Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf

Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearsho...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 22; pp. 12215 - 12221
Main Authors Fowler, Bethany L., Neubert, Michael G., Hunter-Cevera, Kristen R., Olson, Robert J., Shalapyonok, Alexi, Solow, Andrew R., Sosik, Heidi M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.06.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1918439117

Cover

Loading…
Abstract Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a sizestructured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
AbstractList Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a sizestructured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with , the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus , the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
Approximately half of the world’s primary production is carried out by marine phytoplankton, of which the picoeukaryotes are a diverse and understudied group. Here, we report on a phytoplankton community we have been monitoring over many years to gain insight into factors that drive their dynamics. We found that the picoeukaryotes reproduce and are lost (probably via grazing) much more rapidly than other picophytoplankton. They appear to be a preferred prey item of the micrograzer community and so contribute more to the region’s primary productivity than would be inferred from their abundance alone. This work improves our understanding of the economically important Northeast US Shelf ecosystem and highlights the possible limitations of treating the picoplankton as a single functional group. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus , the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
Author Fowler, Bethany L.
Hunter-Cevera, Kristen R.
Olson, Robert J.
Neubert, Michael G.
Solow, Andrew R.
Shalapyonok, Alexi
Sosik, Heidi M.
Author_xml – sequence: 1
  givenname: Bethany L.
  surname: Fowler
  fullname: Fowler, Bethany L.
– sequence: 2
  givenname: Michael G.
  surname: Neubert
  fullname: Neubert, Michael G.
– sequence: 3
  givenname: Kristen R.
  surname: Hunter-Cevera
  fullname: Hunter-Cevera, Kristen R.
– sequence: 4
  givenname: Robert J.
  surname: Olson
  fullname: Olson, Robert J.
– sequence: 5
  givenname: Alexi
  surname: Shalapyonok
  fullname: Shalapyonok, Alexi
– sequence: 6
  givenname: Andrew R.
  surname: Solow
  fullname: Solow, Andrew R.
– sequence: 7
  givenname: Heidi M.
  surname: Sosik
  fullname: Sosik, Heidi M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32414929$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt17UoJuHEzbT4nk40g9ROKLmoXrkImk_jynEnGJFN4_70ZXlu1IAkEcn_ncO69J-AoxGABeI7RGUaCns9B5zMscceoxFg8AhuMJG5aJtER2CBERNMxwo7BSc47hJDkHXoCjilhmEkiN-D7u33QkzcZ6jBAtwRTfAx6hIO_sSn7sofRwbK1ME96HG0ucN7uS5xHHX6WGGC9a_VLTPXRtXx9Ba-2dnRPwWOnx2yf3b6n4PrD-28Xn5rLrx8_X7y9bAxjtDRcogH3pnMDF464zmjKSCep4wMlXTsIzEzfGYmsrd-8tajHYrCixU6IXjt6Ct4cfOeln-xgbChJj2pOftJpr6L26t9K8Fv1I94oQQRvpagGr28NUvy11A7V5LOxY-3QxiUrwlA9rEOsoq8eoLu4pDqulcKkZZwjWqmXfye6j3I39QrwA2BSzDlZp4wveh18DehHhZFat6vW7ao_26268we6O-v_K14cFLtcYrrHSStpjdvS32HqskY
CitedBy_id crossref_primary_10_1002_lol2_10410
crossref_primary_10_3389_fmicb_2024_1380179
crossref_primary_10_1007_s10533_024_01192_6
crossref_primary_10_1029_2022GL097753
crossref_primary_10_1002_lol2_10331
crossref_primary_10_1016_j_ecolmodel_2022_109907
crossref_primary_10_1111_gcb_17316
crossref_primary_10_3354_meps14572
crossref_primary_10_3389_fmars_2022_975877
crossref_primary_10_1126_sciadv_ade8352
crossref_primary_10_1016_j_scitotenv_2024_177122
crossref_primary_10_1002_lom3_10493
crossref_primary_10_5194_bg_20_3491_2023
crossref_primary_10_3389_fmars_2022_844620
crossref_primary_10_1093_biosci_biac050
crossref_primary_10_1038_s41598_022_17313_w
crossref_primary_10_3389_fmars_2024_1392673
crossref_primary_10_1371_journal_pcbi_1009733
crossref_primary_10_3389_fmars_2023_1166629
crossref_primary_10_3389_fmars_2024_1375669
crossref_primary_10_1029_2020GB006702
crossref_primary_10_3389_fmicb_2021_786590
Cites_doi 10.4319/lo.2005.50.4.1221
10.1128/MMBR.63.1.106-127.1999
10.1371/journal.pone.0172135
10.1093/plankt/fbw014
10.1029/98JC01333
10.1007/s002270000461
10.4319/lo.2012.57.1.0029
10.3354/meps170045
10.1111/j.1462-2920.2007.01384.x
10.1093/plankt/fbr041
10.1002/lno.10106
10.1093/plankt/24.7.635
10.4319/lo.2004.49.1.0051
10.1007/BF00397668
10.1007/978-3-642-79923-5_17
10.1002/lno.11374
10.1007/s002489900115
10.4319/lo.1994.39.1.0169
10.4319/lo.2008.53.2.0863
10.4319/lo.1998.43.8.1916
10.4319/lo.1999.44.6.1565
10.1073/pnas.1321421111
10.1002/lom3.10273
10.1016/j.icesjms.2004.03.011
10.4319/lo.2004.49.1.0168
10.1073/pnas.1424279112
10.1371/journal.pone.0016805
10.1175/2009JPO4300.1
10.1126/science.aaf8536
10.3354/ame030207
10.1007/s00248-002-2002-3
10.4319/lo.2004.49.6.1915
10.1016/S0967-0637(03)00003-7
10.4319/lo.2007.52.6.2519
10.1016/S0168-6496(03)00075-8
10.5194/bg-8-3423-2011
10.3354/ame031009
10.1146/annurev-marine-052913-021325
10.4319/lo.2003.48.5.1756
10.4319/lo.1988.33.4_part_2.0765
10.3389/fmars.2019.00174
10.3354/ame01136
10.1016/j.csr.2015.08.010
10.1046/j.1529-8817.2001.037003357.x
10.1128/mBio.00036-12
10.3354/ame023253
10.1046/j.1529-8817.2002.02008.x
10.4319/lo.2007.52.2.0886
10.1002/lom3.10054
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 2, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Jun 2, 2020
– notice: 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1918439117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12221
ExternalDocumentID PMC7275697
32414929
10_1073_pnas_1918439117
26931266
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Northeastern states
GeographicLocations_xml – name: Northeastern states
– name: United States--US
GrantInformation_xml – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
  grantid: GGA#934
– fundername: National Aeronautics and Space Administration (NASA)
  grantid: NNX13AC98G
– fundername: National Science Foundation (NSF)
  grantid: OCE-0119915
– fundername: Simons Foundation
  grantid: 561126
– fundername: National Aeronautics and Space Administration (NASA)
  grantid: NNX11AF07G
– fundername: National Science Foundation (NSF)
  grantid: OCE-1655686
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-590d1bc8fd57f2f8ca342893f5d3286d714cb8c90ee28956e0b17de761f77baf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:39:13 EDT 2025
Fri Jul 11 10:08:37 EDT 2025
Mon Jun 30 10:06:39 EDT 2025
Wed Feb 19 02:12:01 EST 2025
Thu Apr 24 22:54:29 EDT 2025
Tue Jul 01 03:40:22 EDT 2025
Thu May 29 09:13:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords matrix model
flow cytometry
primary productivity
picoeukaryotes
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-590d1bc8fd57f2f8ca342893f5d3286d714cb8c90ee28956e0b17de761f77baf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Tom M. Fenchel, University of Copenhagen, Helsingor, Denmark, and approved April 9, 2020 (received for review October 22, 2019)
Author contributions: B.L.F., M.G.N., K.R.H.-C., and H.M.S. designed research; B.L.F., M.G.N., K.R.H.-C., R.J.O., A.S., A.R.S., and H.M.S. performed research; B.L.F., K.R.H-C., R.J.O., A.S., and H.M.S. contributed new analytic tools; B.L.F., K.R.H.-C., and H.M.S. analyzed data; and B.L.F., M.G.N., and H.M.S. wrote the paper.
ORCID 0000-0001-8655-7253
0000-0002-0306-0346
0000-0003-1978-1372
0000-0002-4591-2842
0000-0001-8820-5008
OpenAccessLink https://www.pnas.org/content/pnas/117/22/12215.full.pdf
PMID 32414929
PQID 2412645503
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275697
proquest_miscellaneous_2404044804
proquest_journals_2412645503
pubmed_primary_32414929
crossref_citationtrail_10_1073_pnas_1918439117
crossref_primary_10_1073_pnas_1918439117
jstor_primary_26931266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-02
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Anderson S. R. (e_1_3_4_23_2) 2019; 6
Tsai A. Y. (e_1_3_4_49_2) 2005; 50
Jacquet S. (e_1_3_4_41_2) 1998; 43
Dall’Olmo G. (e_1_3_4_39_2) 2011; 8
Brown C. (e_1_3_4_51_2) 2007; 9
Jakobsen H. H. (e_1_3_4_44_2) 2004; 49
Baudoux A. C. (e_1_3_4_31_2) 2007; 52
Calbet A. (e_1_3_4_30_2) 2004; 49
Garza D. R. (e_1_3_4_52_2) 1998; 36
Juneau P. (e_1_3_4_54_2) 2003; 31
Strom S. L. (e_1_3_4_26_2) 2001; 138
Jacquet S. (e_1_3_4_37_2) 2001; 37
Bec B. (e_1_3_4_24_2) 2008; 53
Hunter-Cevera K. R. (e_1_3_4_6_2) 2014; 111
Worden A. Z. (e_1_3_4_4_2) 2004; 49
Rose J. M. (e_1_3_4_34_2) 2007; 52
Shearman R. K. (e_1_3_4_10_2) 2010; 40
Stoecker D. K. (e_1_3_4_15_2) 2015; 60
Apple J. K. (e_1_3_4_25_2) 2011; 77
Morris J. J. (e_1_3_4_13_2) 2011; 6
Agawin N. S. R. (e_1_3_4_21_2) 1998; 170
Christaki U. (e_1_3_4_50_2) 2002; 43
Hunter-Cevera K. R. (e_1_3_4_20_2) 2016; 354
Zheng L. (e_1_3_4_33_2) 2015; 111
Vaulot D. (e_1_3_4_38_2) 1995; 38
Ruiz-Gonzàlez C. (e_1_3_4_48_2) 2012; 57
Lin L. (e_1_3_4_12_2) 2002; 97
Jacquet S. (e_1_3_4_42_2) 2002; 24
Stockner J. G. (e_1_3_4_1_2) 1988; 33
Strom S. L. (e_1_3_4_43_2) 2001; 23
O’Reilly J. E. (e_1_3_4_19_2) 1987
Ribalet F. (e_1_3_4_7_2) 2015; 112
Hynes A. M. (e_1_3_4_8_2) 2015; 13
Weinbauer M. G. (e_1_3_4_14_2) 2011; 33
Morris J. J. (e_1_3_4_36_2) 2012; 3
Christoffersen K. (e_1_3_4_45_2) 1994; 8
Dolan J. R. (e_1_3_4_46_2) 1999; 44
Li W. K. W. (e_1_3_4_3_2) 1994; 39
Sosik H. M. (e_1_3_4_5_2) 2003; 48
Dugenne M. (e_1_3_4_9_2) 2014; 5
Ng W. H. A. (e_1_3_4_47_2) 2016; 38
Landry M. R. (e_1_3_4_27_2) 2004; 61
DuRand M. D. (e_1_3_4_17_2) 2002; 38
Evans C. (e_1_3_4_29_2) 2003; 30
Jacquet S. (e_1_3_4_53_2) 2003; 44
Vaulot D. (e_1_3_4_40_2) 1999; 104
Olson R. J. (e_1_3_4_55_2) 2003; 50
Partensky F. (e_1_3_4_2_2) 1999; 63
Behrenfeld M. J. (e_1_3_4_28_2) 2014; 6
e_1_3_4_16_2
e_1_3_4_56_2
e_1_3_4_18_2
Cuvelier M. L. (e_1_3_4_22_2) 2017; 12
Landry M. R. (e_1_3_4_11_2) 1982; 67
Kimmance S. A. (e_1_3_4_35_2) 2007; 49
Short S. M. (e_1_3_4_32_2) 2018; 16
References_xml – volume: 50
  start-page: 1221
  year: 2005
  ident: e_1_3_4_49_2
  article-title: Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2005.50.4.1221
– volume: 63
  start-page: 106
  year: 1999
  ident: e_1_3_4_2_2
  article-title: Prochlorococcus, a marine photosynthetic prokaryote of global significance
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.63.1.106-127.1999
– volume: 77
  start-page: 3074
  year: 2011
  ident: e_1_3_4_25_2
  article-title: Variability in protist grazing and growth on different marine Synechococcus isolates
  publication-title: Microb. Ecol.
– volume: 12
  start-page: e0172135
  year: 2017
  ident: e_1_3_4_22_2
  article-title: Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress
  publication-title: PloS One
  doi: 10.1371/journal.pone.0172135
– volume: 38
  start-page: 636
  year: 2016
  ident: e_1_3_4_47_2
  article-title: Diel periodicity of grazing by heterotrophic nanoflagellates influenced by prey cell properties and intrinsic grazing rhythm
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbw014
– volume: 104
  start-page: 3297
  year: 1999
  ident: e_1_3_4_40_2
  article-title: Diel variability of photosynthetic picoplankton in the equatorial Pacific
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JC01333
– volume: 8
  start-page: 111
  year: 1994
  ident: e_1_3_4_45_2
  article-title: Variations of feeding activities of heterotrophic nanoflagellates on picoplankton
  publication-title: Mar. Microb. Food Webs
– ident: e_1_3_4_18_2
– volume: 138
  start-page: 355
  year: 2001
  ident: e_1_3_4_26_2
  article-title: Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters
  publication-title: Mar. Biol.
  doi: 10.1007/s002270000461
– ident: e_1_3_4_56_2
– volume: 57
  start-page: 29
  year: 2012
  ident: e_1_3_4_48_2
  article-title: Diel changes in bulk and single-cell bacterial heterotrophic activity in winter surface waters of the northwestern Mediterranean Sea
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2012.57.1.0029
– volume: 170
  start-page: 45
  year: 1998
  ident: e_1_3_4_21_2
  article-title: Growth and abundance of Synechococcus sp. in a Mediterranean bay: Seasonality and relationship with temperature
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps170045
– volume: 9
  start-page: 2720
  year: 2007
  ident: e_1_3_4_51_2
  article-title: Resource dynamics during infection of Micromonas pusilla by virus MpV-Sp1
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2007.01384.x
– volume: 33
  start-page: 1465
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbr041
– volume: 60
  start-page: 1426
  year: 2015
  ident: e_1_3_4_15_2
  article-title: Underestimation of microzooplankton grazing in dilution experiments due to inhibition of phytoplankton growth
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10106
– volume: 24
  start-page: 635
  year: 2002
  ident: e_1_3_4_42_2
  article-title: Short-timescale variabiity of picophytoplankton abundance and cellular parameters in surface waters of the Alboran Sea (western Mediterranean)
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/24.7.635
– volume: 49
  start-page: 51
  year: 2004
  ident: e_1_3_4_30_2
  article-title: Phytoplankton growth, microzooplankton grazing and carbon cycling in marine systems
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2004.49.1.0051
– volume: 67
  start-page: 283
  year: 1982
  ident: e_1_3_4_11_2
  article-title: Estimating the grazing impact of marine micro-zooplankton
  publication-title: Mar. Biol.
  doi: 10.1007/BF00397668
– volume: 38
  start-page: 303
  year: 1995
  ident: e_1_3_4_38_2
  article-title: The cell cycle of phytoplankton: Coupling cell growth to population growth
  publication-title: Mol. Ecol. Aquatic Microbes
  doi: 10.1007/978-3-642-79923-5_17
– ident: e_1_3_4_16_2
  doi: 10.1002/lno.11374
– volume: 36
  start-page: 281
  year: 1998
  ident: e_1_3_4_52_2
  article-title: The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities
  publication-title: Microb. Ecol.
  doi: 10.1007/s002489900115
– volume: 97
  start-page: 252
  year: 2002
  ident: e_1_3_4_12_2
  article-title: Statistical methods in assessing agreement
  publication-title: J. Am. Stat. Assoc.
– volume: 39
  start-page: 169
  year: 1994
  ident: e_1_3_4_3_2
  article-title: Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: Measurements from flow cytometric sorting
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1994.39.1.0169
– volume: 53
  start-page: 863
  year: 2008
  ident: e_1_3_4_24_2
  article-title: Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2008.53.2.0863
– volume: 43
  start-page: 1916
  year: 1998
  ident: e_1_3_4_41_2
  article-title: Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1998.43.8.1916
– volume: 44
  start-page: 1565
  year: 1999
  ident: e_1_3_4_46_2
  article-title: Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole conents
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1999.44.6.1565
– volume: 111
  start-page: 9852
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321421111
– volume: 16
  start-page: 649
  year: 2018
  ident: e_1_3_4_32_2
  article-title: Methodological review and meta-analysis of dilution assays for estimates of virus- and grazer-mediated phytoplankton mortality
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lom3.10273
– start-page: 220
  volume-title: Georges Bank
  year: 1987
  ident: e_1_3_4_19_2
– volume: 61
  start-page: 501
  year: 2004
  ident: e_1_3_4_27_2
  article-title: Microzooplankton production in the oceans
  publication-title: ICES J. Mar. Sci.
  doi: 10.1016/j.icesjms.2004.03.011
– volume: 49
  start-page: 168
  year: 2004
  ident: e_1_3_4_4_2
  article-title: Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2004.49.1.0168
– volume: 112
  start-page: 8008
  year: 2015
  ident: e_1_3_4_7_2
  article-title: Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1424279112
– volume: 6
  start-page: e16805
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface
  publication-title: PloS One
  doi: 10.1371/journal.pone.0016805
– volume: 40
  start-page: 1004
  year: 2010
  ident: e_1_3_4_10_2
  article-title: Long-term sea surface temperature variability along U.S. East Coast
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/2009JPO4300.1
– volume: 354
  start-page: 326
  year: 2016
  ident: e_1_3_4_20_2
  article-title: Physiological and ecological drivers of early spring blooms of a coastal phytoplankter
  publication-title: Science
  doi: 10.1126/science.aaf8536
– volume: 30
  start-page: 207
  year: 2003
  ident: e_1_3_4_29_2
  article-title: Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame030207
– volume: 43
  start-page: 341
  year: 2002
  ident: e_1_3_4_50_2
  article-title: Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-002-2002-3
– volume: 49
  start-page: 1915
  year: 2004
  ident: e_1_3_4_44_2
  article-title: Circadian cycles in growth and feeding rates of heterotrophic protist plankton
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2004.49.6.1915
– volume: 50
  start-page: 301
  year: 2003
  ident: e_1_3_4_55_2
  article-title: An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot
  publication-title: Deep Sea Res. I
  doi: 10.1016/S0967-0637(03)00003-7
– volume: 52
  start-page: 2519
  year: 2007
  ident: e_1_3_4_31_2
  article-title: Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2007.52.6.2519
– volume: 44
  start-page: 279
  year: 2003
  ident: e_1_3_4_53_2
  article-title: Effects of ultraviolet radiation on marine virus-phytoplankton interactions
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(03)00075-8
– volume: 8
  start-page: 3423
  year: 2011
  ident: e_1_3_4_39_2
  article-title: Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-3423-2011
– volume: 31
  start-page: 9
  year: 2003
  ident: e_1_3_4_54_2
  article-title: Effects of viral infection on photosynthetic processes in the bloom-forming alga Heterosigma akashiwo
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame031009
– volume: 6
  start-page: 167
  year: 2014
  ident: e_1_3_4_28_2
  article-title: Resurrecting the ecological underpinnings of ocean plankton blooms
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-052913-021325
– volume: 48
  start-page: 1756
  year: 2003
  ident: e_1_3_4_5_2
  article-title: Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.5.1756
– volume: 33
  start-page: 765
  year: 1988
  ident: e_1_3_4_1_2
  article-title: Phototrophic picoplankton: An overview from marine and freshwater ecosystems
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1988.33.4_part_2.0765
– volume: 6
  start-page: 174
  year: 2019
  ident: e_1_3_4_23_2
  article-title: Seasonal variability and drivers of microzooplankton grazing and phytoplankton growth in a subtropical estuary
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00174
– volume: 49
  start-page: 207
  year: 2007
  ident: e_1_3_4_35_2
  article-title: Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01136
– volume: 111
  start-page: 304
  year: 2015
  ident: e_1_3_4_33_2
  article-title: Seasonal variations in the effect of microzooplankton grazing on phytoplankton in the East China Sea
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2015.08.010
– volume: 37
  start-page: 357
  year: 2001
  ident: e_1_3_4_37_2
  article-title: Diel patterns of growth and division in marine picoplankton in culture
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2001.037003357.x
– volume: 3
  start-page: e00036-12
  year: 2012
  ident: e_1_3_4_36_2
  article-title: The Black Queen Hypothesis: Evolution of dependencies through adaptive gene loss
  publication-title: mBio
  doi: 10.1128/mBio.00036-12
– volume: 23
  start-page: 253
  year: 2001
  ident: e_1_3_4_43_2
  article-title: Light-aided digestion, grazing and growth in herbivorous protists
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame023253
– volume: 38
  start-page: 1132
  year: 2002
  ident: e_1_3_4_17_2
  article-title: Diel variations in optical properties of Micromonas pusilla (prasinophyceae)
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2002.02008.x
– volume: 5
  start-page: 485
  year: 2014
  ident: e_1_3_4_9_2
  article-title: Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: An insight into specific population growth rates using a single cell high frequency approach
  publication-title: Front. Microbial.
– volume: 52
  start-page: 886
  year: 2007
  ident: e_1_3_4_34_2
  article-title: Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2007.52.2.0886
– volume: 13
  start-page: 640
  year: 2015
  ident: e_1_3_4_8_2
  article-title: Assessing cell cycle-based methods of measuring Prochlorococcus division rates using an individual-based model
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.1002/lom3.10054
SSID ssj0009580
Score 2.4482002
Snippet Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food...
Approximately half of the world’s primary production is carried out by marine phytoplankton, of which the picoeukaryotes are a diverse and understudied group....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12215
SubjectTerms Animals
Biodiversity
Biogeochemical cycles
Biological Sciences
Dynamics
Feeding Behavior
Food Chain
Food chains
Food webs
Lysis
Models, Statistical
Phytoplankton
Phytoplankton - physiology
Plankton
Population Dynamics
Shelves
Synechococcus
Synechococcus - growth & development
Zooplankton
Zooplankton - physiology
Title Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf
URI https://www.jstor.org/stable/26931266
https://www.ncbi.nlm.nih.gov/pubmed/32414929
https://www.proquest.com/docview/2412645503
https://www.proquest.com/docview/2404044804
https://pubmed.ncbi.nlm.nih.gov/PMC7275697
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCrIv4qqr0VVG8GGlpOYyySSPy-paBOtCt1CfQjKZsGI3LSZ90L_hH_aczCXpugsqlFAykwnt9-XMOSfnQshr2ILyOJahK7yoclnOQQ5WhXCF4LJIylR6nUP_0yyeLtjHZbQcjX4Nopa2bTERP2_MK_kfVOEc4IpZsv-ArF0UTsB3wBeOgDAc_wrjd6qdvCqzjDuUduyVw2AL1CybK2yZ0rToyGjXm1Vef8NyGmsd44jvbrCHz3gxH88v5aoaqqzndotrzHIz40E86fNRtJBoxu74fNZ3Nz5Dl53yCEj00v8YW2_zTG4LkzGkgvf7Rl_TLQLunkr4IbkVRrLu4xs_2zKTXWy4fr2l_ReB18VZKQEslcwFvrgxU11DrVBWGZ2afSp1WctYPwhUBugf0h_EFbYsrvNmAmZogknFapkBFzZXHRlAjwTbUDtbdgtum6E75G4Atge2xfiw9AeVnBPP1Iji4dtrd9sn98z1O5qOCna9yYy5Ho07UG8uHpD72i6hJ4pkB2Qk64fkwIBKj3V58jePyBfDOgqsoz3rqGUdXVcUaEIN6-gO6yh8cNSyji7mtGPdY7I4e39xOnV1gw5XMBa2bpR6pV-IpCojXgVVIvIQrNk0rKIyDJK45D4TRSJST0o4HcXSK3xeSh77FedFXoWHZK9e1_IpoaGPXdDLNM5ZwCR2opVRUopc8rL0pRQOmZg_MxO6ej02UVllXRQFDzMEIuuBcMixvWCjCrfcPvWwQ8fOC-I09EFzdciRgSvTj32TAbpgRIBhHzrklR0GoYxv2vJarrc4B_ZGxhKPOeSJQtcubujhEL6Du52ABd93R-qvl13hd469GlL-7NY1n5P9_hE7Invt9618AUpzW7zsSPwb_DDEvw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+functional+diversity+of+the+smallest+phytoplankton+on+the+Northeast+US+Shelf&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fowler%2C+Bethany+L&rft.au=Neubert%2C+Michael+G&rft.au=Hunter-Cevera%2C+Kristen+R&rft.au=Olson%2C+Robert+J&rft.date=2020-06-02&rft.eissn=1091-6490&rft.volume=117&rft.issue=22&rft.spage=12215&rft_id=info:doi/10.1073%2Fpnas.1918439117&rft_id=info%3Apmid%2F32414929&rft.externalDocID=32414929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon