080/10298436.2021.2005056
10.1007/s11356-021-12736-w
10.1016/j.bspc.2022.103860
10.1007/s11227-022-04325-6
10.1007/s10915-022-01955-z
10.1080/0305215X.2018.1509963
10.1016/j.jocs.2019.07.006
10.1007/s00521-015-1920-1
10.1016/j.solener.2019.06.002
10.1017/S0263574719000882
10.1109/JEEIT.2019.8717468
10.1155/2022/2721490
10.1007/BF02125421
10.1007/s13369-019-03806-w
10.1007/s00521-022-07080-0
10.1038/s41598-019-43546-3
10.1109/ACCESS.2020.3000040
10.1007/978-981-15-5281-6_34
10.1016/j.eswa.2020.113246
10.1016/j.knosys.2021.107297
10.1016/S0305-0548(97)00031-2
10.1016/j.cie.2021.107809
10.1016/j.eswa.2021.114920
10.1155/2020/4516132
10.1109/JSYST.2019.2931829
10.3390/electronics10040447
10.3390/en13195013
10.1016/j.catena.2018.12.033
10.1016/j.cma.2020.113609
10.1016/j.asoc.2021.108345
10.3390/math8091457
10.1007/s00521-016-2328-2
10.1007/s10462-012-9314-6
10.1007/s13042-017-0765-6
10.1007/978-3-319-07124-4_8
10.1016/j.ins.2021.11.051
10.1109/TAP.2019.2938703
10.1016/j.eswa.2020.113338
10.1016/j.fuel.2022.124670
10.1109/4235.585893
10.1016/j.asoc.2020.106099
10.3390/en14020501
10.1007/s12293-012-0075-1
10.3390/e22111192
10.1109/ACCESS.2021.3117853
10.1007/s10973-020-09895-2
10.3390/s22051826
10.1109/ACCESS.2021.3135805
10.1016/j.future.2019.07.015
10.1201/9780429422614-13
10.1016/j.asoc.2018.11.047
10.1016/j.asoc.2018.10.019
10.1007/s00521-021-06099-z
10.1109/ACCESS.2020.3013706
10.1007/s10586-023-03979-y
10.1007/s10462-022-10137-0
10.1049/iet-gtd.2019.0801
10.1016/j.asoc.2018.11.039
10.1109/ACCESS.2022.3222516
10.1364/AO.391731
10.1016/j.jhydrol.2020.125060
10.1002/int.22744
10.1108/DTA-06-2019-0084
10.1016/j.eswa.2019.112824
10.1007/s10489-021-02795-4
10.3390/en12122274
10.1007/s00170-021-07696-x
10.1007/s12530-019-09291-8
10.1007/BF01096763
10.1109/ACCESS.2021.3134202
10.1016/j.cie.2018.12.061
10.1007/s12652-020-02701-9
10.3390/math10030351
10.1007/s10489-020-02018-2
10.1016/j.advengsoft.2016.01.008
10.1007/s11269-019-02472-9
10.1016/j.asoc.2021.108043
10.1016/j.asoc.2019.02.037
10.1007/s13369-019-04025-z
10.1080/21642583.2019.1708830
10.1016/j.energy.2022.124090
10.1007/s00366-019-00795-0
10.1016/j.eswa.2021.115078
10.1016/j.asoc.2019.105521
10.1109/ACCESS.2020.3001151
10.1007/s12065-020-00441-5
10.1007/s00521-018-3812-7
10.1016/j.knosys.2021.107034
10.1016/j.jocs.2022.101636
10.1016/j.energy.2019.04.096
10.3390/en13010215
10.1016/j.apm.2020.12.016
10.1016/j.neucom.2020.01.107
10.1016/j.knosys.2022.108457
10.1109/ICNN.1995.488968
10.1007/s11063-021-10607-6
10.1016/j.cie.2021.107738
10.1007/s00521-021-06143-y
10.1016/j.knosys.2022.108701
10.1109/ACCESS.2019.2934994
10.1016/j.measurement.2022.112302
10.1111/tgis.12517
10.1007/s11042-019-07876-8
10.1109/ACCESS.2019.2958288
10.1007/s00500-018-3665-0
10.1016/j.asoc.2021.107113
10.1016/j.gexplo.2020.106639
10.1016/j.advengsoft.2013.12.007
10.1007/978-3-319-91341-4
10.1016/j.asoc.2022.108947
10.1016/j.knosys.2018.10.021
10.1016/j.eswa.2022.116971
10.1080/01431161.2018.1541366
10.1109/TGRS.2022.3167888
10.1007/s12652-018-1085-8
10.1016/j.advengsoft.2015.01.010
10.1016/j.petrol.2020.106952
10.1007/s12065-020-00509-2
10.3390/en14185735
10.1016/j.measurement.2020.107901
10.1007/s11431-022-2096-6
10.1016/j.cnsns.2012.05.010
10.1007/s00521-021-06392-x
10.1080/0952813X.2018.1554712
10.1016/j.jestch.2021.01.011
10.1007/s10462-018-09676-2
10.1016/j.asoc.2019.01.025
10.1109/NABIC.2009.5393690
10.1109/ACCESS.2020.3012633
10.1109/TPEL.2019.2920971
10.1287/inte.20.4.74
10.1016/j.istruc.2020.07.058
10.1007/s00170-018-3028-0
10.1016/j.knosys.2020.106711
10.1007/s12652-020-02224-3
10.1109/ACCESS.2020.3021693
10.1016/j.dsp.2020.102711
10.3390/en15113904
10.1109/TASE.2021.3133601
10.1007/s00521-017-3272-5
10.1371/journal.pone.0213237
10.1016/j.knosys.2020.105746
10.1016/j.knosys.2015.07.006
10.1016/j.asoc.2018.10.044
10.1016/j.engstruct.2020.110657
10.3390/en14113029
10.1016/j.swevo.2020.100793
10.1007/s00521-021-05805-1
10.3390/w11010080
10.1007/978-3-319-91337-7_13
10.1109/ACCESS.2019.2955993
10.3390/sym14091871
10.1109/ACCESS.2019.2935300
10.3390/e23081065
10.1016/j.jhydrol.2019.05.045
10.4249/scholarpedia.1482
10.1007/s00521-022-07704-5
10.3390/en15082915
10.1016/j.epsr.2019.04.001
10.1016/j.eswa.2019.113125
10.1016/j.suscom.2022.100770
10.1016/j.fuel.2020.117784
10.1016/j.ins.2014.08.053
10.1177/003754970107600201
10.1016/j.cad.2010.12.015
10.1016/j.engappai.2021.104183
10.1016/j.asoc.2019.106003
10.21533/pen.v9i2.1818
10.1109/TEC.2021.3121650
10.1007/s10772-021-09870-8
10.1007/s00500-020-05494-3
10.1016/j.asoc.2021.108351
10.1109/JSEN.2021.3097004
10.1109/TAP.2020.2981736
10.1007/s00366-019-00837-7
10.1016/j.swevo.2019.04.006
10.1109/ACCESS.2019.2910813
10.1109/ACCESS.2021.3063723
10.1109/CSIEC.2016.7482120
10.1016/j.fuel.2020.118701
10.1016/j.knosys.2022.108320
10.1007/s00500-021-06375-z
10.1016/j.asoc.2020.106602
10.1109/ACCESS.2020.2981186
10.1007/s00170-019-04449-9
10.1016/j.enbuild.2021.111439
10.1007/s00202-022-01533-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Attribution - NonCommercial - NoDerivatives
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
DOA
DOI 10.1109/ACCESS.2023.3304889
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 23028
ExternalDocumentID oai_doaj_org_article_925626c3fb5e4e77a3c274ff806dd3ba
oai_HAL_hal_04181229v1
10_1109_ACCESS_2023_3304889
10215385
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c443t-61e611624a4a3b42b8da37eb58490f8e3df217ee409d4376f59ae0e83740c83
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:34 EDT 2025
Fri May 09 12:21:21 EDT 2025
Mon Jun 30 04:30:37 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 02:49:15 EDT 2025
Wed Aug 27 02:17:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary Computation
Grey wolf Optimizer
Optimization
Swarm Intelligence
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-61e611624a4a3b42b8da37eb58490f8e3df217ee409d4376f59ae0e83740c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2894-7998
0000-0003-1980-1791
0000-0002-7815-8946
0000-0002-1443-9458
0000-0003-2693-2132
0000-0003-0586-1961
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10215385
PQID 2927660733
PQPubID 4845423
PageCount 38
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3304889
proquest_journals_2927660733
doaj_primary_oai_doaj_org_article_925626c3fb5e4e77a3c274ff806dd3ba
ieee_primary_10215385
crossref_primary_10_1109_ACCESS_2023_3304889
hal_primary_oai_HAL_hal_04181229v1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
ref209
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref213
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref40
ref220
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref300
ref32
ref39
ref38
Karaboga (ref48) 2005
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref200
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref245
ref98
ref125
ref246
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref253
ref250
ref130
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref88
ref135
ref256
ref87
ref136
ref257
ref82
ref144
ref265
ref81
ref145
ref266
ref84
ref142
ref263
ref83
ref143
ref264
ref140
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref109
ref106
ref227
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref226
ref77
ref102
ref223
ref76
ref103
ref224
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref236
ref63
ref116
ref237
ref66
ref113
ref234
ref65
ref114
ref235
ref60
ref122
ref243
ref123
ref244
ref62
ref120
ref241
ref61
ref121
ref242
ref240
ref168
ref289
ref169
ref290
ref170
ref291
ref177
ref298
ref178
ref299
ref175
ref296
ref176
ref297
ref173
ref294
ref174
ref171
ref292
ref172
ref293
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref269
ref149
ref146
ref267
Kennedy (ref43); 4
ref147
ref268
ref155
ref276
ref156
ref277
ref153
ref274
ref154
ref275
ref151
ref272
ref152
ref273
Baluja (ref19) 1994
ref270
ref150
ref271
ref159
ref157
ref278
ref158
ref279
ref280
Abed-Alguni (ref295) 2018; 4
ref166
ref287
ref167
ref288
ref164
ref285
ref165
ref286
ref162
ref283
ref163
ref284
ref160
ref281
ref161
ref282
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref18
Koza (ref16) 1992; 1
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
References_xml – ident: ref274
  doi: 10.1007/s11042-020-09433-0
– ident: ref29
  doi: 10.1007/978-3-642-21515-5_36
– ident: ref175
  doi: 10.1109/ACCESS.2020.3014114
– ident: ref17
  doi: 10.1023/A:1008202821328
– ident: ref22
  doi: 10.1109/ACCESS.2020.3047912
– ident: ref299
  doi: 10.1007/978-3-319-26532-2_67
– ident: ref21
  doi: 10.1016/j.compstruc.2012.09.003
– ident: ref6
  doi: 10.1126/science.220.4598.671
– ident: ref86
  doi: 10.1016/j.asoc.2018.11.043
– ident: ref215
  doi: 10.1016/j.rser.2020.109856
– ident: ref145
  doi: 10.1109/ACCESS.2020.3005182
– ident: ref63
  doi: 10.3390/app121910057
– ident: ref79
  doi: 10.1155/2022/3603607
– ident: ref112
  doi: 10.1007/s12652-020-02153-1
– ident: ref265
  doi: 10.3390/en13081923
– ident: ref232
  doi: 10.1109/ACCESS.2019.2894524
– ident: ref134
  doi: 10.1109/ACCESS.2023.3243164
– ident: ref227
  doi: 10.1002/mma.6382
– ident: ref292
  doi: 10.1007/s00500-019-03939-y
– ident: ref208
  doi: 10.1016/j.heliyon.2020.e03585
– ident: ref210
  doi: 10.1016/j.cie.2020.106280
– ident: ref146
  doi: 10.1109/ACCESS.2020.3006469
– ident: ref249
  doi: 10.1016/j.asoc.2019.105706
– ident: ref178
  doi: 10.1016/j.enconman.2019.112243
– ident: ref18
  doi: 10.1109/tevc.2008.919004
– ident: ref234
  doi: 10.1364/AO.444593
– ident: ref60
  doi: 10.1007/s00500-022-07280-9
– ident: ref255
  doi: 10.3390/w13010091
– ident: ref13
  doi: 10.1016/j.knosys.2022.108511
– ident: ref281
  doi: 10.1016/j.apm.2021.03.047
– ident: ref40
  doi: 10.1016/j.engappai.2019.08.025
– ident: ref82
  doi: 10.1016/j.swevo.2018.10.008
– ident: ref205
  doi: 10.1016/j.eswa.2018.12.003
– ident: ref5
  doi: 10.1007/s00521-022-07662-y
– ident: ref20
  doi: 10.1108/EC-05-2020-0235
– ident: ref127
  doi: 10.1007/s12555-019-0154-x
– ident: ref39
  doi: 10.1007/s11227-021-03943-w
– ident: ref228
  doi: 10.1016/j.conbuildmat.2019.117266
– ident: ref173
  doi: 10.1109/ACCESS.2021.3060096
– ident: ref219
  doi: 10.1007/s00170-022-09835-4
– ident: ref209
  doi: 10.1016/j.jestch.2021.03.011
– ident: ref118
  doi: 10.1109/ACCESS.2019.2921793
– ident: ref37
  doi: 10.1007/s00521-020-05296-6
– ident: ref201
  doi: 10.1016/j.energy.2018.12.213
– ident: ref187
  doi: 10.1007/s12652-020-01919-x
– ident: ref66
  doi: 10.1016/j.swevo.2018.01.001
– ident: ref30
  doi: 10.1016/j.eswa.2020.113702
– ident: ref49
  doi: 10.1007/978-3-319-11857-4_10
– ident: ref152
  doi: 10.1016/j.asoc.2018.12.037
– ident: ref179
  doi: 10.1016/j.asoc.2020.106560
– ident: ref122
  doi: 10.1016/j.asoc.2022.109000
– ident: ref188
  doi: 10.1109/ACCESS.2021.3070044
– ident: ref104
  doi: 10.1155/2019/7189653
– ident: ref167
  doi: 10.1364/AO.403408
– ident: ref279
  doi: 10.1109/ACCESS.2019.2958964
– ident: ref94
  doi: 10.1007/s00521-021-06885-9
– ident: ref171
  doi: 10.1109/ACCESS.2019.2919116
– ident: ref32
  doi: 10.1016/j.knosys.2020.105709
– ident: ref225
  doi: 10.1016/j.chemolab.2020.104041
– ident: ref194
  doi: 10.1007/s00366-020-01217-2
– ident: ref42
  doi: 10.1109/CEC.1999.782657
– ident: ref133
  doi: 10.1016/j.eswa.2021.116450
– ident: ref62
  doi: 10.1016/j.cma.2022.114570
– ident: ref220
  doi: 10.1007/s10586-022-03675-3
– ident: ref35
  doi: 10.1109/ACCESS.2022.3147821
– ident: ref81
  doi: 10.1016/j.asoc.2019.105645
– ident: ref119
  doi: 10.1016/j.oceaneng.2019.106425
– ident: ref131
  doi: 10.1109/ACCESS.2018.2889816
– ident: ref157
  doi: 10.3390/s22176420
– ident: ref196
  doi: 10.1007/s00366-020-01081-0
– ident: ref200
  doi: 10.1007/s12065-020-00446-0
– ident: ref294
  doi: 10.1016/j.jocs.2021.101454
– ident: ref24
  doi: 10.1016/j.ins.2009.03.004
– ident: ref270
  doi: 10.1007/s00521-021-05980-1
– ident: ref176
  doi: 10.1007/s00034-021-01872-w
– ident: ref293
  doi: 10.1007/s12652-020-02228-z
– ident: ref95
  doi: 10.1007/s12293-020-00313-6
– ident: ref271
  doi: 10.1007/s10489-018-1384-y
– ident: ref137
  doi: 10.1016/j.asoc.2020.106367
– ident: ref148
  doi: 10.1109/ACCESS.2020.2984321
– ident: ref149
  doi: 10.1109/ACCESS.2020.2982441
– ident: ref147
  doi: 10.1109/ACCESS.2020.2999311
– ident: ref207
  doi: 10.1109/ACCESS.2020.3018722
– ident: ref15
  doi: 10.1109/4235.771163
– ident: ref286
  doi: 10.1016/j.yofte.2021.102720
– ident: ref56
  doi: 10.1007/s12652-020-02580-0
– ident: ref139
  doi: 10.1007/s10846-021-01490-3
– ident: ref256
  doi: 10.1016/j.jhydrol.2021.126607
– ident: ref237
  doi: 10.1109/ACCESS.2020.3021527
– ident: ref287
  doi: 10.1155/2020/6549572
– ident: ref23
  doi: 10.1016/j.knosys.2019.105190
– ident: ref132
  doi: 10.1109/ACCESS.2021.3051452
– ident: ref2
  doi: 10.1145/937503.937505
– ident: ref78
  doi: 10.1016/j.asoc.2022.108429
– ident: ref240
  doi: 10.1109/ICCSCE.2018.8685003
– ident: ref264
  doi: 10.3390/math10132234
– ident: ref135
  doi: 10.1016/j.eswa.2020.113917
– ident: ref166
  doi: 10.1007/s00521-019-04284-9
– ident: ref130
  doi: 10.1007/s11269-020-02737-8
– ident: ref80
  doi: 10.1007/s00521-019-04368-6
– ident: ref107
  doi: 10.1109/ACCESS.2019.2949582
– ident: ref283
  doi: 10.1109/ACCESS.2019.2942352
– ident: ref52
  doi: 10.1504/IJBIC.2016.081335
– ident: ref278
  doi: 10.1007/s00500-020-04745-7
– year: 1994
  ident: ref19
  article-title: Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning
– ident: ref180
  doi: 10.1007/s00366-020-00996-y
– ident: ref276
  doi: 10.1109/ACCESS.2019.2917803
– ident: ref102
  doi: 10.3390/sym14071442
– ident: ref217
  doi: 10.1016/j.eswa.2019.113134
– ident: ref229
  doi: 10.1016/j.conbuildmat.2021.123268
– ident: ref267
  doi: 10.1080/10298436.2021.2005056
– ident: ref261
  doi: 10.1007/s11356-021-12736-w
– ident: ref184
  doi: 10.1016/j.bspc.2022.103860
– ident: ref182
  doi: 10.1007/s11227-022-04325-6
– ident: ref158
  doi: 10.1007/s10915-022-01955-z
– ident: ref263
  doi: 10.1080/0305215X.2018.1509963
– ident: ref143
  doi: 10.1016/j.jocs.2019.07.006
– ident: ref55
  doi: 10.1007/s00521-015-1920-1
– ident: ref247
  doi: 10.1016/j.solener.2019.06.002
– ident: ref126
  doi: 10.1017/S0263574719000882
– ident: ref242
  doi: 10.1109/JEEIT.2019.8717468
– ident: ref117
  doi: 10.1155/2022/2721490
– ident: ref1
  doi: 10.1007/BF02125421
– ident: ref236
  doi: 10.1007/s13369-019-03806-w
– ident: ref181
  doi: 10.1007/s00521-022-07080-0
– ident: ref185
  doi: 10.1038/s41598-019-43546-3
– ident: ref74
  doi: 10.1109/ACCESS.2020.3000040
– ident: ref239
  doi: 10.1007/978-981-15-5281-6_34
– ident: ref34
  doi: 10.1016/j.eswa.2020.113246
– ident: ref97
  doi: 10.1016/j.knosys.2021.107297
– ident: ref9
  doi: 10.1016/S0305-0548(97)00031-2
– ident: ref75
  doi: 10.1016/j.cie.2021.107809
– ident: ref101
  doi: 10.1016/j.eswa.2021.114920
– ident: ref91
  doi: 10.1155/2020/4516132
– ident: ref202
  doi: 10.1109/JSYST.2019.2931829
– ident: ref243
  doi: 10.3390/electronics10040447
– ident: ref251
  doi: 10.3390/en13195013
– ident: ref269
  doi: 10.1016/j.catena.2018.12.033
– ident: ref38
  doi: 10.1016/j.cma.2020.113609
– ident: ref222
  doi: 10.1016/j.asoc.2021.108345
– ident: ref124
  doi: 10.3390/math8091457
– ident: ref11
  doi: 10.1007/s00521-016-2328-2
– ident: ref297
  doi: 10.1007/s10462-012-9314-6
– ident: ref72
  doi: 10.1007/s13042-017-0765-6
– ident: ref10
  doi: 10.1007/978-3-319-07124-4_8
– ident: ref195
  doi: 10.1016/j.ins.2021.11.051
– ident: ref284
  doi: 10.1109/TAP.2019.2938703
– ident: ref61
  doi: 10.1016/j.eswa.2020.113338
– ident: ref128
  doi: 10.1016/j.fuel.2022.124670
– ident: ref296
  doi: 10.1109/4235.585893
– ident: ref172
  doi: 10.1016/j.asoc.2020.106099
– ident: ref282
  doi: 10.3390/en14020501
– ident: ref27
  doi: 10.1007/s12293-012-0075-1
– ident: ref223
  doi: 10.3390/e22111192
– ident: ref288
  doi: 10.1109/ACCESS.2021.3117853
– ident: ref121
  doi: 10.1007/s10973-020-09895-2
– ident: ref160
  doi: 10.3390/s22051826
– ident: ref85
  doi: 10.1109/ACCESS.2021.3135805
– ident: ref26
  doi: 10.1016/j.future.2019.07.015
– ident: ref46
  doi: 10.1201/9780429422614-13
– ident: ref151
  doi: 10.1016/j.asoc.2018.11.047
– ident: ref233
  doi: 10.1016/j.asoc.2018.10.019
– ident: ref254
  doi: 10.1007/s00521-021-06099-z
– ident: ref275
  doi: 10.1109/ACCESS.2020.3013706
– ident: ref65
  doi: 10.1007/s10586-023-03979-y
– ident: ref114
  doi: 10.1007/s10462-022-10137-0
– ident: ref177
  doi: 10.1049/iet-gtd.2019.0801
– ident: ref90
  doi: 10.1016/j.asoc.2018.11.039
– ident: ref170
  doi: 10.1109/ACCESS.2022.3222516
– ident: ref214
  doi: 10.1364/AO.391731
– ident: ref226
  doi: 10.1016/j.jhydrol.2020.125060
– ident: ref99
  doi: 10.1002/int.22744
– ident: ref109
  doi: 10.1108/DTA-06-2019-0084
– ident: ref83
  doi: 10.1016/j.eswa.2019.112824
– ident: ref105
  doi: 10.1007/s10489-021-02795-4
– ident: ref169
  doi: 10.3390/en12122274
– ident: ref154
  doi: 10.1007/s00170-021-07696-x
– ident: ref186
  doi: 10.1007/s12530-019-09291-8
– ident: ref8
  doi: 10.1007/BF01096763
– ident: ref144
  doi: 10.1109/ACCESS.2021.3134202
– ident: ref168
  doi: 10.1016/j.cie.2018.12.061
– ident: ref70
  doi: 10.1007/s12652-020-02701-9
– ident: ref116
  doi: 10.3390/math10030351
– ident: ref216
  doi: 10.1007/s10489-020-02018-2
– ident: ref58
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref230
  doi: 10.1007/s11269-019-02472-9
– ident: ref59
  doi: 10.1016/j.asoc.2021.108043
– ident: ref100
  doi: 10.1016/j.asoc.2019.02.037
– ident: ref76
  doi: 10.1007/s13369-019-04025-z
– ident: ref53
  doi: 10.1080/21642583.2019.1708830
– ident: ref277
  doi: 10.1016/j.energy.2022.124090
– ident: ref138
  doi: 10.1007/s00366-019-00795-0
– ident: ref123
  doi: 10.1016/j.eswa.2021.115078
– ident: ref291
  doi: 10.1016/j.asoc.2019.105521
– ident: ref164
  doi: 10.1109/ACCESS.2020.3001151
– ident: ref71
  doi: 10.1007/s12065-020-00441-5
– ident: ref224
  doi: 10.1007/s00521-018-3812-7
– ident: ref156
  doi: 10.1016/j.knosys.2021.107034
– ident: ref159
  doi: 10.1016/j.jocs.2022.101636
– ident: ref129
  doi: 10.1016/j.energy.2019.04.096
– ident: ref268
  doi: 10.3390/en13010215
– ident: ref120
  doi: 10.1016/j.apm.2020.12.016
– ident: ref272
  doi: 10.1016/j.neucom.2020.01.107
– ident: ref47
  doi: 10.1016/j.knosys.2022.108457
– volume: 4
  start-page: 1942
  volume-title: Proc. Int. Conf. Neural Netw. (ICNN)
  ident: ref43
  article-title: Particle swarm optimization
  doi: 10.1109/ICNN.1995.488968
– ident: ref3
  doi: 10.1007/s11063-021-10607-6
– ident: ref110
  doi: 10.1016/j.cie.2021.107738
– ident: ref67
  doi: 10.1007/s00521-021-06143-y
– ident: ref84
  doi: 10.1016/j.knosys.2022.108701
– ident: ref106
  doi: 10.1109/ACCESS.2019.2934994
– ident: ref258
  doi: 10.1016/j.measurement.2022.112302
– ident: ref87
  doi: 10.1111/tgis.12517
– ident: ref273
  doi: 10.1007/s11042-019-07876-8
– ident: ref141
  doi: 10.1109/ACCESS.2019.2958288
– ident: ref285
  doi: 10.1007/s00500-018-3665-0
– ident: ref298
  doi: 10.1016/j.asoc.2021.107113
– ident: ref231
  doi: 10.1016/j.gexplo.2020.106639
– volume: 4
  start-page: 21
  issue: 3
  year: 2018
  ident: ref295
  article-title: Distributed grey wolf optimizer for numerical optimization problems
  publication-title: Jordanian J. Comput. Inf. Technol.
– ident: ref64
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref41
  doi: 10.1007/978-3-319-91341-4
– ident: ref113
  doi: 10.1016/j.asoc.2022.108947
– ident: ref203
  doi: 10.1016/j.knosys.2018.10.021
– ident: ref93
  doi: 10.1016/j.eswa.2022.116971
– ident: ref289
  doi: 10.1080/01431161.2018.1541366
– ident: ref235
  doi: 10.1109/TGRS.2022.3167888
– ident: ref241
  doi: 10.1007/s12652-018-1085-8
– year: 2005
  ident: ref48
  article-title: An idea based on honey bee swarm for numerical optimization
– ident: ref51
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref212
  doi: 10.1016/j.petrol.2020.106952
– ident: ref218
  doi: 10.1007/s12065-020-00509-2
– ident: ref246
  doi: 10.3390/en14185735
– ident: ref253
  doi: 10.1016/j.measurement.2020.107901
– ident: ref191
  doi: 10.1007/s11431-022-2096-6
– ident: ref44
  doi: 10.1016/j.cnsns.2012.05.010
– ident: ref33
  doi: 10.1007/s00521-021-06392-x
– ident: ref111
  doi: 10.1080/0952813X.2018.1554712
– ident: ref89
  doi: 10.1016/j.jestch.2021.01.011
– ident: ref4
  doi: 10.1007/s10462-018-09676-2
– ident: ref103
  doi: 10.1016/j.asoc.2019.01.025
– ident: ref45
  doi: 10.1109/NABIC.2009.5393690
– ident: ref163
  doi: 10.1109/ACCESS.2020.3012633
– ident: ref244
  doi: 10.1109/TPEL.2019.2920971
– ident: ref7
  doi: 10.1287/inte.20.4.74
– ident: ref25
  doi: 10.1016/j.istruc.2020.07.058
– ident: ref190
  doi: 10.1007/s00170-018-3028-0
– ident: ref54
  doi: 10.1016/j.knosys.2020.106711
– ident: ref98
  doi: 10.1007/s12652-020-02224-3
– ident: ref174
  doi: 10.1109/ACCESS.2020.3021693
– ident: ref204
  doi: 10.1016/j.dsp.2020.102711
– ident: ref140
  doi: 10.3390/en15113904
– ident: ref162
  doi: 10.1109/TASE.2021.3133601
– ident: ref69
  doi: 10.1007/s00521-017-3272-5
– volume: 1
  volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: ref16
– ident: ref88
  doi: 10.1371/journal.pone.0213237
– ident: ref73
  doi: 10.1016/j.knosys.2020.105746
– ident: ref57
  doi: 10.1016/j.knosys.2015.07.006
– ident: ref96
  doi: 10.1016/j.asoc.2018.10.044
– ident: ref266
  doi: 10.1016/j.engstruct.2020.110657
– ident: ref153
  doi: 10.3390/en14113029
– ident: ref161
  doi: 10.1016/j.swevo.2020.100793
– ident: ref300
  doi: 10.1007/s00521-021-05805-1
– ident: ref142
  doi: 10.3390/w11010080
– ident: ref197
  doi: 10.1007/978-3-319-91337-7_13
– ident: ref250
  doi: 10.1109/ACCESS.2019.2955993
– ident: ref115
  doi: 10.3390/sym14091871
– ident: ref262
  doi: 10.1109/ACCESS.2019.2935300
– ident: ref165
  doi: 10.3390/e23081065
– ident: ref68
  doi: 10.1016/j.jhydrol.2019.05.045
– ident: ref14
  doi: 10.4249/scholarpedia.1482
– ident: ref198
  doi: 10.1007/s00521-022-07704-5
– ident: ref221
  doi: 10.3390/en15082915
– ident: ref280
  doi: 10.1016/j.epsr.2019.04.001
– ident: ref183
  doi: 10.1016/j.eswa.2019.113125
– ident: ref192
  doi: 10.1016/j.suscom.2022.100770
– ident: ref259
  doi: 10.1016/j.fuel.2020.117784
– ident: ref12
  doi: 10.1016/j.ins.2014.08.053
– ident: ref28
  doi: 10.1177/003754970107600201
– ident: ref31
  doi: 10.1016/j.cad.2010.12.015
– ident: ref136
  doi: 10.1016/j.engappai.2021.104183
– ident: ref211
  doi: 10.1016/j.asoc.2019.106003
– ident: ref189
  doi: 10.21533/pen.v9i2.1818
– ident: ref193
  doi: 10.1109/TEC.2021.3121650
– ident: ref238
  doi: 10.1007/s10772-021-09870-8
– ident: ref245
  doi: 10.1007/s00500-020-05494-3
– ident: ref248
  doi: 10.1016/j.asoc.2021.108351
– ident: ref252
  doi: 10.1109/JSEN.2021.3097004
– ident: ref213
  doi: 10.1109/TAP.2020.2981736
– ident: ref150
  doi: 10.1007/s00366-019-00837-7
– ident: ref199
  doi: 10.1016/j.swevo.2019.04.006
– ident: ref108
  doi: 10.1109/ACCESS.2019.2910813
– ident: ref206
  doi: 10.1109/ACCESS.2021.3063723
– ident: ref36
  doi: 10.1109/CSIEC.2016.7482120
– ident: ref260
  doi: 10.1016/j.fuel.2020.118701
– ident: ref50
  doi: 10.1016/j.knosys.2022.108320
– ident: ref290
  doi: 10.1007/s00500-021-06375-z
– ident: ref125
  doi: 10.1016/j.asoc.2020.106602
– ident: ref77
  doi: 10.1109/ACCESS.2020.2981186
– ident: ref155
  doi: 10.1007/s00170-019-04449-9
– ident: ref92
  doi: 10.1016/j.enbuild.2021.111439
– ident: ref257
  doi: 10.1007/s00202-022-01533-4
SSID ssj0000816957
Score 2.525148
Snippet The Grey Wolf Optimizer (GWO) has emerged as one of the most captivating swarm intelligence methods, drawing inspiration from the hunting behavior of wolf...
SourceID doaj
hal
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22991
SubjectTerms Artificial intelligence
Bioinformatics
Biomedical engineering
Classification algorithms
Computer Science
COVID-19
Evolutionary computation
Grey Wolf Optimizer
Mathematical models
Optimization
Particle swarm optimization
Search problems
Swarm intelligence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6urBPFotU2TtPFWF2URVw8qegvNCxe0K7tV0F_vpO0uFUEvXkNakpnJzHyT8A1ChxCBtI4pC1VBdUiZgjNnRBpSw2LNnC81-Drk8JoP7unlI3vstPryb8IaeuBGcCcCYjLhOnGKWWrTtEg0ACnnsogbk6g6NYKY1wFTtQ_OYi5Y2tIMxZE4yft92NGx7xZ-7DF85hu7d0JRzdgPAebJv4esG6388M51yLlYRSttrojzZo1raMGW62i5wyC4gYaQ9kHYwHlzlT_FoxID6v_AD-Nnh2_AH7yMPu3kCI-qKW5rY1NclAbnnZvrU9xcEWyi24vzu_4gbDskhJrSpALcZ3kcc0ILWiSKEpWZIkmtgqxCRC6ziXEAOawFEGcouBLHRGEjC6CURjpLttBiOS7tNsLcaKOYcqBQQSMjMmELGFMc0LNjKQkQmYlK6pY83PeweJY1iIiEbOQrvXxlK98AHc0_em24M36ffuZ1MJ_qia_rATAH2ZqD_MscAnQAGvz2j0F-Jf1YRH02Q8R7HKBNr-DOooh3_CxAvZnGZXuUp5IIknLue1vu_McCd9ESbJo2VZweWqwmb3YP8ppK7dcm_AX24vAB
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Advances in Grey Wolf Optimizer, its Versions and Applications: Review
URI https://ieeexplore.ieee.org/document/10215385
https://www.proquest.com/docview/2927660733
https://hal.science/hal-04181229
https://doaj.org/article/925626c3fb5e4e77a3c274ff806dd3ba
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDAs4hAqSzEsUnzsJ2YW1hRVoiWAyB6s_xUV5Qs6mY59NcztrOrBQTiFllxZOcbj-cbj2cAXuIOZExFWa4VNTllGtecFW1OLasM88HVEPyQZ-d8_pm-u2AX02X1eBfGOReDz1wRHuNZvl2adXCVnYQy1LhA2R7sIXNLl7W2DpVQQUKwdsosVJXipJ_NcBJFKBBeBNrehVruO7tPTNKPe8plCIGMtVX-UMhxlzm9B-eb8aXgkq_FetSFufktdeN_T-A-3J3sTdInAXkAt9zwEO7sZCF8BGdoOmI30qdwgBVZDOQtIky-LK88-YA65dvixl0fk8W4IpN_bUXUYEm_c_r9iqRjhgP4ePrm02yeT1UWckNpMyJ3dLyqeE0VVY2mte6salqn0TIRpe9cYz3SFueQCFqK6sgzoVzpkNjS0nTNY9gfloN7AoRbYzXTHoVC0NKKTjiFbZojA_esrTOoN_9emikBeaiDcSUjESmFTIDJAJicAMvgeNvpe8q_8e_XXwdQt6-G5NmxAWGQ01qUAs28mpvGa-aoa1vVGOTm3nclt7bRKoMXKBK_fGPev5ehraTBIqrFjyqDg4DvzqAStBkcbkRITupgJWtRt5yH-phP_9LtGdzGedDk3DmE_fF67Z6juTPqo-gmOIrC_hMNvvpt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPIsItGAhjk2ah-3E3NJVywK7y4EierPil1jRZlE3y6G_nnHiXS2gIm6RFUd2vrHn4fF8AG9QA2mdURarhuqYMoVrzogypoZlmjkfavBxyOmMj7_QD-fsPFxW7-_CWGv75DOb-Mf-LN8s9MqHyo48DTUuUHYb7qDiZ9lwXWsTUvEcEoKVobZQloqjejTCaSSeIjzxjnvl2dy39E9fph-1yjefBNmzq_y1Jfd65vQBzNYjHNJLvierTiX6-o_ijf89hYdwP1icpB5E5BHcsu1j2N2qQ_gEpmg8YjdSDwkBSzJvyTvEmHxdXDjyCXeVy_m1vTok825JQoRtSZrWkHrr_PstGQ4a9uDz6cnZaBwHnoVYU1p06D1anmU8pw1tCkVzVZmmKK1C20SkrrKFcei4WIuuoKG4ITkmGptadG1pqqviKey0i9Y-A8KNNooph2IhaGpEJWyDbYqjD-5YmUeQr_-91KEEuWfCuJC9K5IKOQAmPWAyABbB4abTj6ECx79fP_agbl715bP7BoRBhtUoBRp6OdeFU8xSW5ZNodE7d65KuTGFaiJ4jSLx2zfG9UT6tpR6mygXP7MI9jy-W4MaoI1gfy1CMmwIS5mLvOTcM2Q-v6HbK7g7PptO5OT97OMLuIdzokOoZx92uquVPUDjp1Mve5H_BVmr_ME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Grey+Wolf+Optimizer%2C+its+Versions+and+Applications%3A+Review&rft.jtitle=IEEE+access&rft.au=Makhadmeh%2C+Sharif+Naser&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Doush%2C+Iyad+Abu&rft.au=Awadallah%2C+Mohammed+A.&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=22991&rft.epage=23028&rft_id=info:doi/10.1109%2FACCESS.2023.3304889&rft.externalDocID=10215385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon