A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care

The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 50; pp. 31674 - 31684
Main Authors Rwei, Alina Y., Lu, Wei, Wu, Changsheng, Human, Kelia, Suen, Emily, Franklin, Daniel, Fabiani, Monica, Gratton, Gabriele, Xie, Zhaoqian, Deng, Yujun, Kwak, Sung Soo, Li, Lizhu, Gu, Carol, Liu, Alanna, Rand, Casey M., Stewart, Tracey M., Huang, Yonggang, Weese-Mayer, Debra E., Rogersa, John A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.12.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2019786117

Cover

Loading…
Abstract The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platformhas the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
AbstractList The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
Continuous monitoring of cerebral hemodynamics is critical for safeguarding the healthy neurodevelopment of pediatric patients. This paper introduces a soft, flexible, miniaturized wireless system for real-time, continuous monitoring of systemic and cerebral hemodynamics for such purposes. Clinical studies on pediatric subjects with ages between 0.2 and 15 y and with various racial backgrounds validate opportunities for practical use in operating hospital environments. This platform may significantly enhance the quality of care of pediatric patients, particularly those at risk for cerebral and neurodevelopmental impairments in developed and developing world settings alike. The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platformhas the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
Author Gu, Carol
Lu, Wei
Li, Lizhu
Gratton, Gabriele
Rand, Casey M.
Human, Kelia
Liu, Alanna
Huang, Yonggang
Rogersa, John A.
Wu, Changsheng
Suen, Emily
Fabiani, Monica
Franklin, Daniel
Stewart, Tracey M.
Kwak, Sung Soo
Weese-Mayer, Debra E.
Rwei, Alina Y.
Deng, Yujun
Xie, Zhaoqian
Author_xml – sequence: 1
  givenname: Alina Y.
  surname: Rwei
  fullname: Rwei, Alina Y.
– sequence: 2
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
– sequence: 3
  givenname: Changsheng
  surname: Wu
  fullname: Wu, Changsheng
– sequence: 4
  givenname: Kelia
  surname: Human
  fullname: Human, Kelia
– sequence: 5
  givenname: Emily
  surname: Suen
  fullname: Suen, Emily
– sequence: 6
  givenname: Daniel
  surname: Franklin
  fullname: Franklin, Daniel
– sequence: 7
  givenname: Monica
  surname: Fabiani
  fullname: Fabiani, Monica
– sequence: 8
  givenname: Gabriele
  surname: Gratton
  fullname: Gratton, Gabriele
– sequence: 9
  givenname: Zhaoqian
  surname: Xie
  fullname: Xie, Zhaoqian
– sequence: 10
  givenname: Yujun
  surname: Deng
  fullname: Deng, Yujun
– sequence: 11
  givenname: Sung Soo
  surname: Kwak
  fullname: Kwak, Sung Soo
– sequence: 12
  givenname: Lizhu
  surname: Li
  fullname: Li, Lizhu
– sequence: 13
  givenname: Carol
  surname: Gu
  fullname: Gu, Carol
– sequence: 14
  givenname: Alanna
  surname: Liu
  fullname: Liu, Alanna
– sequence: 15
  givenname: Casey M.
  surname: Rand
  fullname: Rand, Casey M.
– sequence: 16
  givenname: Tracey M.
  surname: Stewart
  fullname: Stewart, Tracey M.
– sequence: 17
  givenname: Yonggang
  surname: Huang
  fullname: Huang, Yonggang
– sequence: 18
  givenname: Debra E.
  surname: Weese-Mayer
  fullname: Weese-Mayer, Debra E.
– sequence: 19
  givenname: John A.
  surname: Rogersa
  fullname: Rogersa, John A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33257558$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt17UoZcOOi0958z2yEUrQKBTe6chEyyZ02z5nkmcxT-t-bx2urFlyEQPI7h3PvOSIHMUUk5CWFUwqan22iLacMaK87Ral-QlYUetoq0cMBWQEw3XaCiUNyVMoaAHrZwTNyyDmTWspuRb6dN79CxglLOWnK9xDbEBfMo3XomyGkgrGk3Iz1OMw4ZDs1NzgnfxvtHFwzpxiWlEO8bkJsNuiDXXJ9dzbjc_J0tFPBF3f3Mfn64f2Xi4_t1efLTxfnV60Tgi-tFL2zvfeeeyfZ2PWjGoBz0FAzWM2G0VHqFNNaKHDO9cPopUJFOe1GjZ4fk3d73812mNE7jEuNaTY5zDbfmmSD-fcnhhtznX6a6thzBtXg7Z1BTj-2WBYzh-JwmmzEtC2GCaVA1OWpir55hK7TNsc6XqU0U0pKsTN8_Xeihyj3e6-A3AMup1IyjsaFxS4h7QKGyVAwu37Nrl_zp9-qO3uku7f-v-LVXrEutacHnGkAqRnlvwHZ2LOi
CitedBy_id crossref_primary_10_1021_acsami_2c09601
crossref_primary_10_1007_s10103_021_03493_w
crossref_primary_10_1016_j_bios_2022_114145
crossref_primary_10_1038_s41528_022_00158_8
crossref_primary_10_1073_pnas_2026201119
crossref_primary_10_1007_s11886_024_02135_1
crossref_primary_10_1126_scitranslmed_abq1634
crossref_primary_10_1038_s43246_024_00511_6
crossref_primary_10_1126_science_abm1703
crossref_primary_10_1063_5_0095157
crossref_primary_10_1016_j_cossms_2024_101213
crossref_primary_10_1016_j_mtbio_2023_100787
crossref_primary_10_1038_s44222_023_00090_0
crossref_primary_10_1002_smm2_1157
crossref_primary_10_1002_advs_202306025
crossref_primary_10_1007_s11884_022_00665_4
crossref_primary_10_1111_micc_12770
crossref_primary_10_1021_acsami_1c07102
crossref_primary_10_1038_s41467_023_40181_5
crossref_primary_10_1109_JSEN_2023_3337842
crossref_primary_10_3390_bios12110944
crossref_primary_10_1063_5_0140900
crossref_primary_10_1109_JSEN_2022_3141457
crossref_primary_10_1177_21501351241247500
crossref_primary_10_1364_BOE_507730
crossref_primary_10_1002_aenm_202201532
crossref_primary_10_1002_adsr_202200052
crossref_primary_10_1002_adma_202103857
crossref_primary_10_1142_S1758825121501234
crossref_primary_10_1038_s41551_023_01098_y
crossref_primary_10_1002_adma_202103974
crossref_primary_10_1038_s41390_022_02416_x
crossref_primary_10_1016_j_wees_2024_04_001
crossref_primary_10_1089_bioe_2021_0018
crossref_primary_10_1115_1_4064211
crossref_primary_10_1002_adfm_202104288
crossref_primary_10_1016_j_eng_2021_10_019
crossref_primary_10_1126_sciadv_abo0537
crossref_primary_10_1021_acsnano_3c02513
crossref_primary_10_1038_s41390_024_03693_4
crossref_primary_10_1002_adfm_202419882
crossref_primary_10_1002_adma_202416899
crossref_primary_10_1021_acsbiomaterials_1c00741
crossref_primary_10_1016_j_cej_2021_133260
crossref_primary_10_1109_JSEN_2022_3196497
crossref_primary_10_1016_j_cej_2024_150470
crossref_primary_10_1093_cvr_cvab105
crossref_primary_10_1038_s41467_022_30594_z
crossref_primary_10_1007_s10286_023_00957_7
crossref_primary_10_1002_adma_202419161
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1109_TNSRE_2023_3260303
crossref_primary_10_1016_j_wnsx_2023_100247
crossref_primary_10_1109_OJNANO_2022_3226603
crossref_primary_10_1002_adfm_202405745
crossref_primary_10_1007_s10286_021_00807_4
crossref_primary_10_1002_adfm_202403562
crossref_primary_10_1002_adhm_202304164
crossref_primary_10_1016_j_neuroimage_2022_119216
crossref_primary_10_1038_s41586_024_08249_4
crossref_primary_10_1021_acsami_4c12429
crossref_primary_10_1007_s11431_022_2074_8
crossref_primary_10_1126_scitranslmed_abn6036
crossref_primary_10_1109_TBME_2024_3381637
crossref_primary_10_1063_5_0102811
crossref_primary_10_1126_sciadv_abi9283
crossref_primary_10_1088_1361_665X_ad8823
crossref_primary_10_1016_j_compositesb_2024_111191
crossref_primary_10_1109_TBME_2021_3115464
crossref_primary_10_34133_cbsystems_0047
Cites_doi 10.1016/j.jpeds.2018.11.038
10.1053/j.jvca.2019.08.048
10.1016/j.nantod.2015.06.004
10.1109/ICECE.2014.7026920
10.1038/s41390-018-0026-8
10.1177/1089253208316444
10.1136/adc.2002.023093
10.1016/S0022-5223(97)70074-6
10.1007/978-1-4939-0320-7_17
10.1080/00387010.2012.728158
10.3389/fped.2017.00064
10.1159/000203125
10.1038/s41591-020-0792-9
10.1203/00006450-200102000-00014
10.1016/j.jflm.2011.12.011
10.1016/j.clp.2009.07.015
10.1038/pr.2016.196
10.1016/j.pediatrneurol.2007.09.012
10.1038/s41390-018-0141-6
10.1111/psyp.12288
10.1016/j.neuroimage.2012.05.083
10.1007/s10877-012-9348-y
10.1542/peds.2008-0768
10.1177/0271678X17732694
10.3389/fphys.2019.00181
10.1152/japplphysiol.01310.2013
10.3389/fnhum.2019.00055
10.1117/1.JBO.18.8.086007
10.1097/00003246-200204000-00002
10.1002/adfm.201604373
10.1016/j.seizure.2015.01.015
10.1111/nyas.13948
10.1007/s12028-008-9175-7
10.1117/1.JBO.24.2.020503
10.1002/cnm.1162
10.1016/j.jtcvs.2007.07.036
10.1542/peds.2009-0913
10.1117/1.NPh.7.1.015008
10.1016/S0022-3476(83)80772-0
10.1109/EMBC.2014.6944431
10.1177/1178632919845630
10.1586/17434440.3.2.235
10.1046/j.1365-2044.2002.02826.x
10.1093/clinchem/37.9.1633
10.1007/s10877-017-0030-2
10.1097/PCC.0b013e318220e7ea
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Dec 15, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Dec 15, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2019786117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 31684
ExternalDocumentID PMC7749320
33257558
10_1073_pnas_2019786117
27005721
Genre Validation Study
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Observational Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG062666
– fundername: NIA NIH HHS
  grantid: R01 AG059878
– fundername: NCATS NIH HHS
  grantid: UL1 TR001422
– fundername: NCATS NIH HHS
  grantid: TL1 TR001423
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-549ca9ddd3dc52f89f6b033070ceda72bfc11c6277460ccc9bfd56e61318f7ed3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:03:32 EDT 2025
Fri Jul 11 14:53:44 EDT 2025
Mon Jun 30 10:08:36 EDT 2025
Wed Feb 19 02:28:24 EST 2025
Tue Jul 01 03:40:37 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Thu May 29 09:12:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords near-infrared spectroscopy
bioelectronics
cerebral hemodynamics
wearable electronics
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-549ca9ddd3dc52f89f6b033070ceda72bfc11c6277460ccc9bfd56e61318f7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Reviewers: R.D., University of Glasgow; and O.I., Georgia Institute of Technology.
Contributed by John A. Rogers, October 22, 2020 (sent for review September 21, 2020; reviewed by Ravinder Dahiya and Omer Inan)
1A.Y.R., W.L., and C.W. contributed equally to this work.
Author contributions: A.Y.R., D.E.W.-M., and J.A.R. designed research; A.Y.R., W.L., C.W., K.H., E.S., S.S.K., L.L., C.G., A.L., C.M.R., T.M.S., and D.E.W.-M. performed research; A.Y.R., W.L., D.F., Z.X., Y.D., and Y.H. contributed new reagents/analytic tools; A.Y.R., M.F., G.G., and J.A.R. analyzed data; and A.Y.R., W.L., D.F., Z.X., and J.A.R. wrote the paper.
ORCID 0000-0002-3709-5037
0000-0001-6061-220X
0000-0003-1328-4471
0000-0002-7579-2773
0000-0001-7151-7064
0000-0001-6080-579X
0000-0003-1320-817X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7749320
PMID 33257558
PQID 2472665540
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7749320
proquest_miscellaneous_2466040956
proquest_journals_2472665540
pubmed_primary_33257558
crossref_citationtrail_10_1073_pnas_2019786117
crossref_primary_10_1073_pnas_2019786117
jstor_primary_27005721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
Ekaterina N. L. (e_1_3_4_35_2) 2008; 6791
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
Filosa J. A. (e_1_3_4_38_2) 2010; 2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
Serena S. B. S. (e_1_3_4_5_2) 2008; 108
e_1_3_4_29_2
Yu Y. (e_1_3_4_4_2) 2018; 1
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_7_2
  doi: 10.1016/j.jpeds.2018.11.038
– ident: e_1_3_4_3_2
  doi: 10.1053/j.jvca.2019.08.048
– ident: e_1_3_4_33_2
  doi: 10.1016/j.nantod.2015.06.004
– ident: e_1_3_4_47_2
  doi: 10.1109/ICECE.2014.7026920
– ident: e_1_3_4_14_2
  doi: 10.1038/s41390-018-0026-8
– ident: e_1_3_4_15_2
  doi: 10.1177/1089253208316444
– ident: e_1_3_4_11_2
  doi: 10.1136/adc.2002.023093
– ident: e_1_3_4_16_2
  doi: 10.1016/S0022-5223(97)70074-6
– ident: e_1_3_4_18_2
  doi: 10.1007/978-1-4939-0320-7_17
– ident: e_1_3_4_34_2
  doi: 10.1080/00387010.2012.728158
– ident: e_1_3_4_2_2
  doi: 10.3389/fped.2017.00064
– ident: e_1_3_4_17_2
  doi: 10.1159/000203125
– ident: e_1_3_4_23_2
  doi: 10.1038/s41591-020-0792-9
– ident: e_1_3_4_26_2
  doi: 10.1203/00006450-200102000-00014
– ident: e_1_3_4_9_2
  doi: 10.1016/j.jflm.2011.12.011
– ident: e_1_3_4_50_2
  doi: 10.1016/j.clp.2009.07.015
– volume: 108
  start-page: 588
  year: 2008
  ident: e_1_3_4_5_2
  article-title: Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury
  publication-title: Anesthesiology J. Am. Soc. Anesthesiologists
– ident: e_1_3_4_13_2
  doi: 10.1038/pr.2016.196
– ident: e_1_3_4_6_2
  doi: 10.1016/j.pediatrneurol.2007.09.012
– ident: e_1_3_4_8_2
  doi: 10.1038/s41390-018-0141-6
– ident: e_1_3_4_44_2
  doi: 10.1111/psyp.12288
– ident: e_1_3_4_30_2
  doi: 10.1016/j.neuroimage.2012.05.083
– ident: e_1_3_4_37_2
  doi: 10.1007/s10877-012-9348-y
– ident: e_1_3_4_36_2
  doi: 10.1542/peds.2008-0768
– ident: e_1_3_4_45_2
  doi: 10.1177/0271678X17732694
– ident: e_1_3_4_10_2
  doi: 10.3389/fphys.2019.00181
– ident: e_1_3_4_1_2
  doi: 10.1152/japplphysiol.01310.2013
– ident: e_1_3_4_19_2
  doi: 10.3389/fnhum.2019.00055
– ident: e_1_3_4_31_2
  doi: 10.1117/1.JBO.18.8.086007
– ident: e_1_3_4_46_2
  doi: 10.1097/00003246-200204000-00002
– ident: e_1_3_4_43_2
  doi: 10.1002/adfm.201604373
– ident: e_1_3_4_21_2
  doi: 10.1016/j.seizure.2015.01.015
– ident: e_1_3_4_25_2
  doi: 10.1111/nyas.13948
– ident: e_1_3_4_49_2
  doi: 10.1007/s12028-008-9175-7
– ident: e_1_3_4_28_2
  doi: 10.1117/1.JBO.24.2.020503
– volume: 1
  start-page: CD010947
  year: 2018
  ident: e_1_3_4_4_2
  article-title: Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults
  publication-title: Cochrane Database Syst. Rev.
– ident: e_1_3_4_32_2
  doi: 10.1002/cnm.1162
– ident: e_1_3_4_41_2
  doi: 10.1016/j.jtcvs.2007.07.036
– ident: e_1_3_4_24_2
  doi: 10.1542/peds.2009-0913
– ident: e_1_3_4_29_2
  doi: 10.1117/1.NPh.7.1.015008
– ident: e_1_3_4_12_2
  doi: 10.1016/S0022-3476(83)80772-0
– ident: e_1_3_4_20_2
  doi: 10.1109/EMBC.2014.6944431
– ident: e_1_3_4_22_2
  doi: 10.1177/1178632919845630
– volume: 2
  start-page: 16
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Vascular tone and neurovascular coupling: Considerations toward an improved in vitro model
  publication-title: Front. Neuroenergetics
– volume: 6791
  start-page: 67910O
  year: 2008
  ident: e_1_3_4_35_2
  article-title: Measurements of absorbance of hemoglobin solutions incubated with glucose
  publication-title: Proc. SPIE
– ident: e_1_3_4_39_2
  doi: 10.1586/17434440.3.2.235
– ident: e_1_3_4_48_2
  doi: 10.1046/j.1365-2044.2002.02826.x
– ident: e_1_3_4_51_2
  doi: 10.1093/clinchem/37.9.1633
– ident: e_1_3_4_42_2
  doi: 10.1007/s10877-017-0030-2
– ident: e_1_3_4_27_2
– ident: e_1_3_4_40_2
  doi: 10.1097/PCC.0b013e318220e7ea
SSID ssj0009580
Score 2.5747547
Snippet The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired...
Continuous monitoring of cerebral hemodynamics is critical for safeguarding the healthy neurodevelopment of pediatric patients. This paper introduces a soft,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31674
SubjectTerms Adhesive bonding
Adolescent
Biosensing Techniques
Biosensors
Cerebrovascular Circulation - physiology
Child
Child Development - physiology
Child, Preschool
Female
Heart rate
Hemodynamic Monitoring - instrumentation
Hemodynamic Monitoring - methods
Hemodynamics
Humans
Hypoventilation
Infant
Infrared spectra
Infrared spectroscopy
Light emitting diodes
Magnetic resonance imaging
Male
Monitoring
Near infrared radiation
Neonates
Neurodevelopmental Disorders - diagnosis
Neurodevelopmental Disorders - physiopathology
Neurology
Neurophysiological Monitoring - instrumentation
Neurophysiological Monitoring - methods
Oxygenation
Patients
Pediatrics
Physical Sciences
Skin
Skin injuries
Spectroscopy, Near-Infrared - instrumentation
Telemedicine
Wavelengths
Wearable Electronic Devices
Wireless Technology - instrumentation
Title A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care
URI https://www.jstor.org/stable/27005721
https://www.ncbi.nlm.nih.gov/pubmed/33257558
https://www.proquest.com/docview/2472665540
https://www.proquest.com/docview/2466040956
https://pubmed.ncbi.nlm.nih.gov/PMC7749320
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIPAyVlHw4TvJYoY0JSplQK1XiIYo_okXr0ilthLS_ZH8u59hx06og4CWqEtex7n65Oyd3v0PoLQ38nDA3cxLGI4cIljsZJ9yJhKSuYDTwmuTxrxN6PiOf5-G817vrZC3Vazbkt3vrSv5Hq3AO9KqqZP9Bs3ZSOAG_Qb9wBA3D8a90PBoopuGF1I3PV1dF6Sj6hyrP1Fd9VixXsEldVk0qIZeV-kasKh-vl0L3oR9cN090Zepabtq2HQ1fdTdsvbBubtUmFUzat4ijTU2KMRSrgTO4mGw6HH__KQtdTFOU2cDGzuO6SfCThXUMtUkAgNtcSuNSNeT0a9ovclFk3fcUfpPzoSs1uzTfe1fVNdA-OE2iy6qHUttkCGkcSnRXUWu0dcWnQafmrjU2WNX2k73eAcyZamlcZoqn3YP9M22n2eLhnnxLz2bjcTo9nU_vofs-bEBUb4xPc69D5xzr4iaz3JY0Kgo-7Ey_Fe_olNd9m5ndnNxOkDN9hB6a3Qkeaagdop4sH6PDVoD4xJCUv3uCfoxwi733eAd52CIPA_JwizzcQR7eIA8XJbbIwwp5T9Hs7HT68dwxjTocTkiwdkKS8CwRQgSCh34eJzllbqC8Cdwzi3yWc8_jFARJqMs5T1guQiohkvTiPJIiOEIH5bKUzxEWueK4c0ORSEYyxZzkx1SJUuYxnHH7aNiKM-WGxV41U1mkTTZFFKRK_ulG_n10Yv9wowlcfj_0qNGPHaeSMsLI9_rouFVYah5_-B-JILiFaBzW9MZeBuOsvrhlpVzWagyl4CWTkPbRM61fO3kQgLcMw7iPoi3N2wGK-H37SllcNgTwIEfYdrkv_rysl-jB5jk8RgfrqpavIIJes9cNmH8B7UjKIw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wireless%2C+skin-interfaced+biosensor+for+cerebral+hemodynamic+monitoring+in+pediatric+care&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rwei%2C+Alina+Y&rft.au=Lu%2C+Wei&rft.au=Wu%2C+Changsheng&rft.au=Human%2C+Kelia&rft.date=2020-12-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=50&rft.spage=31674&rft_id=info:doi/10.1073%2Fpnas.2019786117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon