A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care
The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 50; pp. 31674 - 31684 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2019786117 |
Cover
Loading…
Abstract | The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platformhas the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. |
---|---|
AbstractList | The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. Continuous monitoring of cerebral hemodynamics is critical for safeguarding the healthy neurodevelopment of pediatric patients. This paper introduces a soft, flexible, miniaturized wireless system for real-time, continuous monitoring of systemic and cerebral hemodynamics for such purposes. Clinical studies on pediatric subjects with ages between 0.2 and 15 y and with various racial backgrounds validate opportunities for practical use in operating hospital environments. This platform may significantly enhance the quality of care of pediatric patients, particularly those at risk for cerebral and neurodevelopmental impairments in developed and developing world settings alike. The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platformhas the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. |
Author | Gu, Carol Lu, Wei Li, Lizhu Gratton, Gabriele Rand, Casey M. Human, Kelia Liu, Alanna Huang, Yonggang Rogersa, John A. Wu, Changsheng Suen, Emily Fabiani, Monica Franklin, Daniel Stewart, Tracey M. Kwak, Sung Soo Weese-Mayer, Debra E. Rwei, Alina Y. Deng, Yujun Xie, Zhaoqian |
Author_xml | – sequence: 1 givenname: Alina Y. surname: Rwei fullname: Rwei, Alina Y. – sequence: 2 givenname: Wei surname: Lu fullname: Lu, Wei – sequence: 3 givenname: Changsheng surname: Wu fullname: Wu, Changsheng – sequence: 4 givenname: Kelia surname: Human fullname: Human, Kelia – sequence: 5 givenname: Emily surname: Suen fullname: Suen, Emily – sequence: 6 givenname: Daniel surname: Franklin fullname: Franklin, Daniel – sequence: 7 givenname: Monica surname: Fabiani fullname: Fabiani, Monica – sequence: 8 givenname: Gabriele surname: Gratton fullname: Gratton, Gabriele – sequence: 9 givenname: Zhaoqian surname: Xie fullname: Xie, Zhaoqian – sequence: 10 givenname: Yujun surname: Deng fullname: Deng, Yujun – sequence: 11 givenname: Sung Soo surname: Kwak fullname: Kwak, Sung Soo – sequence: 12 givenname: Lizhu surname: Li fullname: Li, Lizhu – sequence: 13 givenname: Carol surname: Gu fullname: Gu, Carol – sequence: 14 givenname: Alanna surname: Liu fullname: Liu, Alanna – sequence: 15 givenname: Casey M. surname: Rand fullname: Rand, Casey M. – sequence: 16 givenname: Tracey M. surname: Stewart fullname: Stewart, Tracey M. – sequence: 17 givenname: Yonggang surname: Huang fullname: Huang, Yonggang – sequence: 18 givenname: Debra E. surname: Weese-Mayer fullname: Weese-Mayer, Debra E. – sequence: 19 givenname: John A. surname: Rogersa fullname: Rogersa, John A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33257558$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt17UoZcOOi0958z2yEUrQKBTe6chEyyZ02z5nkmcxT-t-bx2urFlyEQPI7h3PvOSIHMUUk5CWFUwqan22iLacMaK87Ral-QlYUetoq0cMBWQEw3XaCiUNyVMoaAHrZwTNyyDmTWspuRb6dN79CxglLOWnK9xDbEBfMo3XomyGkgrGk3Iz1OMw4ZDs1NzgnfxvtHFwzpxiWlEO8bkJsNuiDXXJ9dzbjc_J0tFPBF3f3Mfn64f2Xi4_t1efLTxfnV60Tgi-tFL2zvfeeeyfZ2PWjGoBz0FAzWM2G0VHqFNNaKHDO9cPopUJFOe1GjZ4fk3d73812mNE7jEuNaTY5zDbfmmSD-fcnhhtznX6a6thzBtXg7Z1BTj-2WBYzh-JwmmzEtC2GCaVA1OWpir55hK7TNsc6XqU0U0pKsTN8_Xeihyj3e6-A3AMup1IyjsaFxS4h7QKGyVAwu37Nrl_zp9-qO3uku7f-v-LVXrEutacHnGkAqRnlvwHZ2LOi |
CitedBy_id | crossref_primary_10_1021_acsami_2c09601 crossref_primary_10_1007_s10103_021_03493_w crossref_primary_10_1016_j_bios_2022_114145 crossref_primary_10_1038_s41528_022_00158_8 crossref_primary_10_1073_pnas_2026201119 crossref_primary_10_1007_s11886_024_02135_1 crossref_primary_10_1126_scitranslmed_abq1634 crossref_primary_10_1038_s43246_024_00511_6 crossref_primary_10_1126_science_abm1703 crossref_primary_10_1063_5_0095157 crossref_primary_10_1016_j_cossms_2024_101213 crossref_primary_10_1016_j_mtbio_2023_100787 crossref_primary_10_1038_s44222_023_00090_0 crossref_primary_10_1002_smm2_1157 crossref_primary_10_1002_advs_202306025 crossref_primary_10_1007_s11884_022_00665_4 crossref_primary_10_1111_micc_12770 crossref_primary_10_1021_acsami_1c07102 crossref_primary_10_1038_s41467_023_40181_5 crossref_primary_10_1109_JSEN_2023_3337842 crossref_primary_10_3390_bios12110944 crossref_primary_10_1063_5_0140900 crossref_primary_10_1109_JSEN_2022_3141457 crossref_primary_10_1177_21501351241247500 crossref_primary_10_1364_BOE_507730 crossref_primary_10_1002_aenm_202201532 crossref_primary_10_1002_adsr_202200052 crossref_primary_10_1002_adma_202103857 crossref_primary_10_1142_S1758825121501234 crossref_primary_10_1038_s41551_023_01098_y crossref_primary_10_1002_adma_202103974 crossref_primary_10_1038_s41390_022_02416_x crossref_primary_10_1016_j_wees_2024_04_001 crossref_primary_10_1089_bioe_2021_0018 crossref_primary_10_1115_1_4064211 crossref_primary_10_1002_adfm_202104288 crossref_primary_10_1016_j_eng_2021_10_019 crossref_primary_10_1126_sciadv_abo0537 crossref_primary_10_1021_acsnano_3c02513 crossref_primary_10_1038_s41390_024_03693_4 crossref_primary_10_1002_adfm_202419882 crossref_primary_10_1002_adma_202416899 crossref_primary_10_1021_acsbiomaterials_1c00741 crossref_primary_10_1016_j_cej_2021_133260 crossref_primary_10_1109_JSEN_2022_3196497 crossref_primary_10_1016_j_cej_2024_150470 crossref_primary_10_1093_cvr_cvab105 crossref_primary_10_1038_s41467_022_30594_z crossref_primary_10_1007_s10286_023_00957_7 crossref_primary_10_1002_adma_202419161 crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1109_TNSRE_2023_3260303 crossref_primary_10_1016_j_wnsx_2023_100247 crossref_primary_10_1109_OJNANO_2022_3226603 crossref_primary_10_1002_adfm_202405745 crossref_primary_10_1007_s10286_021_00807_4 crossref_primary_10_1002_adfm_202403562 crossref_primary_10_1002_adhm_202304164 crossref_primary_10_1016_j_neuroimage_2022_119216 crossref_primary_10_1038_s41586_024_08249_4 crossref_primary_10_1021_acsami_4c12429 crossref_primary_10_1007_s11431_022_2074_8 crossref_primary_10_1126_scitranslmed_abn6036 crossref_primary_10_1109_TBME_2024_3381637 crossref_primary_10_1063_5_0102811 crossref_primary_10_1126_sciadv_abi9283 crossref_primary_10_1088_1361_665X_ad8823 crossref_primary_10_1016_j_compositesb_2024_111191 crossref_primary_10_1109_TBME_2021_3115464 crossref_primary_10_34133_cbsystems_0047 |
Cites_doi | 10.1016/j.jpeds.2018.11.038 10.1053/j.jvca.2019.08.048 10.1016/j.nantod.2015.06.004 10.1109/ICECE.2014.7026920 10.1038/s41390-018-0026-8 10.1177/1089253208316444 10.1136/adc.2002.023093 10.1016/S0022-5223(97)70074-6 10.1007/978-1-4939-0320-7_17 10.1080/00387010.2012.728158 10.3389/fped.2017.00064 10.1159/000203125 10.1038/s41591-020-0792-9 10.1203/00006450-200102000-00014 10.1016/j.jflm.2011.12.011 10.1016/j.clp.2009.07.015 10.1038/pr.2016.196 10.1016/j.pediatrneurol.2007.09.012 10.1038/s41390-018-0141-6 10.1111/psyp.12288 10.1016/j.neuroimage.2012.05.083 10.1007/s10877-012-9348-y 10.1542/peds.2008-0768 10.1177/0271678X17732694 10.3389/fphys.2019.00181 10.1152/japplphysiol.01310.2013 10.3389/fnhum.2019.00055 10.1117/1.JBO.18.8.086007 10.1097/00003246-200204000-00002 10.1002/adfm.201604373 10.1016/j.seizure.2015.01.015 10.1111/nyas.13948 10.1007/s12028-008-9175-7 10.1117/1.JBO.24.2.020503 10.1002/cnm.1162 10.1016/j.jtcvs.2007.07.036 10.1542/peds.2009-0913 10.1117/1.NPh.7.1.015008 10.1016/S0022-3476(83)80772-0 10.1109/EMBC.2014.6944431 10.1177/1178632919845630 10.1586/17434440.3.2.235 10.1046/j.1365-2044.2002.02826.x 10.1093/clinchem/37.9.1633 10.1007/s10877-017-0030-2 10.1097/PCC.0b013e318220e7ea |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Dec 15, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Dec 15, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2019786117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 31684 |
ExternalDocumentID | PMC7749320 33257558 10_1073_pnas_2019786117 27005721 |
Genre | Validation Study Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Observational Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG062666 – fundername: NIA NIH HHS grantid: R01 AG059878 – fundername: NCATS NIH HHS grantid: UL1 TR001422 – fundername: NCATS NIH HHS grantid: TL1 TR001423 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-549ca9ddd3dc52f89f6b033070ceda72bfc11c6277460ccc9bfd56e61318f7ed3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:03:32 EDT 2025 Fri Jul 11 14:53:44 EDT 2025 Mon Jun 30 10:08:36 EDT 2025 Wed Feb 19 02:28:24 EST 2025 Tue Jul 01 03:40:37 EDT 2025 Thu Apr 24 23:01:12 EDT 2025 Thu May 29 09:12:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | near-infrared spectroscopy bioelectronics cerebral hemodynamics wearable electronics |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-549ca9ddd3dc52f89f6b033070ceda72bfc11c6277460ccc9bfd56e61318f7ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 Reviewers: R.D., University of Glasgow; and O.I., Georgia Institute of Technology. Contributed by John A. Rogers, October 22, 2020 (sent for review September 21, 2020; reviewed by Ravinder Dahiya and Omer Inan) 1A.Y.R., W.L., and C.W. contributed equally to this work. Author contributions: A.Y.R., D.E.W.-M., and J.A.R. designed research; A.Y.R., W.L., C.W., K.H., E.S., S.S.K., L.L., C.G., A.L., C.M.R., T.M.S., and D.E.W.-M. performed research; A.Y.R., W.L., D.F., Z.X., Y.D., and Y.H. contributed new reagents/analytic tools; A.Y.R., M.F., G.G., and J.A.R. analyzed data; and A.Y.R., W.L., D.F., Z.X., and J.A.R. wrote the paper. |
ORCID | 0000-0002-3709-5037 0000-0001-6061-220X 0000-0003-1328-4471 0000-0002-7579-2773 0000-0001-7151-7064 0000-0001-6080-579X 0000-0003-1320-817X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7749320 |
PMID | 33257558 |
PQID | 2472665540 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7749320 proquest_miscellaneous_2466040956 proquest_journals_2472665540 pubmed_primary_33257558 crossref_citationtrail_10_1073_pnas_2019786117 crossref_primary_10_1073_pnas_2019786117 jstor_primary_27005721 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-15 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 Ekaterina N. L. (e_1_3_4_35_2) 2008; 6791 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 Filosa J. A. (e_1_3_4_38_2) 2010; 2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 Serena S. B. S. (e_1_3_4_5_2) 2008; 108 e_1_3_4_29_2 Yu Y. (e_1_3_4_4_2) 2018; 1 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 e_1_3_4_15_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_7_2 doi: 10.1016/j.jpeds.2018.11.038 – ident: e_1_3_4_3_2 doi: 10.1053/j.jvca.2019.08.048 – ident: e_1_3_4_33_2 doi: 10.1016/j.nantod.2015.06.004 – ident: e_1_3_4_47_2 doi: 10.1109/ICECE.2014.7026920 – ident: e_1_3_4_14_2 doi: 10.1038/s41390-018-0026-8 – ident: e_1_3_4_15_2 doi: 10.1177/1089253208316444 – ident: e_1_3_4_11_2 doi: 10.1136/adc.2002.023093 – ident: e_1_3_4_16_2 doi: 10.1016/S0022-5223(97)70074-6 – ident: e_1_3_4_18_2 doi: 10.1007/978-1-4939-0320-7_17 – ident: e_1_3_4_34_2 doi: 10.1080/00387010.2012.728158 – ident: e_1_3_4_2_2 doi: 10.3389/fped.2017.00064 – ident: e_1_3_4_17_2 doi: 10.1159/000203125 – ident: e_1_3_4_23_2 doi: 10.1038/s41591-020-0792-9 – ident: e_1_3_4_26_2 doi: 10.1203/00006450-200102000-00014 – ident: e_1_3_4_9_2 doi: 10.1016/j.jflm.2011.12.011 – ident: e_1_3_4_50_2 doi: 10.1016/j.clp.2009.07.015 – volume: 108 start-page: 588 year: 2008 ident: e_1_3_4_5_2 article-title: Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury publication-title: Anesthesiology J. Am. Soc. Anesthesiologists – ident: e_1_3_4_13_2 doi: 10.1038/pr.2016.196 – ident: e_1_3_4_6_2 doi: 10.1016/j.pediatrneurol.2007.09.012 – ident: e_1_3_4_8_2 doi: 10.1038/s41390-018-0141-6 – ident: e_1_3_4_44_2 doi: 10.1111/psyp.12288 – ident: e_1_3_4_30_2 doi: 10.1016/j.neuroimage.2012.05.083 – ident: e_1_3_4_37_2 doi: 10.1007/s10877-012-9348-y – ident: e_1_3_4_36_2 doi: 10.1542/peds.2008-0768 – ident: e_1_3_4_45_2 doi: 10.1177/0271678X17732694 – ident: e_1_3_4_10_2 doi: 10.3389/fphys.2019.00181 – ident: e_1_3_4_1_2 doi: 10.1152/japplphysiol.01310.2013 – ident: e_1_3_4_19_2 doi: 10.3389/fnhum.2019.00055 – ident: e_1_3_4_31_2 doi: 10.1117/1.JBO.18.8.086007 – ident: e_1_3_4_46_2 doi: 10.1097/00003246-200204000-00002 – ident: e_1_3_4_43_2 doi: 10.1002/adfm.201604373 – ident: e_1_3_4_21_2 doi: 10.1016/j.seizure.2015.01.015 – ident: e_1_3_4_25_2 doi: 10.1111/nyas.13948 – ident: e_1_3_4_49_2 doi: 10.1007/s12028-008-9175-7 – ident: e_1_3_4_28_2 doi: 10.1117/1.JBO.24.2.020503 – volume: 1 start-page: CD010947 year: 2018 ident: e_1_3_4_4_2 article-title: Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults publication-title: Cochrane Database Syst. Rev. – ident: e_1_3_4_32_2 doi: 10.1002/cnm.1162 – ident: e_1_3_4_41_2 doi: 10.1016/j.jtcvs.2007.07.036 – ident: e_1_3_4_24_2 doi: 10.1542/peds.2009-0913 – ident: e_1_3_4_29_2 doi: 10.1117/1.NPh.7.1.015008 – ident: e_1_3_4_12_2 doi: 10.1016/S0022-3476(83)80772-0 – ident: e_1_3_4_20_2 doi: 10.1109/EMBC.2014.6944431 – ident: e_1_3_4_22_2 doi: 10.1177/1178632919845630 – volume: 2 start-page: 16 year: 2010 ident: e_1_3_4_38_2 article-title: Vascular tone and neurovascular coupling: Considerations toward an improved in vitro model publication-title: Front. Neuroenergetics – volume: 6791 start-page: 67910O year: 2008 ident: e_1_3_4_35_2 article-title: Measurements of absorbance of hemoglobin solutions incubated with glucose publication-title: Proc. SPIE – ident: e_1_3_4_39_2 doi: 10.1586/17434440.3.2.235 – ident: e_1_3_4_48_2 doi: 10.1046/j.1365-2044.2002.02826.x – ident: e_1_3_4_51_2 doi: 10.1093/clinchem/37.9.1633 – ident: e_1_3_4_42_2 doi: 10.1007/s10877-017-0030-2 – ident: e_1_3_4_27_2 – ident: e_1_3_4_40_2 doi: 10.1097/PCC.0b013e318220e7ea |
SSID | ssj0009580 |
Score | 2.5747547 |
Snippet | The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired... Continuous monitoring of cerebral hemodynamics is critical for safeguarding the healthy neurodevelopment of pediatric patients. This paper introduces a soft,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31674 |
SubjectTerms | Adhesive bonding Adolescent Biosensing Techniques Biosensors Cerebrovascular Circulation - physiology Child Child Development - physiology Child, Preschool Female Heart rate Hemodynamic Monitoring - instrumentation Hemodynamic Monitoring - methods Hemodynamics Humans Hypoventilation Infant Infrared spectra Infrared spectroscopy Light emitting diodes Magnetic resonance imaging Male Monitoring Near infrared radiation Neonates Neurodevelopmental Disorders - diagnosis Neurodevelopmental Disorders - physiopathology Neurology Neurophysiological Monitoring - instrumentation Neurophysiological Monitoring - methods Oxygenation Patients Pediatrics Physical Sciences Skin Skin injuries Spectroscopy, Near-Infrared - instrumentation Telemedicine Wavelengths Wearable Electronic Devices Wireless Technology - instrumentation |
Title | A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care |
URI | https://www.jstor.org/stable/27005721 https://www.ncbi.nlm.nih.gov/pubmed/33257558 https://www.proquest.com/docview/2472665540 https://www.proquest.com/docview/2466040956 https://pubmed.ncbi.nlm.nih.gov/PMC7749320 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIPAyVlHw4TvJYoY0JSplQK1XiIYo_okXr0ilthLS_ZH8u59hx06og4CWqEtex7n65Oyd3v0PoLQ38nDA3cxLGI4cIljsZJ9yJhKSuYDTwmuTxrxN6PiOf5-G817vrZC3Vazbkt3vrSv5Hq3AO9KqqZP9Bs3ZSOAG_Qb9wBA3D8a90PBoopuGF1I3PV1dF6Sj6hyrP1Fd9VixXsEldVk0qIZeV-kasKh-vl0L3oR9cN090Zepabtq2HQ1fdTdsvbBubtUmFUzat4ijTU2KMRSrgTO4mGw6HH__KQtdTFOU2cDGzuO6SfCThXUMtUkAgNtcSuNSNeT0a9ovclFk3fcUfpPzoSs1uzTfe1fVNdA-OE2iy6qHUttkCGkcSnRXUWu0dcWnQafmrjU2WNX2k73eAcyZamlcZoqn3YP9M22n2eLhnnxLz2bjcTo9nU_vofs-bEBUb4xPc69D5xzr4iaz3JY0Kgo-7Ey_Fe_olNd9m5ndnNxOkDN9hB6a3Qkeaagdop4sH6PDVoD4xJCUv3uCfoxwi733eAd52CIPA_JwizzcQR7eIA8XJbbIwwp5T9Hs7HT68dwxjTocTkiwdkKS8CwRQgSCh34eJzllbqC8Cdwzi3yWc8_jFARJqMs5T1guQiohkvTiPJIiOEIH5bKUzxEWueK4c0ORSEYyxZzkx1SJUuYxnHH7aNiKM-WGxV41U1mkTTZFFKRK_ulG_n10Yv9wowlcfj_0qNGPHaeSMsLI9_rouFVYah5_-B-JILiFaBzW9MZeBuOsvrhlpVzWagyl4CWTkPbRM61fO3kQgLcMw7iPoi3N2wGK-H37SllcNgTwIEfYdrkv_rysl-jB5jk8RgfrqpavIIJes9cNmH8B7UjKIw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wireless%2C+skin-interfaced+biosensor+for+cerebral+hemodynamic+monitoring+in+pediatric+care&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rwei%2C+Alina+Y&rft.au=Lu%2C+Wei&rft.au=Wu%2C+Changsheng&rft.au=Human%2C+Kelia&rft.date=2020-12-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=50&rft.spage=31674&rft_id=info:doi/10.1073%2Fpnas.2019786117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |