Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries

Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still su...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 28; pp. 1419 - 14197
Main Authors Ao, Huaisheng, Chen, Chunyuan, Hou, Zhiguo, Cai, Wenlong, Liu, Mengke, Jin, Yueang, Zhang, Xin, Zhu, Yongchun, Qian, Yitai
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.07.2020
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d0ta04800c

Cover

Loading…
Abstract Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na 2 CO 3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 , which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N , N -dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi 2 (PO 4 ) 3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage. A multi-component aqueous electrolyte with a composite solvent sheath can widen the voltage window to 2.8 V and inhibit side reactions. A solid electrolyte interface layer containing Na 2 CO 3 and organic compounds suppresses the reaction of water with the discharged anode.
AbstractList Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na 2 CO 3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 , which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N , N -dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi 2 (PO 4 ) 3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage. A multi-component aqueous electrolyte with a composite solvent sheath can widen the voltage window to 2.8 V and inhibit side reactions. A solid electrolyte interface layer containing Na 2 CO 3 and organic compounds suppresses the reaction of water with the discharged anode.
Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na₂CO₃ and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na₃V₂(PO₄)₃ and NaTi₂(PO₄)₃, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N,N-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi₂(PO₄)₃ sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage.
Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na 2 CO 3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 , which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N , N -dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi 2 (PO 4 ) 3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage.
Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is considered as an efficient strategy that increases the voltage window and improves the cycling stability. However, their cost and safety are still subjects of serious concern for practical applications. In this work, we show that a new multi-component aqueous electrolyte (MCAE) could widen the voltage window to 2.8 V with the formation of a composite solvent sheath and promote the generation of a uniform solid electrolyte interface (SEI) layer consisting of complexes with inorganic salt Na2CO3 and other organic components, which significantly inhibits the side reaction. Thus, this MCAE guaranteed good electrochemical stability of Na3V2(PO4)3 and NaTi2(PO4)3, which suffer from severe performance degradation in aqueous electrolytes. Simultaneously, this MCAE exhibits high safety, a wide operating temperature range (−50 °C to 50 °C) and high ionic conductivity because of urea and N,N-dimethylformamide (DMF) additives. In addition, a nickel-based Prussian blue analog (NiHCF)/NaTi2(PO4)3 sodium-ion full battery using such a MCAE delivers 80% capacity retention after 2000 cycles at 2C rate. Moreover, our work provides important guidelines to investigate safe, environmentally friendly and high-stability ASIBs for large-scale energy storage.
Author Zhang, Xin
Zhu, Yongchun
Hou, Zhiguo
Qian, Yitai
Liu, Mengke
Jin, Yueang
Chen, Chunyuan
Cai, Wenlong
Ao, Huaisheng
AuthorAffiliation University of Science and Technology of China
Hefei National Laboratory for Physical Science at Microscale
Beijing University of Chemical Technology
Beijing Advanced Innovation Center for Soft Matter Science and Engineering
Department of Applied Chemistry
State Key Laboratory of Chemical Resource Engineering
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Department of Applied Chemistry
– name: Hefei National Laboratory for Physical Science at Microscale
– name: State Key Laboratory of Chemical Resource Engineering
– name: Beijing University of Chemical Technology
– name: Beijing Advanced Innovation Center for Soft Matter Science and Engineering
Author_xml – sequence: 1
  givenname: Huaisheng
  surname: Ao
  fullname: Ao, Huaisheng
– sequence: 2
  givenname: Chunyuan
  surname: Chen
  fullname: Chen, Chunyuan
– sequence: 3
  givenname: Zhiguo
  surname: Hou
  fullname: Hou, Zhiguo
– sequence: 4
  givenname: Wenlong
  surname: Cai
  fullname: Cai, Wenlong
– sequence: 5
  givenname: Mengke
  surname: Liu
  fullname: Liu, Mengke
– sequence: 6
  givenname: Yueang
  surname: Jin
  fullname: Jin, Yueang
– sequence: 7
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 8
  givenname: Yongchun
  surname: Zhu
  fullname: Zhu, Yongchun
– sequence: 9
  givenname: Yitai
  surname: Qian
  fullname: Qian, Yitai
BookMark eNp9kc9LwzAcxYMoOOcu3oWKFxGmadqm6XHM-QMGXua5pOk3kJE2NUmF_femq0wYYi4Jj8_38b4vF-i0NS0gdBXjhxgnxWONPccpw1icoAnBGZ7naUFPD2_GztHMuS0OJ1C0KCaIrzQIb43eeYic0V_cK9NGztte-N5C1PBWdb0eZWh5pcFFjkuIeFsHbhAi_tmD6YNuatU30YBW3HuwCtwlOpNcO5j93FP08bzaLF_n6_eXt-ViPRdpmvh5RpIUKlrFMskqljNZcaglYURSoAQzSIRkYc2YZkQAEUVdEyEzQWOIE45JMkV3o29nTYjjfNkoJ0Br3g7ZSpLmOSXBigb09gjdmt62IV2gSJYVjMVFoO5HSljjnAVZdlY13O7KGJdD4eUT3iz2hS8DjI9gofy-NG-50n-P3Iwj1omD9e8fll0tA3P9H5N8A0Fnmwo
CitedBy_id crossref_primary_10_1002_anie_202309601
crossref_primary_10_1021_acsenergylett_1c00393
crossref_primary_10_2139_ssrn_3988595
crossref_primary_10_1002_aenm_202203708
crossref_primary_10_1016_j_ensm_2025_104149
crossref_primary_10_3390_batteries10020045
crossref_primary_10_1039_D1TA11080B
crossref_primary_10_1016_j_polymer_2024_127777
crossref_primary_10_1002_batt_202300053
crossref_primary_10_1016_j_jechem_2021_12_005
crossref_primary_10_1002_bte2_20230036
crossref_primary_10_1039_D2CP03976A
crossref_primary_10_1142_S179360472251033X
crossref_primary_10_1016_j_cej_2025_159911
crossref_primary_10_1039_D3TA06826A
crossref_primary_10_1016_j_mtener_2022_101025
crossref_primary_10_1021_acs_jpca_4c03430
crossref_primary_10_1021_acs_chemmater_0c04358
crossref_primary_10_1039_D0TA10033A
crossref_primary_10_1007_s40820_024_01340_5
crossref_primary_10_1016_j_xcrp_2022_100981
crossref_primary_10_1016_j_jechem_2025_01_004
crossref_primary_10_1063_5_0140107
crossref_primary_10_1007_s43979_024_00081_z
crossref_primary_10_1002_adfm_202109568
crossref_primary_10_1016_j_jpowsour_2024_235221
crossref_primary_10_1039_D4CC05412A
crossref_primary_10_1002_smll_202312116
crossref_primary_10_1016_j_jpowsour_2021_230270
crossref_primary_10_1002_aenm_202401407
crossref_primary_10_1002_smll_202405442
crossref_primary_10_1021_acs_jpcb_4c03187
crossref_primary_10_1002_aenm_202202351
crossref_primary_10_1016_j_ensm_2022_10_046
crossref_primary_10_1016_j_jcis_2024_07_022
crossref_primary_10_1021_acs_energyfuels_1c00817
crossref_primary_10_3390_batteries11040120
crossref_primary_10_1016_j_colsurfa_2022_129376
crossref_primary_10_1039_D1EE01392K
crossref_primary_10_1149_1945_7111_ad36e9
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1039_D4TA01400F
crossref_primary_10_1016_j_jallcom_2022_168344
crossref_primary_10_1002_adfm_202403616
crossref_primary_10_1002_adma_202402291
crossref_primary_10_1002_aenm_202201074
crossref_primary_10_1016_j_scib_2021_08_010
crossref_primary_10_1088_0256_307X_40_2_028801
crossref_primary_10_1039_D4EE05304D
crossref_primary_10_1002_ange_202309601
crossref_primary_10_1126_sciadv_abn5097
crossref_primary_10_1002_smtd_202300249
crossref_primary_10_1016_j_ensm_2021_09_035
crossref_primary_10_1039_D2TA02816F
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1016_j_jechem_2024_11_014
crossref_primary_10_1002_smtd_202100418
crossref_primary_10_1016_j_ces_2023_118700
Cites_doi 10.1016/0009-2614(71)80364-0
10.1016/j.jpowsour.2018.01.083
10.1021/acsenergylett.8b00919
10.1039/C8CC07668E
10.1016/j.gca.2016.03.005
10.1039/C6EE02604D
10.1021/acsenergylett.7b00623
10.1039/c3ee24249h
10.1038/s41586-019-1175-6
10.1007/s12274-016-1419-9
10.1021/acsami.9b04849
10.1002/cssc.201801930
10.5796/electrochemistry.85.179
10.1126/science.aab1595
10.1039/C8TA09194C
10.1021/acs.jpcc.9b01387
10.1002/jrs.1794
10.1016/j.joule.2018.02.011
10.1016/j.mtener.2019.06.012
10.1021/acs.jpcc.6b04542
10.1002/chem.201703044
10.1039/C9CS00131J
10.1038/nchem.2085
10.1016/j.chempr.2018.09.004
10.1016/j.jelechem.2019.05.062
10.1149/2.0081409jes
10.1080/00268976.2011.553637
10.1038/s41467-020-16460-w
10.1021/acsami.5b01375
10.1021/jp037610g
10.1016/j.jallcom.2015.05.126
10.1016/j.electacta.2016.03.007
10.1002/aenm.201702615
10.1039/C8TA01236A
10.1002/anie.201606508
10.1063/1.431363
10.1021/jo971176v
10.1039/C8EE00833G
10.1038/nchem.763
10.1016/j.nanoen.2018.12.086
10.1039/C5TA08857G
10.1002/smtd.201800220
10.1039/C9TA06433H
10.1039/C6TA08736A
10.1002/celc.201800379
10.1002/jrs.2643
10.1016/j.mattod.2019.02.004
10.1002/aenm.201701189
10.1039/C8TA10860A
10.1002/cssc.201800724
10.1126/science.1212741
10.1021/cr500232y
10.1002/anie.201908830
10.1002/aenm.201903665
10.1016/j.electacta.2018.09.077
10.1002/aenm.201902654
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta04800c
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 14197
ExternalDocumentID 10_1039_D0TA04800C
d0ta04800c
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c443t-5234eb6b1f35b878fbaedf282f6e6208e3cf81031652ce2c9dd2cf5c61e13a023
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 18:58:44 EDT 2025
Mon Jun 30 12:05:16 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Tue Jul 01 01:12:55 EDT 2025
Sat Jan 08 03:53:10 EST 2022
Wed Nov 11 00:27:43 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-5234eb6b1f35b878fbaedf282f6e6208e3cf81031652ce2c9dd2cf5c61e13a023
Notes 10.1039/d0ta04800c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3104-2089
0000-0003-3559-2096
0000-0002-4338-0416
PQID 2425598819
PQPubID 2047523
PageCount 8
ParticipantIDs proquest_journals_2425598819
proquest_miscellaneous_2477626206
crossref_primary_10_1039_D0TA04800C
rsc_primary_d0ta04800c
crossref_citationtrail_10_1039_D0TA04800C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200721
PublicationDateYYYYMMDD 2020-07-21
PublicationDate_xml – month: 7
  year: 2020
  text: 20200721
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D0TA04800C-(cit57)/*[position()=1]) 2020; 10
Tang (D0TA04800C-(cit4)/*[position()=1]) 2013; 6
Li (D0TA04800C-(cit41)/*[position()=1]) 2014; 161
Suo (D0TA04800C-(cit13)/*[position()=1]) 2015; 350
Zhao (D0TA04800C-(cit25)/*[position()=1]) 2019; 57
Liu (D0TA04800C-(cit6)/*[position()=1]) 2018; 34
Wang (D0TA04800C-(cit15)/*[position()=1]) 2016; 9
Ren (D0TA04800C-(cit48)/*[position()=1]) 2017; 10
Larcher (D0TA04800C-(cit1)/*[position()=1]) 2015; 7
You (D0TA04800C-(cit27)/*[position()=1]) 2019; 123
Toner (D0TA04800C-(cit34)/*[position()=1]) 2016; 181
Wang (D0TA04800C-(cit7)/*[position()=1]) 2018; 2
Dunn (D0TA04800C-(cit2)/*[position()=1]) 2011; 334
Hou (D0TA04800C-(cit10)/*[position()=1]) 2017; 5
Shirpour (D0TA04800C-(cit43)/*[position()=1]) 2016; 53
Zheng (D0TA04800C-(cit20)/*[position()=1]) 2019; 58
Lei (D0TA04800C-(cit46)/*[position()=1]) 2019; 55
Chen (D0TA04800C-(cit54)/*[position()=1]) 2020; 11
Hou (D0TA04800C-(cit29)/*[position()=1]) 2020
Zhang (D0TA04800C-(cit50)/*[position()=1]) 2018; 3
Hou (D0TA04800C-(cit23)/*[position()=1]) 2019; 14
Lukatskaya (D0TA04800C-(cit21)/*[position()=1]) 2018; 11
Gelius (D0TA04800C-(cit58)/*[position()=1]) 1971; 11
Goodenough (D0TA04800C-(cit45)/*[position()=1]) 2016; 55
Gottlieb (D0TA04800C-(cit39)/*[position()=1]) 1997; 62
Chen (D0TA04800C-(cit55)/*[position()=1]) 2018; 290
Zhang (D0TA04800C-(cit9)/*[position()=1]) 2016; 4
Zhang (D0TA04800C-(cit40)/*[position()=1]) 2016; 196
Lee (D0TA04800C-(cit17)/*[position()=1]) 2019; 29
Culka (D0TA04800C-(cit36)/*[position()=1]) 2010; 41
Zhu (D0TA04800C-(cit56)/*[position()=1]) 2018; 6
Kim (D0TA04800C-(cit3)/*[position()=1]) 2014; 114
Suo (D0TA04800C-(cit18)/*[position()=1]) 2017; 7
Munoz-Marquez (D0TA04800C-(cit59)/*[position()=1]) 2015; 7
Zheng (D0TA04800C-(cit38)/*[position()=1]) 2018; 4
Rodgers (D0TA04800C-(cit30)/*[position()=1]) 1975; 63
Mountain (D0TA04800C-(cit28)/*[position()=1]) 2004; 108
Lei (D0TA04800C-(cit44)/*[position()=1]) 2019; 847
Bondarenko (D0TA04800C-(cit33)/*[position()=1]) 2011; 109
Zhang (D0TA04800C-(cit49)/*[position()=1]) 2015; 646
Han (D0TA04800C-(cit16)/*[position()=1]) 2018; 11
Luo (D0TA04800C-(cit8)/*[position()=1]) 2018; 8
Mishra (D0TA04800C-(cit37)/*[position()=1]) 2007; 38
Luo (D0TA04800C-(cit52)/*[position()=1]) 2010; 2
Liu (D0TA04800C-(cit53)/*[position()=1]) 2020; 49
Ao (D0TA04800C-(cit5)/*[position()=1]) 2019; 7
Shao (D0TA04800C-(cit12)/*[position()=1]) 2019; 7
Kuehnel (D0TA04800C-(cit19)/*[position()=1]) 2017; 2
Fujii (D0TA04800C-(cit26)/*[position()=1]) 2016; 120
Liu (D0TA04800C-(cit22)/*[position()=1]) 2019; 7
Lei (D0TA04800C-(cit42)/*[position()=1]) 2018; 5
Nakamoto (D0TA04800C-(cit31)/*[position()=1]) 2017; 85
Zhang (D0TA04800C-(cit47)/*[position()=1]) 2017; 23
Yang (D0TA04800C-(cit14)/*[position()=1]) 2019; 569
Toner (D0TA04800C-(cit35)/*[position()=1]) 2016; 181
Islam (D0TA04800C-(cit51)/*[position()=1]) 2018; 11
Nakamoto (D0TA04800C-(cit24)/*[position()=1]) 2019; 3
Niu (D0TA04800C-(cit32)/*[position()=1]) 2018; 380
Jiang (D0TA04800C-(cit11)/*[position()=1]) 2019; 11
References_xml – volume: 11
  start-page: 224
  year: 1971
  ident: D0TA04800C-(cit58)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(71)80364-0
– volume: 380
  start-page: 135
  year: 2018
  ident: D0TA04800C-(cit32)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.083
– volume: 3
  start-page: 1769
  year: 2018
  ident: D0TA04800C-(cit50)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00919
– volume: 55
  start-page: 509
  year: 2019
  ident: D0TA04800C-(cit46)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07668E
– volume: 181
  start-page: 164
  year: 2016
  ident: D0TA04800C-(cit34)/*[position()=1]
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2016.03.005
– volume: 9
  start-page: 3666
  year: 2016
  ident: D0TA04800C-(cit15)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02604D
– volume: 2
  start-page: 2005
  year: 2017
  ident: D0TA04800C-(cit19)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00623
– volume: 6
  start-page: 2093
  year: 2013
  ident: D0TA04800C-(cit4)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24249h
– volume: 569
  start-page: 245
  year: 2019
  ident: D0TA04800C-(cit14)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1175-6
– volume: 10
  start-page: 1313
  year: 2017
  ident: D0TA04800C-(cit48)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1419-9
– volume: 11
  start-page: 28762
  year: 2019
  ident: D0TA04800C-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04849
– volume: 11
  start-page: 3704
  year: 2018
  ident: D0TA04800C-(cit16)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801930
– volume: 85
  start-page: 179
  year: 2017
  ident: D0TA04800C-(cit31)/*[position()=1]
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.179
– volume: 350
  start-page: 938
  year: 2015
  ident: D0TA04800C-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 7
  start-page: 248
  year: 2019
  ident: D0TA04800C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09194C
– volume: 181
  start-page: 164
  year: 2016
  ident: D0TA04800C-(cit35)/*[position()=1]
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2016.03.005
– volume: 123
  start-page: 5942
  year: 2019
  ident: D0TA04800C-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01387
– volume: 38
  start-page: 1454
  year: 2007
  ident: D0TA04800C-(cit37)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1794
– volume: 34
  start-page: 581
  year: 2018
  ident: D0TA04800C-(cit6)/*[position()=1]
  publication-title: Acta Phys.-Chim. Sin.
– volume: 2
  start-page: 927
  year: 2018
  ident: D0TA04800C-(cit7)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.011
– volume: 14
  start-page: 100337
  year: 2019
  ident: D0TA04800C-(cit23)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.06.012
– volume: 120
  start-page: 17196
  year: 2016
  ident: D0TA04800C-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04542
– volume: 23
  start-page: 12944
  year: 2017
  ident: D0TA04800C-(cit47)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201703044
– volume: 49
  start-page: 180
  year: 2020
  ident: D0TA04800C-(cit53)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00131J
– volume: 7
  start-page: 19
  year: 2015
  ident: D0TA04800C-(cit1)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
– volume: 4
  start-page: 2872
  year: 2018
  ident: D0TA04800C-(cit38)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.09.004
– volume: 847
  start-page: 113180
  year: 2019
  ident: D0TA04800C-(cit44)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.05.062
– volume: 161
  start-page: A1181
  year: 2014
  ident: D0TA04800C-(cit41)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081409jes
– volume: 109
  start-page: 783
  year: 2011
  ident: D0TA04800C-(cit33)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2011.553637
– volume: 11
  start-page: 2638
  year: 2020
  ident: D0TA04800C-(cit54)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16460-w
– volume: 7
  start-page: 7801
  year: 2015
  ident: D0TA04800C-(cit59)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01375
– volume: 108
  start-page: 6826
  year: 2004
  ident: D0TA04800C-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037610g
– volume: 646
  start-page: 522
  year: 2015
  ident: D0TA04800C-(cit49)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.126
– volume: 196
  start-page: 470
  year: 2016
  ident: D0TA04800C-(cit40)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.007
– volume: 8
  start-page: 1702615
  year: 2018
  ident: D0TA04800C-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702615
– volume: 6
  start-page: 10990
  year: 2018
  ident: D0TA04800C-(cit56)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01236A
– volume: 55
  start-page: 12768
  year: 2016
  ident: D0TA04800C-(cit45)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606508
– volume: 63
  start-page: 818
  year: 1975
  ident: D0TA04800C-(cit30)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.431363
– volume: 62
  start-page: 7512
  year: 1997
  ident: D0TA04800C-(cit39)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo971176v
– volume: 11
  start-page: 2876
  year: 2018
  ident: D0TA04800C-(cit21)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00833G
– volume: 2
  start-page: 760
  year: 2010
  ident: D0TA04800C-(cit52)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.763
– volume: 57
  start-page: 625
  year: 2019
  ident: D0TA04800C-(cit25)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 4
  start-page: 856
  year: 2016
  ident: D0TA04800C-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08857G
– volume: 3
  start-page: 1800220
  year: 2019
  ident: D0TA04800C-(cit24)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800220
– volume: 7
  start-page: 18708
  year: 2019
  ident: D0TA04800C-(cit5)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06433H
– volume: 5
  start-page: 730
  year: 2017
  ident: D0TA04800C-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08736A
– volume: 5
  start-page: 2482
  year: 2018
  ident: D0TA04800C-(cit42)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800379
– volume: 41
  start-page: 1743
  year: 2010
  ident: D0TA04800C-(cit36)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2643
– volume: 29
  start-page: 26
  year: 2019
  ident: D0TA04800C-(cit17)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.02.004
– volume: 53
  start-page: 204
  year: 2016
  ident: D0TA04800C-(cit43)/*[position()=1]
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1701189
  year: 2017
  ident: D0TA04800C-(cit18)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701189
– volume: 7
  start-page: 1749
  year: 2019
  ident: D0TA04800C-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10860A
– volume: 11
  start-page: 2239
  year: 2018
  ident: D0TA04800C-(cit51)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800724
– volume: 334
  start-page: 928
  year: 2011
  ident: D0TA04800C-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 114
  start-page: 11788
  year: 2014
  ident: D0TA04800C-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 58
  start-page: 14202
  year: 2019
  ident: D0TA04800C-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908830
– start-page: 1903665
  year: 2020
  ident: D0TA04800C-(cit29)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903665
– volume: 290
  start-page: 568
  year: 2018
  ident: D0TA04800C-(cit55)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.077
– volume: 10
  start-page: 1902654
  year: 2020
  ident: D0TA04800C-(cit57)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902654
SSID ssj0000800699
Score 2.522134
Snippet Aqueous sodium ion batteries (ASIBs) have been limited by their poor electrochemical stability. The use of highly concentrated aqueous electrolytes is...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1419
SubjectTerms Additives
Aqueous electrolytes
Batteries
Dimethylformamide
Electric potential
electric potential difference
Electrochemistry
Electrolytes
Energy storage
guidelines
Inorganic salts
Ion currents
Nickel
Operating temperature
Performance degradation
Pigments
Safety
Sheaths
Sodium
Sodium carbonate
Sodium-ion batteries
Solid electrolytes
Solvation
solvents
Stability
temperature
Urea
Voltage
Title Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries
URI https://www.proquest.com/docview/2425598819
https://www.proquest.com/docview/2477626206
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67gIHxGuiYyAjuKAow3knx2p0KqiMSyp6i2zHGZNKWtHmMP4O_mA-PxO0HgYXK4otO_H3s_35eyL0TkU9TwLq10QUfpyzxi9SQYAglNUFJXms8pB9uUrny_jzKlmNRr8HVkvdnp3zXwf9Sv6HqvAO6Cq9ZP-Bsq5TeAHPQF8ogcJQ3ovGM53DZn27Fx6MpKWrng4JKxUDMraFzc_lCeUltfN2tNEqA-ALpdsUhZNB2sHuNvVN98OTTZkKumnNC--yrsDl6t_zuM0Xd-5NteuPrVGhxLVjoRrMOmpJW1wnxp8qQe1c5YAW5gxVtgbC2AJ07W3X43e-6ZQy5fvNdbfptSfKIOGbaNcb04WRYsCVlWS-do3Wm11IEuJnsc5ua3fmfADAMPe2sK1Lz3dZZoNNV70dnOCu_s7xQCIZXbUmeypd6QnvD0Gr-L_6Wl0uF4uqnK3KI3QcwuUjHKPj6az8tHCyO8llpyo1qftsG_k2Kj703f_N6_QXmKOfNruM4mLKx-iRoSGeaiw9QSPRPkUPB0EpnyE6QBV2qMIOVXiIKmxQhSWqMBAaa1RhgyqsUYVlU4eq52h5OSsv5r5JxOHzOI72UlgRC5ayoIkSlmd5w6ioG7isN6lIQ5KLiDe5zBeSJiEXIS_qOuRNwtNABBEFrvAEjdtNK14gnAQsp4GQSRsYFDGtIyJExuMMHpkoJui9nbKKmyj1MlnKulLWElFRfSTlVE3vxQS9dW23OjbLwVZnduYrs3Z3lbxoJ0UO7PAEvXHVsGCkuoy2coKgTQacAvxfOkEnQDE3Rk_gCTo9XFFt6-b0Hj2_RA_61XCGxkBK8Qq43D17bUD3B6iirhg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+solvation+structure+manipulation+enables+safe+and+stable+aqueous+sodium+ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ao%2C+Huaisheng&rft.au=Chen%2C+Chunyuan&rft.au=Hou%2C+Zhiguo&rft.au=Cai%2C+Wenlong&rft.date=2020-07-21&rft.issn=2050-7496&rft.volume=8&rft.issue=28+p.14190-14197&rft.spage=14190&rft.epage=14197&rft_id=info:doi/10.1039%2Fd0ta04800c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon