Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries
Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still su...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 28; pp. 1419 - 14197 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/d0ta04800c |
Cover
Loading…
Abstract | Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na
2
CO
3
and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na
3
V
2
(PO
4
)
3
and NaTi
2
(PO
4
)
3
, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and
N
,
N
-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi
2
(PO
4
)
3
sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage.
A multi-component aqueous electrolyte with a composite solvent sheath can widen the voltage window to 2.8 V and inhibit side reactions. A solid electrolyte interface layer containing Na
2
CO
3
and organic compounds suppresses the reaction of water with the discharged anode. |
---|---|
AbstractList | Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na
2
CO
3
and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na
3
V
2
(PO
4
)
3
and NaTi
2
(PO
4
)
3
, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and
N
,
N
-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi
2
(PO
4
)
3
sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage.
A multi-component aqueous electrolyte with a composite solvent sheath can widen the voltage window to 2.8 V and inhibit side reactions. A solid electrolyte interface layer containing Na
2
CO
3
and organic compounds suppresses the reaction of water with the discharged anode. Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na₂CO₃ and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na₃V₂(PO₄)₃ and NaTi₂(PO₄)₃, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N,N-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi₂(PO₄)₃ sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage. Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na 2 CO 3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 , which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N , N -dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi 2 (PO 4 ) 3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage. Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na2CO3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na3V2(PO4)3 and NaTi2(PO4)3, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N,N-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi2(PO4)3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage. |
Author | Zhang, Xin Zhu, Yongchun Hou, Zhiguo Qian, Yitai Liu, Mengke Jin, Yueang Chen, Chunyuan Cai, Wenlong Ao, Huaisheng |
AuthorAffiliation | University of Science and Technology of China Hefei National Laboratory for Physical Science at Microscale Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering Department of Applied Chemistry State Key Laboratory of Chemical Resource Engineering |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Department of Applied Chemistry – name: Hefei National Laboratory for Physical Science at Microscale – name: State Key Laboratory of Chemical Resource Engineering – name: Beijing University of Chemical Technology – name: Beijing Advanced Innovation Center for Soft Matter Science and Engineering |
Author_xml | – sequence: 1 givenname: Huaisheng surname: Ao fullname: Ao, Huaisheng – sequence: 2 givenname: Chunyuan surname: Chen fullname: Chen, Chunyuan – sequence: 3 givenname: Zhiguo surname: Hou fullname: Hou, Zhiguo – sequence: 4 givenname: Wenlong surname: Cai fullname: Cai, Wenlong – sequence: 5 givenname: Mengke surname: Liu fullname: Liu, Mengke – sequence: 6 givenname: Yueang surname: Jin fullname: Jin, Yueang – sequence: 7 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 8 givenname: Yongchun surname: Zhu fullname: Zhu, Yongchun – sequence: 9 givenname: Yitai surname: Qian fullname: Qian, Yitai |
BookMark | eNp9kc9LwzAcxYMoOOcu3oWKFxGmadqm6XHM-QMGXua5pOk3kJE2NUmF_femq0wYYi4Jj8_38b4vF-i0NS0gdBXjhxgnxWONPccpw1icoAnBGZ7naUFPD2_GztHMuS0OJ1C0KCaIrzQIb43eeYic0V_cK9NGztte-N5C1PBWdb0eZWh5pcFFjkuIeFsHbhAi_tmD6YNuatU30YBW3HuwCtwlOpNcO5j93FP08bzaLF_n6_eXt-ViPRdpmvh5RpIUKlrFMskqljNZcaglYURSoAQzSIRkYc2YZkQAEUVdEyEzQWOIE45JMkV3o29nTYjjfNkoJ0Br3g7ZSpLmOSXBigb09gjdmt62IV2gSJYVjMVFoO5HSljjnAVZdlY13O7KGJdD4eUT3iz2hS8DjI9gofy-NG-50n-P3Iwj1omD9e8fll0tA3P9H5N8A0Fnmwo |
CitedBy_id | crossref_primary_10_1002_anie_202309601 crossref_primary_10_1021_acsenergylett_1c00393 crossref_primary_10_2139_ssrn_3988595 crossref_primary_10_1002_aenm_202203708 crossref_primary_10_1016_j_ensm_2025_104149 crossref_primary_10_3390_batteries10020045 crossref_primary_10_1039_D1TA11080B crossref_primary_10_1016_j_polymer_2024_127777 crossref_primary_10_1002_batt_202300053 crossref_primary_10_1016_j_jechem_2021_12_005 crossref_primary_10_1002_bte2_20230036 crossref_primary_10_1039_D2CP03976A crossref_primary_10_1142_S179360472251033X crossref_primary_10_1016_j_cej_2025_159911 crossref_primary_10_1039_D3TA06826A crossref_primary_10_1016_j_mtener_2022_101025 crossref_primary_10_1021_acs_jpca_4c03430 crossref_primary_10_1021_acs_chemmater_0c04358 crossref_primary_10_1039_D0TA10033A crossref_primary_10_1007_s40820_024_01340_5 crossref_primary_10_1016_j_xcrp_2022_100981 crossref_primary_10_1016_j_jechem_2025_01_004 crossref_primary_10_1063_5_0140107 crossref_primary_10_1007_s43979_024_00081_z crossref_primary_10_1002_adfm_202109568 crossref_primary_10_1016_j_jpowsour_2024_235221 crossref_primary_10_1039_D4CC05412A crossref_primary_10_1002_smll_202312116 crossref_primary_10_1016_j_jpowsour_2021_230270 crossref_primary_10_1002_aenm_202401407 crossref_primary_10_1002_smll_202405442 crossref_primary_10_1021_acs_jpcb_4c03187 crossref_primary_10_1002_aenm_202202351 crossref_primary_10_1016_j_ensm_2022_10_046 crossref_primary_10_1016_j_jcis_2024_07_022 crossref_primary_10_1021_acs_energyfuels_1c00817 crossref_primary_10_3390_batteries11040120 crossref_primary_10_1016_j_colsurfa_2022_129376 crossref_primary_10_1039_D1EE01392K crossref_primary_10_1149_1945_7111_ad36e9 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1039_D4TA01400F crossref_primary_10_1016_j_jallcom_2022_168344 crossref_primary_10_1002_adfm_202403616 crossref_primary_10_1002_adma_202402291 crossref_primary_10_1002_aenm_202201074 crossref_primary_10_1016_j_scib_2021_08_010 crossref_primary_10_1088_0256_307X_40_2_028801 crossref_primary_10_1039_D4EE05304D crossref_primary_10_1002_ange_202309601 crossref_primary_10_1126_sciadv_abn5097 crossref_primary_10_1002_smtd_202300249 crossref_primary_10_1016_j_ensm_2021_09_035 crossref_primary_10_1039_D2TA02816F crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1016_j_jechem_2024_11_014 crossref_primary_10_1002_smtd_202100418 crossref_primary_10_1016_j_ces_2023_118700 |
Cites_doi | 10.1016/0009-2614(71)80364-0 10.1016/j.jpowsour.2018.01.083 10.1021/acsenergylett.8b00919 10.1039/C8CC07668E 10.1016/j.gca.2016.03.005 10.1039/C6EE02604D 10.1021/acsenergylett.7b00623 10.1039/c3ee24249h 10.1038/s41586-019-1175-6 10.1007/s12274-016-1419-9 10.1021/acsami.9b04849 10.1002/cssc.201801930 10.5796/electrochemistry.85.179 10.1126/science.aab1595 10.1039/C8TA09194C 10.1021/acs.jpcc.9b01387 10.1002/jrs.1794 10.1016/j.joule.2018.02.011 10.1016/j.mtener.2019.06.012 10.1021/acs.jpcc.6b04542 10.1002/chem.201703044 10.1039/C9CS00131J 10.1038/nchem.2085 10.1016/j.chempr.2018.09.004 10.1016/j.jelechem.2019.05.062 10.1149/2.0081409jes 10.1080/00268976.2011.553637 10.1038/s41467-020-16460-w 10.1021/acsami.5b01375 10.1021/jp037610g 10.1016/j.jallcom.2015.05.126 10.1016/j.electacta.2016.03.007 10.1002/aenm.201702615 10.1039/C8TA01236A 10.1002/anie.201606508 10.1063/1.431363 10.1021/jo971176v 10.1039/C8EE00833G 10.1038/nchem.763 10.1016/j.nanoen.2018.12.086 10.1039/C5TA08857G 10.1002/smtd.201800220 10.1039/C9TA06433H 10.1039/C6TA08736A 10.1002/celc.201800379 10.1002/jrs.2643 10.1016/j.mattod.2019.02.004 10.1002/aenm.201701189 10.1039/C8TA10860A 10.1002/cssc.201800724 10.1126/science.1212741 10.1021/cr500232y 10.1002/anie.201908830 10.1002/aenm.201903665 10.1016/j.electacta.2018.09.077 10.1002/aenm.201902654 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta04800c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 14197 |
ExternalDocumentID | 10_1039_D0TA04800C d0ta04800c |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c443t-5234eb6b1f35b878fbaedf282f6e6208e3cf81031652ce2c9dd2cf5c61e13a023 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 18:58:44 EDT 2025 Mon Jun 30 12:05:16 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Tue Jul 01 01:12:55 EDT 2025 Sat Jan 08 03:53:10 EST 2022 Wed Nov 11 00:27:43 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-5234eb6b1f35b878fbaedf282f6e6208e3cf81031652ce2c9dd2cf5c61e13a023 |
Notes | 10.1039/d0ta04800c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3104-2089 0000-0003-3559-2096 0000-0002-4338-0416 |
PQID | 2425598819 |
PQPubID | 2047523 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2425598819 proquest_miscellaneous_2477626206 crossref_primary_10_1039_D0TA04800C rsc_primary_d0ta04800c crossref_citationtrail_10_1039_D0TA04800C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200721 |
PublicationDateYYYYMMDD | 2020-07-21 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200721 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (D0TA04800C-(cit57)/*[position()=1]) 2020; 10 Tang (D0TA04800C-(cit4)/*[position()=1]) 2013; 6 Li (D0TA04800C-(cit41)/*[position()=1]) 2014; 161 Suo (D0TA04800C-(cit13)/*[position()=1]) 2015; 350 Zhao (D0TA04800C-(cit25)/*[position()=1]) 2019; 57 Liu (D0TA04800C-(cit6)/*[position()=1]) 2018; 34 Wang (D0TA04800C-(cit15)/*[position()=1]) 2016; 9 Ren (D0TA04800C-(cit48)/*[position()=1]) 2017; 10 Larcher (D0TA04800C-(cit1)/*[position()=1]) 2015; 7 You (D0TA04800C-(cit27)/*[position()=1]) 2019; 123 Toner (D0TA04800C-(cit34)/*[position()=1]) 2016; 181 Wang (D0TA04800C-(cit7)/*[position()=1]) 2018; 2 Dunn (D0TA04800C-(cit2)/*[position()=1]) 2011; 334 Hou (D0TA04800C-(cit10)/*[position()=1]) 2017; 5 Shirpour (D0TA04800C-(cit43)/*[position()=1]) 2016; 53 Zheng (D0TA04800C-(cit20)/*[position()=1]) 2019; 58 Lei (D0TA04800C-(cit46)/*[position()=1]) 2019; 55 Chen (D0TA04800C-(cit54)/*[position()=1]) 2020; 11 Hou (D0TA04800C-(cit29)/*[position()=1]) 2020 Zhang (D0TA04800C-(cit50)/*[position()=1]) 2018; 3 Hou (D0TA04800C-(cit23)/*[position()=1]) 2019; 14 Lukatskaya (D0TA04800C-(cit21)/*[position()=1]) 2018; 11 Gelius (D0TA04800C-(cit58)/*[position()=1]) 1971; 11 Goodenough (D0TA04800C-(cit45)/*[position()=1]) 2016; 55 Gottlieb (D0TA04800C-(cit39)/*[position()=1]) 1997; 62 Chen (D0TA04800C-(cit55)/*[position()=1]) 2018; 290 Zhang (D0TA04800C-(cit9)/*[position()=1]) 2016; 4 Zhang (D0TA04800C-(cit40)/*[position()=1]) 2016; 196 Lee (D0TA04800C-(cit17)/*[position()=1]) 2019; 29 Culka (D0TA04800C-(cit36)/*[position()=1]) 2010; 41 Zhu (D0TA04800C-(cit56)/*[position()=1]) 2018; 6 Kim (D0TA04800C-(cit3)/*[position()=1]) 2014; 114 Suo (D0TA04800C-(cit18)/*[position()=1]) 2017; 7 Munoz-Marquez (D0TA04800C-(cit59)/*[position()=1]) 2015; 7 Zheng (D0TA04800C-(cit38)/*[position()=1]) 2018; 4 Rodgers (D0TA04800C-(cit30)/*[position()=1]) 1975; 63 Mountain (D0TA04800C-(cit28)/*[position()=1]) 2004; 108 Lei (D0TA04800C-(cit44)/*[position()=1]) 2019; 847 Bondarenko (D0TA04800C-(cit33)/*[position()=1]) 2011; 109 Zhang (D0TA04800C-(cit49)/*[position()=1]) 2015; 646 Han (D0TA04800C-(cit16)/*[position()=1]) 2018; 11 Luo (D0TA04800C-(cit8)/*[position()=1]) 2018; 8 Mishra (D0TA04800C-(cit37)/*[position()=1]) 2007; 38 Luo (D0TA04800C-(cit52)/*[position()=1]) 2010; 2 Liu (D0TA04800C-(cit53)/*[position()=1]) 2020; 49 Ao (D0TA04800C-(cit5)/*[position()=1]) 2019; 7 Shao (D0TA04800C-(cit12)/*[position()=1]) 2019; 7 Kuehnel (D0TA04800C-(cit19)/*[position()=1]) 2017; 2 Fujii (D0TA04800C-(cit26)/*[position()=1]) 2016; 120 Liu (D0TA04800C-(cit22)/*[position()=1]) 2019; 7 Lei (D0TA04800C-(cit42)/*[position()=1]) 2018; 5 Nakamoto (D0TA04800C-(cit31)/*[position()=1]) 2017; 85 Zhang (D0TA04800C-(cit47)/*[position()=1]) 2017; 23 Yang (D0TA04800C-(cit14)/*[position()=1]) 2019; 569 Toner (D0TA04800C-(cit35)/*[position()=1]) 2016; 181 Islam (D0TA04800C-(cit51)/*[position()=1]) 2018; 11 Nakamoto (D0TA04800C-(cit24)/*[position()=1]) 2019; 3 Niu (D0TA04800C-(cit32)/*[position()=1]) 2018; 380 Jiang (D0TA04800C-(cit11)/*[position()=1]) 2019; 11 |
References_xml | – volume: 11 start-page: 224 year: 1971 ident: D0TA04800C-(cit58)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(71)80364-0 – volume: 380 start-page: 135 year: 2018 ident: D0TA04800C-(cit32)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.083 – volume: 3 start-page: 1769 year: 2018 ident: D0TA04800C-(cit50)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00919 – volume: 55 start-page: 509 year: 2019 ident: D0TA04800C-(cit46)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC07668E – volume: 181 start-page: 164 year: 2016 ident: D0TA04800C-(cit34)/*[position()=1] publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.03.005 – volume: 9 start-page: 3666 year: 2016 ident: D0TA04800C-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02604D – volume: 2 start-page: 2005 year: 2017 ident: D0TA04800C-(cit19)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00623 – volume: 6 start-page: 2093 year: 2013 ident: D0TA04800C-(cit4)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24249h – volume: 569 start-page: 245 year: 2019 ident: D0TA04800C-(cit14)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1175-6 – volume: 10 start-page: 1313 year: 2017 ident: D0TA04800C-(cit48)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1419-9 – volume: 11 start-page: 28762 year: 2019 ident: D0TA04800C-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04849 – volume: 11 start-page: 3704 year: 2018 ident: D0TA04800C-(cit16)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801930 – volume: 85 start-page: 179 year: 2017 ident: D0TA04800C-(cit31)/*[position()=1] publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.179 – volume: 350 start-page: 938 year: 2015 ident: D0TA04800C-(cit13)/*[position()=1] publication-title: Science doi: 10.1126/science.aab1595 – volume: 7 start-page: 248 year: 2019 ident: D0TA04800C-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09194C – volume: 181 start-page: 164 year: 2016 ident: D0TA04800C-(cit35)/*[position()=1] publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.03.005 – volume: 123 start-page: 5942 year: 2019 ident: D0TA04800C-(cit27)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01387 – volume: 38 start-page: 1454 year: 2007 ident: D0TA04800C-(cit37)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1794 – volume: 34 start-page: 581 year: 2018 ident: D0TA04800C-(cit6)/*[position()=1] publication-title: Acta Phys.-Chim. Sin. – volume: 2 start-page: 927 year: 2018 ident: D0TA04800C-(cit7)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.02.011 – volume: 14 start-page: 100337 year: 2019 ident: D0TA04800C-(cit23)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.06.012 – volume: 120 start-page: 17196 year: 2016 ident: D0TA04800C-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04542 – volume: 23 start-page: 12944 year: 2017 ident: D0TA04800C-(cit47)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201703044 – volume: 49 start-page: 180 year: 2020 ident: D0TA04800C-(cit53)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00131J – volume: 7 start-page: 19 year: 2015 ident: D0TA04800C-(cit1)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2085 – volume: 4 start-page: 2872 year: 2018 ident: D0TA04800C-(cit38)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.09.004 – volume: 847 start-page: 113180 year: 2019 ident: D0TA04800C-(cit44)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.062 – volume: 161 start-page: A1181 year: 2014 ident: D0TA04800C-(cit41)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081409jes – volume: 109 start-page: 783 year: 2011 ident: D0TA04800C-(cit33)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268976.2011.553637 – volume: 11 start-page: 2638 year: 2020 ident: D0TA04800C-(cit54)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-16460-w – volume: 7 start-page: 7801 year: 2015 ident: D0TA04800C-(cit59)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01375 – volume: 108 start-page: 6826 year: 2004 ident: D0TA04800C-(cit28)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp037610g – volume: 646 start-page: 522 year: 2015 ident: D0TA04800C-(cit49)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.126 – volume: 196 start-page: 470 year: 2016 ident: D0TA04800C-(cit40)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.007 – volume: 8 start-page: 1702615 year: 2018 ident: D0TA04800C-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702615 – volume: 6 start-page: 10990 year: 2018 ident: D0TA04800C-(cit56)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01236A – volume: 55 start-page: 12768 year: 2016 ident: D0TA04800C-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606508 – volume: 63 start-page: 818 year: 1975 ident: D0TA04800C-(cit30)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.431363 – volume: 62 start-page: 7512 year: 1997 ident: D0TA04800C-(cit39)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo971176v – volume: 11 start-page: 2876 year: 2018 ident: D0TA04800C-(cit21)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00833G – volume: 2 start-page: 760 year: 2010 ident: D0TA04800C-(cit52)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.763 – volume: 57 start-page: 625 year: 2019 ident: D0TA04800C-(cit25)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.086 – volume: 4 start-page: 856 year: 2016 ident: D0TA04800C-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08857G – volume: 3 start-page: 1800220 year: 2019 ident: D0TA04800C-(cit24)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800220 – volume: 7 start-page: 18708 year: 2019 ident: D0TA04800C-(cit5)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06433H – volume: 5 start-page: 730 year: 2017 ident: D0TA04800C-(cit10)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08736A – volume: 5 start-page: 2482 year: 2018 ident: D0TA04800C-(cit42)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201800379 – volume: 41 start-page: 1743 year: 2010 ident: D0TA04800C-(cit36)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2643 – volume: 29 start-page: 26 year: 2019 ident: D0TA04800C-(cit17)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2019.02.004 – volume: 53 start-page: 204 year: 2016 ident: D0TA04800C-(cit43)/*[position()=1] publication-title: Chem. Commun. – volume: 7 start-page: 1701189 year: 2017 ident: D0TA04800C-(cit18)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701189 – volume: 7 start-page: 1749 year: 2019 ident: D0TA04800C-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10860A – volume: 11 start-page: 2239 year: 2018 ident: D0TA04800C-(cit51)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201800724 – volume: 334 start-page: 928 year: 2011 ident: D0TA04800C-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 114 start-page: 11788 year: 2014 ident: D0TA04800C-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 58 start-page: 14202 year: 2019 ident: D0TA04800C-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908830 – start-page: 1903665 year: 2020 ident: D0TA04800C-(cit29)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903665 – volume: 290 start-page: 568 year: 2018 ident: D0TA04800C-(cit55)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.077 – volume: 10 start-page: 1902654 year: 2020 ident: D0TA04800C-(cit57)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902654 |
SSID | ssj0000800699 |
Score | 2.522134 |
Snippet | Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1419 |
SubjectTerms | Additives Aqueous electrolytes Batteries Dimethylformamide Electric potential electric potential difference Electrochemistry Electrolytes Energy storage guidelines Inorganic salts Ion currents Nickel Operating temperature Performance degradation Pigments Safety Sheaths Sodium Sodium carbonate Sodium-ion batteries Solid electrolytes Solvation solvents Stability temperature Urea Voltage |
Title | Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries |
URI | https://www.proquest.com/docview/2425598819 https://www.proquest.com/docview/2477626206 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67gIHxGuiYyAjuKAow3knx2p0KqiMSyp6i2zHGZNKWtHmMP4O_mA-PxO0HgYXK4otO_H3s_35eyL0TkU9TwLq10QUfpyzxi9SQYAglNUFJXms8pB9uUrny_jzKlmNRr8HVkvdnp3zXwf9Sv6HqvAO6Cq9ZP-Bsq5TeAHPQF8ogcJQ3ovGM53DZn27Fx6MpKWrng4JKxUDMraFzc_lCeUltfN2tNEqA-ALpdsUhZNB2sHuNvVN98OTTZkKumnNC--yrsDl6t_zuM0Xd-5NteuPrVGhxLVjoRrMOmpJW1wnxp8qQe1c5YAW5gxVtgbC2AJ07W3X43e-6ZQy5fvNdbfptSfKIOGbaNcb04WRYsCVlWS-do3Wm11IEuJnsc5ua3fmfADAMPe2sK1Lz3dZZoNNV70dnOCu_s7xQCIZXbUmeypd6QnvD0Gr-L_6Wl0uF4uqnK3KI3QcwuUjHKPj6az8tHCyO8llpyo1qftsG_k2Kj703f_N6_QXmKOfNruM4mLKx-iRoSGeaiw9QSPRPkUPB0EpnyE6QBV2qMIOVXiIKmxQhSWqMBAaa1RhgyqsUYVlU4eq52h5OSsv5r5JxOHzOI72UlgRC5ayoIkSlmd5w6ioG7isN6lIQ5KLiDe5zBeSJiEXIS_qOuRNwtNABBEFrvAEjdtNK14gnAQsp4GQSRsYFDGtIyJExuMMHpkoJui9nbKKmyj1MlnKulLWElFRfSTlVE3vxQS9dW23OjbLwVZnduYrs3Z3lbxoJ0UO7PAEvXHVsGCkuoy2coKgTQacAvxfOkEnQDE3Rk_gCTo9XFFt6-b0Hj2_RA_61XCGxkBK8Qq43D17bUD3B6iirhg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+solvation+structure+manipulation+enables+safe+and+stable+aqueous+sodium+ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ao%2C+Huaisheng&rft.au=Chen%2C+Chunyuan&rft.au=Hou%2C+Zhiguo&rft.au=Cai%2C+Wenlong&rft.date=2020-07-21&rft.issn=2050-7496&rft.volume=8&rft.issue=28+p.14190-14197&rft.spage=14190&rft.epage=14197&rft_id=info:doi/10.1039%2Fd0ta04800c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |