Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearsho...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 22; pp. 12215 - 12221 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1918439117 |
Cover
Loading…
Abstract | Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a sizestructured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest. |
---|---|
AbstractList | Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a sizestructured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with , the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus , the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest. Approximately half of the world’s primary production is carried out by marine phytoplankton, of which the picoeukaryotes are a diverse and understudied group. Here, we report on a phytoplankton community we have been monitoring over many years to gain insight into factors that drive their dynamics. We found that the picoeukaryotes reproduce and are lost (probably via grazing) much more rapidly than other picophytoplankton. They appear to be a preferred prey item of the micrograzer community and so contribute more to the region’s primary productivity than would be inferred from their abundance alone. This work improves our understanding of the economically important Northeast US Shelf ecosystem and highlights the possible limitations of treating the picoplankton as a single functional group. Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus , the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest. |
Author | Fowler, Bethany L. Hunter-Cevera, Kristen R. Olson, Robert J. Neubert, Michael G. Solow, Andrew R. Shalapyonok, Alexi Sosik, Heidi M. |
Author_xml | – sequence: 1 givenname: Bethany L. surname: Fowler fullname: Fowler, Bethany L. – sequence: 2 givenname: Michael G. surname: Neubert fullname: Neubert, Michael G. – sequence: 3 givenname: Kristen R. surname: Hunter-Cevera fullname: Hunter-Cevera, Kristen R. – sequence: 4 givenname: Robert J. surname: Olson fullname: Olson, Robert J. – sequence: 5 givenname: Alexi surname: Shalapyonok fullname: Shalapyonok, Alexi – sequence: 6 givenname: Andrew R. surname: Solow fullname: Solow, Andrew R. – sequence: 7 givenname: Heidi M. surname: Sosik fullname: Sosik, Heidi M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32414929$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt17UoJuHEzbT4nk40g9ROKLmoXrkImk_jynEnGJFN4_70ZXlu1IAkEcn_ncO69J-AoxGABeI7RGUaCns9B5zMscceoxFg8AhuMJG5aJtER2CBERNMxwo7BSc47hJDkHXoCjilhmEkiN-D7u33QkzcZ6jBAtwRTfAx6hIO_sSn7sofRwbK1ME96HG0ucN7uS5xHHX6WGGC9a_VLTPXRtXx9Ba-2dnRPwWOnx2yf3b6n4PrD-28Xn5rLrx8_X7y9bAxjtDRcogH3pnMDF464zmjKSCep4wMlXTsIzEzfGYmsrd-8tajHYrCixU6IXjt6Ct4cfOeln-xgbChJj2pOftJpr6L26t9K8Fv1I94oQQRvpagGr28NUvy11A7V5LOxY-3QxiUrwlA9rEOsoq8eoLu4pDqulcKkZZwjWqmXfye6j3I39QrwA2BSzDlZp4wveh18DehHhZFat6vW7ao_26268we6O-v_K14cFLtcYrrHSStpjdvS32HqskY |
CitedBy_id | crossref_primary_10_1002_lol2_10410 crossref_primary_10_3389_fmicb_2024_1380179 crossref_primary_10_1007_s10533_024_01192_6 crossref_primary_10_1029_2022GL097753 crossref_primary_10_1002_lol2_10331 crossref_primary_10_1016_j_ecolmodel_2022_109907 crossref_primary_10_1111_gcb_17316 crossref_primary_10_3354_meps14572 crossref_primary_10_3389_fmars_2022_975877 crossref_primary_10_1126_sciadv_ade8352 crossref_primary_10_1016_j_scitotenv_2024_177122 crossref_primary_10_1002_lom3_10493 crossref_primary_10_5194_bg_20_3491_2023 crossref_primary_10_3389_fmars_2022_844620 crossref_primary_10_1093_biosci_biac050 crossref_primary_10_1038_s41598_022_17313_w crossref_primary_10_3389_fmars_2024_1392673 crossref_primary_10_1371_journal_pcbi_1009733 crossref_primary_10_3389_fmars_2023_1166629 crossref_primary_10_3389_fmars_2024_1375669 crossref_primary_10_1029_2020GB006702 crossref_primary_10_3389_fmicb_2021_786590 |
Cites_doi | 10.4319/lo.2005.50.4.1221 10.1128/MMBR.63.1.106-127.1999 10.1371/journal.pone.0172135 10.1093/plankt/fbw014 10.1029/98JC01333 10.1007/s002270000461 10.4319/lo.2012.57.1.0029 10.3354/meps170045 10.1111/j.1462-2920.2007.01384.x 10.1093/plankt/fbr041 10.1002/lno.10106 10.1093/plankt/24.7.635 10.4319/lo.2004.49.1.0051 10.1007/BF00397668 10.1007/978-3-642-79923-5_17 10.1002/lno.11374 10.1007/s002489900115 10.4319/lo.1994.39.1.0169 10.4319/lo.2008.53.2.0863 10.4319/lo.1998.43.8.1916 10.4319/lo.1999.44.6.1565 10.1073/pnas.1321421111 10.1002/lom3.10273 10.1016/j.icesjms.2004.03.011 10.4319/lo.2004.49.1.0168 10.1073/pnas.1424279112 10.1371/journal.pone.0016805 10.1175/2009JPO4300.1 10.1126/science.aaf8536 10.3354/ame030207 10.1007/s00248-002-2002-3 10.4319/lo.2004.49.6.1915 10.1016/S0967-0637(03)00003-7 10.4319/lo.2007.52.6.2519 10.1016/S0168-6496(03)00075-8 10.5194/bg-8-3423-2011 10.3354/ame031009 10.1146/annurev-marine-052913-021325 10.4319/lo.2003.48.5.1756 10.4319/lo.1988.33.4_part_2.0765 10.3389/fmars.2019.00174 10.3354/ame01136 10.1016/j.csr.2015.08.010 10.1046/j.1529-8817.2001.037003357.x 10.1128/mBio.00036-12 10.3354/ame023253 10.1046/j.1529-8817.2002.02008.x 10.4319/lo.2007.52.2.0886 10.1002/lom3.10054 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 2, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 2, 2020 – notice: 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1918439117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12221 |
ExternalDocumentID | PMC7275697 32414929 10_1073_pnas_1918439117 26931266 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US Northeastern states |
GeographicLocations_xml | – name: Northeastern states – name: United States--US |
GrantInformation_xml | – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GGA#934 – fundername: National Aeronautics and Space Administration (NASA) grantid: NNX13AC98G – fundername: National Science Foundation (NSF) grantid: OCE-0119915 – fundername: Simons Foundation grantid: 561126 – fundername: National Aeronautics and Space Administration (NASA) grantid: NNX11AF07G – fundername: National Science Foundation (NSF) grantid: OCE-1655686 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-590d1bc8fd57f2f8ca342893f5d3286d714cb8c90ee28956e0b17de761f77baf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:39:13 EDT 2025 Fri Jul 11 10:08:37 EDT 2025 Mon Jun 30 10:06:39 EDT 2025 Wed Feb 19 02:12:01 EST 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 03:40:22 EDT 2025 Thu May 29 09:13:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | matrix model flow cytometry primary productivity picoeukaryotes |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-590d1bc8fd57f2f8ca342893f5d3286d714cb8c90ee28956e0b17de761f77baf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Tom M. Fenchel, University of Copenhagen, Helsingor, Denmark, and approved April 9, 2020 (received for review October 22, 2019) Author contributions: B.L.F., M.G.N., K.R.H.-C., and H.M.S. designed research; B.L.F., M.G.N., K.R.H.-C., R.J.O., A.S., A.R.S., and H.M.S. performed research; B.L.F., K.R.H-C., R.J.O., A.S., and H.M.S. contributed new analytic tools; B.L.F., K.R.H.-C., and H.M.S. analyzed data; and B.L.F., M.G.N., and H.M.S. wrote the paper. |
ORCID | 0000-0001-8655-7253 0000-0002-0306-0346 0000-0003-1978-1372 0000-0002-4591-2842 0000-0001-8820-5008 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/22/12215.full.pdf |
PMID | 32414929 |
PQID | 2412645503 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275697 proquest_miscellaneous_2404044804 proquest_journals_2412645503 pubmed_primary_32414929 crossref_citationtrail_10_1073_pnas_1918439117 crossref_primary_10_1073_pnas_1918439117 jstor_primary_26931266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-02 |
PublicationDateYYYYMMDD | 2020-06-02 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Anderson S. R. (e_1_3_4_23_2) 2019; 6 Tsai A. Y. (e_1_3_4_49_2) 2005; 50 Jacquet S. (e_1_3_4_41_2) 1998; 43 Dall’Olmo G. (e_1_3_4_39_2) 2011; 8 Brown C. (e_1_3_4_51_2) 2007; 9 Jakobsen H. H. (e_1_3_4_44_2) 2004; 49 Baudoux A. C. (e_1_3_4_31_2) 2007; 52 Calbet A. (e_1_3_4_30_2) 2004; 49 Garza D. R. (e_1_3_4_52_2) 1998; 36 Juneau P. (e_1_3_4_54_2) 2003; 31 Strom S. L. (e_1_3_4_26_2) 2001; 138 Jacquet S. (e_1_3_4_37_2) 2001; 37 Bec B. (e_1_3_4_24_2) 2008; 53 Hunter-Cevera K. R. (e_1_3_4_6_2) 2014; 111 Worden A. Z. (e_1_3_4_4_2) 2004; 49 Rose J. M. (e_1_3_4_34_2) 2007; 52 Shearman R. K. (e_1_3_4_10_2) 2010; 40 Stoecker D. K. (e_1_3_4_15_2) 2015; 60 Apple J. K. (e_1_3_4_25_2) 2011; 77 Morris J. J. (e_1_3_4_13_2) 2011; 6 Agawin N. S. R. (e_1_3_4_21_2) 1998; 170 Christaki U. (e_1_3_4_50_2) 2002; 43 Hunter-Cevera K. R. (e_1_3_4_20_2) 2016; 354 Zheng L. (e_1_3_4_33_2) 2015; 111 Vaulot D. (e_1_3_4_38_2) 1995; 38 Ruiz-Gonzàlez C. (e_1_3_4_48_2) 2012; 57 Lin L. (e_1_3_4_12_2) 2002; 97 Jacquet S. (e_1_3_4_42_2) 2002; 24 Stockner J. G. (e_1_3_4_1_2) 1988; 33 Strom S. L. (e_1_3_4_43_2) 2001; 23 O’Reilly J. E. (e_1_3_4_19_2) 1987 Ribalet F. (e_1_3_4_7_2) 2015; 112 Hynes A. M. (e_1_3_4_8_2) 2015; 13 Weinbauer M. G. (e_1_3_4_14_2) 2011; 33 Morris J. J. (e_1_3_4_36_2) 2012; 3 Christoffersen K. (e_1_3_4_45_2) 1994; 8 Dolan J. R. (e_1_3_4_46_2) 1999; 44 Li W. K. W. (e_1_3_4_3_2) 1994; 39 Sosik H. M. (e_1_3_4_5_2) 2003; 48 Dugenne M. (e_1_3_4_9_2) 2014; 5 Ng W. H. A. (e_1_3_4_47_2) 2016; 38 Landry M. R. (e_1_3_4_27_2) 2004; 61 DuRand M. D. (e_1_3_4_17_2) 2002; 38 Evans C. (e_1_3_4_29_2) 2003; 30 Jacquet S. (e_1_3_4_53_2) 2003; 44 Vaulot D. (e_1_3_4_40_2) 1999; 104 Olson R. J. (e_1_3_4_55_2) 2003; 50 Partensky F. (e_1_3_4_2_2) 1999; 63 Behrenfeld M. J. (e_1_3_4_28_2) 2014; 6 e_1_3_4_16_2 e_1_3_4_56_2 e_1_3_4_18_2 Cuvelier M. L. (e_1_3_4_22_2) 2017; 12 Landry M. R. (e_1_3_4_11_2) 1982; 67 Kimmance S. A. (e_1_3_4_35_2) 2007; 49 Short S. M. (e_1_3_4_32_2) 2018; 16 |
References_xml | – volume: 50 start-page: 1221 year: 2005 ident: e_1_3_4_49_2 article-title: Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2005.50.4.1221 – volume: 63 start-page: 106 year: 1999 ident: e_1_3_4_2_2 article-title: Prochlorococcus, a marine photosynthetic prokaryote of global significance publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.63.1.106-127.1999 – volume: 77 start-page: 3074 year: 2011 ident: e_1_3_4_25_2 article-title: Variability in protist grazing and growth on different marine Synechococcus isolates publication-title: Microb. Ecol. – volume: 12 start-page: e0172135 year: 2017 ident: e_1_3_4_22_2 article-title: Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress publication-title: PloS One doi: 10.1371/journal.pone.0172135 – volume: 38 start-page: 636 year: 2016 ident: e_1_3_4_47_2 article-title: Diel periodicity of grazing by heterotrophic nanoflagellates influenced by prey cell properties and intrinsic grazing rhythm publication-title: J. Plankton Res. doi: 10.1093/plankt/fbw014 – volume: 104 start-page: 3297 year: 1999 ident: e_1_3_4_40_2 article-title: Diel variability of photosynthetic picoplankton in the equatorial Pacific publication-title: J. Geophys. Res. doi: 10.1029/98JC01333 – volume: 8 start-page: 111 year: 1994 ident: e_1_3_4_45_2 article-title: Variations of feeding activities of heterotrophic nanoflagellates on picoplankton publication-title: Mar. Microb. Food Webs – ident: e_1_3_4_18_2 – volume: 138 start-page: 355 year: 2001 ident: e_1_3_4_26_2 article-title: Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters publication-title: Mar. Biol. doi: 10.1007/s002270000461 – ident: e_1_3_4_56_2 – volume: 57 start-page: 29 year: 2012 ident: e_1_3_4_48_2 article-title: Diel changes in bulk and single-cell bacterial heterotrophic activity in winter surface waters of the northwestern Mediterranean Sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2012.57.1.0029 – volume: 170 start-page: 45 year: 1998 ident: e_1_3_4_21_2 article-title: Growth and abundance of Synechococcus sp. in a Mediterranean bay: Seasonality and relationship with temperature publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps170045 – volume: 9 start-page: 2720 year: 2007 ident: e_1_3_4_51_2 article-title: Resource dynamics during infection of Micromonas pusilla by virus MpV-Sp1 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01384.x – volume: 33 start-page: 1465 year: 2011 ident: e_1_3_4_14_2 article-title: Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria publication-title: J. Plankton Res. doi: 10.1093/plankt/fbr041 – volume: 60 start-page: 1426 year: 2015 ident: e_1_3_4_15_2 article-title: Underestimation of microzooplankton grazing in dilution experiments due to inhibition of phytoplankton growth publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10106 – volume: 24 start-page: 635 year: 2002 ident: e_1_3_4_42_2 article-title: Short-timescale variabiity of picophytoplankton abundance and cellular parameters in surface waters of the Alboran Sea (western Mediterranean) publication-title: J. Plankton Res. doi: 10.1093/plankt/24.7.635 – volume: 49 start-page: 51 year: 2004 ident: e_1_3_4_30_2 article-title: Phytoplankton growth, microzooplankton grazing and carbon cycling in marine systems publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.1.0051 – volume: 67 start-page: 283 year: 1982 ident: e_1_3_4_11_2 article-title: Estimating the grazing impact of marine micro-zooplankton publication-title: Mar. Biol. doi: 10.1007/BF00397668 – volume: 38 start-page: 303 year: 1995 ident: e_1_3_4_38_2 article-title: The cell cycle of phytoplankton: Coupling cell growth to population growth publication-title: Mol. Ecol. Aquatic Microbes doi: 10.1007/978-3-642-79923-5_17 – ident: e_1_3_4_16_2 doi: 10.1002/lno.11374 – volume: 36 start-page: 281 year: 1998 ident: e_1_3_4_52_2 article-title: The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities publication-title: Microb. Ecol. doi: 10.1007/s002489900115 – volume: 97 start-page: 252 year: 2002 ident: e_1_3_4_12_2 article-title: Statistical methods in assessing agreement publication-title: J. Am. Stat. Assoc. – volume: 39 start-page: 169 year: 1994 ident: e_1_3_4_3_2 article-title: Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: Measurements from flow cytometric sorting publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1994.39.1.0169 – volume: 53 start-page: 863 year: 2008 ident: e_1_3_4_24_2 article-title: Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.2.0863 – volume: 43 start-page: 1916 year: 1998 ident: e_1_3_4_41_2 article-title: Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1998.43.8.1916 – volume: 44 start-page: 1565 year: 1999 ident: e_1_3_4_46_2 article-title: Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole conents publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1999.44.6.1565 – volume: 111 start-page: 9852 year: 2014 ident: e_1_3_4_6_2 article-title: Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1321421111 – volume: 16 start-page: 649 year: 2018 ident: e_1_3_4_32_2 article-title: Methodological review and meta-analysis of dilution assays for estimates of virus- and grazer-mediated phytoplankton mortality publication-title: Limnol. Oceanogr. doi: 10.1002/lom3.10273 – start-page: 220 volume-title: Georges Bank year: 1987 ident: e_1_3_4_19_2 – volume: 61 start-page: 501 year: 2004 ident: e_1_3_4_27_2 article-title: Microzooplankton production in the oceans publication-title: ICES J. Mar. Sci. doi: 10.1016/j.icesjms.2004.03.011 – volume: 49 start-page: 168 year: 2004 ident: e_1_3_4_4_2 article-title: Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.1.0168 – volume: 112 start-page: 8008 year: 2015 ident: e_1_3_4_7_2 article-title: Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1424279112 – volume: 6 start-page: e16805 year: 2011 ident: e_1_3_4_13_2 article-title: Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface publication-title: PloS One doi: 10.1371/journal.pone.0016805 – volume: 40 start-page: 1004 year: 2010 ident: e_1_3_4_10_2 article-title: Long-term sea surface temperature variability along U.S. East Coast publication-title: J. Phys. Oceanogr. doi: 10.1175/2009JPO4300.1 – volume: 354 start-page: 326 year: 2016 ident: e_1_3_4_20_2 article-title: Physiological and ecological drivers of early spring blooms of a coastal phytoplankter publication-title: Science doi: 10.1126/science.aaf8536 – volume: 30 start-page: 207 year: 2003 ident: e_1_3_4_29_2 article-title: Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame030207 – volume: 43 start-page: 341 year: 2002 ident: e_1_3_4_50_2 article-title: Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates publication-title: Microb. Ecol. doi: 10.1007/s00248-002-2002-3 – volume: 49 start-page: 1915 year: 2004 ident: e_1_3_4_44_2 article-title: Circadian cycles in growth and feeding rates of heterotrophic protist plankton publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.6.1915 – volume: 50 start-page: 301 year: 2003 ident: e_1_3_4_55_2 article-title: An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot publication-title: Deep Sea Res. I doi: 10.1016/S0967-0637(03)00003-7 – volume: 52 start-page: 2519 year: 2007 ident: e_1_3_4_31_2 article-title: Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2007.52.6.2519 – volume: 44 start-page: 279 year: 2003 ident: e_1_3_4_53_2 article-title: Effects of ultraviolet radiation on marine virus-phytoplankton interactions publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00075-8 – volume: 8 start-page: 3423 year: 2011 ident: e_1_3_4_39_2 article-title: Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient publication-title: Biogeosciences doi: 10.5194/bg-8-3423-2011 – volume: 31 start-page: 9 year: 2003 ident: e_1_3_4_54_2 article-title: Effects of viral infection on photosynthetic processes in the bloom-forming alga Heterosigma akashiwo publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame031009 – volume: 6 start-page: 167 year: 2014 ident: e_1_3_4_28_2 article-title: Resurrecting the ecological underpinnings of ocean plankton blooms publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-052913-021325 – volume: 48 start-page: 1756 year: 2003 ident: e_1_3_4_5_2 article-title: Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.5.1756 – volume: 33 start-page: 765 year: 1988 ident: e_1_3_4_1_2 article-title: Phototrophic picoplankton: An overview from marine and freshwater ecosystems publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1988.33.4_part_2.0765 – volume: 6 start-page: 174 year: 2019 ident: e_1_3_4_23_2 article-title: Seasonal variability and drivers of microzooplankton grazing and phytoplankton growth in a subtropical estuary publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00174 – volume: 49 start-page: 207 year: 2007 ident: e_1_3_4_35_2 article-title: Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01136 – volume: 111 start-page: 304 year: 2015 ident: e_1_3_4_33_2 article-title: Seasonal variations in the effect of microzooplankton grazing on phytoplankton in the East China Sea publication-title: Continent. Shelf Res. doi: 10.1016/j.csr.2015.08.010 – volume: 37 start-page: 357 year: 2001 ident: e_1_3_4_37_2 article-title: Diel patterns of growth and division in marine picoplankton in culture publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2001.037003357.x – volume: 3 start-page: e00036-12 year: 2012 ident: e_1_3_4_36_2 article-title: The Black Queen Hypothesis: Evolution of dependencies through adaptive gene loss publication-title: mBio doi: 10.1128/mBio.00036-12 – volume: 23 start-page: 253 year: 2001 ident: e_1_3_4_43_2 article-title: Light-aided digestion, grazing and growth in herbivorous protists publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame023253 – volume: 38 start-page: 1132 year: 2002 ident: e_1_3_4_17_2 article-title: Diel variations in optical properties of Micromonas pusilla (prasinophyceae) publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2002.02008.x – volume: 5 start-page: 485 year: 2014 ident: e_1_3_4_9_2 article-title: Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: An insight into specific population growth rates using a single cell high frequency approach publication-title: Front. Microbial. – volume: 52 start-page: 886 year: 2007 ident: e_1_3_4_34_2 article-title: Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2007.52.2.0886 – volume: 13 start-page: 640 year: 2015 ident: e_1_3_4_8_2 article-title: Assessing cell cycle-based methods of measuring Prochlorococcus division rates using an individual-based model publication-title: Limnol. Oceanogr. Methods doi: 10.1002/lom3.10054 |
SSID | ssj0009580 |
Score | 2.4482002 |
Snippet | Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food... Approximately half of the world’s primary production is carried out by marine phytoplankton, of which the picoeukaryotes are a diverse and understudied group.... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12215 |
SubjectTerms | Animals Biodiversity Biogeochemical cycles Biological Sciences Dynamics Feeding Behavior Food Chain Food chains Food webs Lysis Models, Statistical Phytoplankton Phytoplankton - physiology Plankton Population Dynamics Shelves Synechococcus Synechococcus - growth & development Zooplankton Zooplankton - physiology |
Title | Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf |
URI | https://www.jstor.org/stable/26931266 https://www.ncbi.nlm.nih.gov/pubmed/32414929 https://www.proquest.com/docview/2412645503 https://www.proquest.com/docview/2404044804 https://pubmed.ncbi.nlm.nih.gov/PMC7275697 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCrIv4qqr0VVG8GGlpOYyySSPy-paBOtCt1CfQjKZsGI3LSZ90L_hH_aczCXpugsqlFAykwnt9-XMOSfnQshr2ILyOJahK7yoclnOQQ5WhXCF4LJIylR6nUP_0yyeLtjHZbQcjX4Nopa2bTERP2_MK_kfVOEc4IpZsv-ArF0UTsB3wBeOgDAc_wrjd6qdvCqzjDuUduyVw2AL1CybK2yZ0rToyGjXm1Vef8NyGmsd44jvbrCHz3gxH88v5aoaqqzndotrzHIz40E86fNRtJBoxu74fNZ3Nz5Dl53yCEj00v8YW2_zTG4LkzGkgvf7Rl_TLQLunkr4IbkVRrLu4xs_2zKTXWy4fr2l_ReB18VZKQEslcwFvrgxU11DrVBWGZ2afSp1WctYPwhUBugf0h_EFbYsrvNmAmZogknFapkBFzZXHRlAjwTbUDtbdgtum6E75G4Atge2xfiw9AeVnBPP1Iji4dtrd9sn98z1O5qOCna9yYy5Ho07UG8uHpD72i6hJ4pkB2Qk64fkwIBKj3V58jePyBfDOgqsoz3rqGUdXVcUaEIN6-gO6yh8cNSyji7mtGPdY7I4e39xOnV1gw5XMBa2bpR6pV-IpCojXgVVIvIQrNk0rKIyDJK45D4TRSJST0o4HcXSK3xeSh77FedFXoWHZK9e1_IpoaGPXdDLNM5ZwCR2opVRUopc8rL0pRQOmZg_MxO6ej02UVllXRQFDzMEIuuBcMixvWCjCrfcPvWwQ8fOC-I09EFzdciRgSvTj32TAbpgRIBhHzrklR0GoYxv2vJarrc4B_ZGxhKPOeSJQtcubujhEL6Du52ABd93R-qvl13hd469GlL-7NY1n5P9_hE7Invt9618AUpzW7zsSPwb_DDEvw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+functional+diversity+of+the+smallest+phytoplankton+on+the+Northeast+US+Shelf&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fowler%2C+Bethany+L&rft.au=Neubert%2C+Michael+G&rft.au=Hunter-Cevera%2C+Kristen+R&rft.au=Olson%2C+Robert+J&rft.date=2020-06-02&rft.eissn=1091-6490&rft.volume=117&rft.issue=22&rft.spage=12215&rft_id=info:doi/10.1073%2Fpnas.1918439117&rft_id=info%3Apmid%2F32414929&rft.externalDocID=32414929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |