Role for nuclear interleukin-37 in the suppression of innate immunity

The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 10; pp. 4456 - 4461
Main Authors Li, Suzhao, Amo-Aparicio, Jesus, Neff, Charles P., Tengesdal, Isak W., Azam, Tania, Palmer, Brent E., López-Vales, Rubén, Bufler, Philip, Dinarello, Charles A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1β, IL-6, TNFα and IFNγ by 40–50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1β, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.
AbstractList The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1β, IL-6, TNFα and IFNγ by 40-50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1β, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.
Significance Interleukin-1 family members are highly inflammatory, but member IL-37 is unique in broadly suppressing inflammation and specific immunity. IL-37 is a dual-function cytokine by binding in the nucleus and to cell surface receptors. We generated an IL-37 transgenic mouse carrying the aspartic acid (D) to alanine (A) mutation at amino acid 20 (D20A), which prevents the nuclear translocation of IL-37. In transgenic mice expressing native IL-37, inflammatory cytokines are reduced during systemic endotoxemia, but, in mice expressing the D20A mutation, protection is lost, consistent with a nuclear function of IL-37. Nevertheless, IL-37D20A released from cells binds to its receptors and initiates suppression of innate inflammation. These studies reveal a nuclear function of IL-37 in vivo. The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1β, IL-6, TNFα and IFNγ by 40–50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1β, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.
Interleukin-1 family members are highly inflammatory, but member IL-37 is unique in broadly suppressing inflammation and specific immunity. IL-37 is a dual-function cytokine by binding in the nucleus and to cell surface receptors. We generated an IL-37 transgenic mouse carrying the aspartic acid (D) to alanine (A) mutation at amino acid 20 (D20A), which prevents the nuclear translocation of IL-37. In transgenic mice expressing native IL-37, inflammatory cytokines are reduced during systemic endotoxemia, but, in mice expressing the D20A mutation, protection is lost, consistent with a nuclear function of IL-37. Nevertheless, IL-37D20A released from cells binds to its receptors and initiates suppression of innate inflammation. These studies reveal a nuclear function of IL-37 in vivo. The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1β, IL-6, TNFα and IFNγ by 40–50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1β, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.
Author Neff, Charles P.
López-Vales, Rubén
Li, Suzhao
Tengesdal, Isak W.
Amo-Aparicio, Jesus
Azam, Tania
Bufler, Philip
Palmer, Brent E.
Dinarello, Charles A.
Author_xml – sequence: 1
  givenname: Suzhao
  surname: Li
  fullname: Li, Suzhao
– sequence: 2
  givenname: Jesus
  surname: Amo-Aparicio
  fullname: Amo-Aparicio, Jesus
– sequence: 3
  givenname: Charles P.
  surname: Neff
  fullname: Neff, Charles P.
– sequence: 4
  givenname: Isak W.
  surname: Tengesdal
  fullname: Tengesdal, Isak W.
– sequence: 5
  givenname: Tania
  surname: Azam
  fullname: Azam, Tania
– sequence: 6
  givenname: Brent E.
  surname: Palmer
  fullname: Palmer, Brent E.
– sequence: 7
  givenname: Rubén
  surname: López-Vales
  fullname: López-Vales, Rubén
– sequence: 8
  givenname: Philip
  surname: Bufler
  fullname: Bufler, Philip
– sequence: 9
  givenname: Charles A.
  surname: Dinarello
  fullname: Dinarello, Charles A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30792349$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1r3DAQxUVJaTZpzzklGHLpxcnIkmXpUggh_YBAobRnoZVHjba25Ep2YP_7arvppu1cxOj99EbDOyFHIQYk5IzCFYWOXU_B5CsqG_q7xAuyoqBoLbiCI7ICaLpa8oYfk5OcNwCgWgmvyDGDTjWMqxW5-xIHrFxMVVjsgCZVPsyYBlx--FCzrrTV_IBVXqYpYc4-hiq6chvMjJUfxyX4efuavHRmyPjm6Twl397ffb39WN9__vDp9ua-tpyzuW7BSdY3iGspTGcNOOZQOktBNranQDspWjSdUGtklCOIvgXgtpdAJXOUnZJ3e99pWY_YWwxzMoOekh9N2upovP5XCf5Bf4-PWvAyg8ti8PbJIMWfC-ZZjz5bHAYTMC5ZN1S2rWiVgoJe_odu4pJCWa9QilMGUolCXe8pm2LOCd3hMxT0LiK9i0g_R1ReXPy9w4H_k0kBzvfAJs8xHfRGCMl2Br8AvvCYaQ
CitedBy_id crossref_primary_10_3389_fimmu_2021_708425
crossref_primary_10_1073_pnas_1906817116
crossref_primary_10_3390_ijms24054811
crossref_primary_10_1038_s41526_024_00380_w
crossref_primary_10_1111_sji_13172
crossref_primary_10_1016_j_bbi_2020_09_026
crossref_primary_10_3390_brainsci12060723
crossref_primary_10_3390_ijms24010017
crossref_primary_10_2147_CIA_S230186
crossref_primary_10_1038_s41588_023_01598_2
crossref_primary_10_3389_fimmu_2022_974261
crossref_primary_10_1038_s41420_022_00960_3
crossref_primary_10_3389_fimmu_2024_1427100
crossref_primary_10_1073_pnas_2306476120
crossref_primary_10_1126_sciimmunol_ade5728
crossref_primary_10_1158_0008_5472_CAN_20_1885
crossref_primary_10_3389_fcimb_2021_580679
crossref_primary_10_1002_med_21762
crossref_primary_10_3389_fimmu_2021_652846
crossref_primary_10_3389_fimmu_2023_1128358
crossref_primary_10_3390_ph17010109
crossref_primary_10_3389_fimmu_2023_1278521
crossref_primary_10_1016_j_jinf_2021_01_019
crossref_primary_10_3389_fimmu_2019_01197
crossref_primary_10_1016_j_celrep_2021_108955
crossref_primary_10_3389_fimmu_2021_645850
crossref_primary_10_3390_ijms232113242
crossref_primary_10_1111_exd_14217
crossref_primary_10_3390_ijms24010372
crossref_primary_10_3390_cells13030233
crossref_primary_10_1111_acel_13309
crossref_primary_10_1016_j_ejmech_2024_116462
crossref_primary_10_3389_fimmu_2021_696605
crossref_primary_10_1016_j_autrev_2021_102763
crossref_primary_10_1038_s41568_021_00363_z
crossref_primary_10_3389_fonc_2022_1051282
crossref_primary_10_1016_j_biopha_2019_109705
crossref_primary_10_3390_ijms20153701
crossref_primary_10_1016_j_intimp_2022_109343
Cites_doi 10.1038/ncomms5711
10.1073/pnas.0915018107
10.1073/pnas.1424626112
10.1002/j.1460-2075.1996.tb00542.x
10.1016/S0898-6568(00)00149-2
10.1073/pnas.212519099
10.1038/s41467-018-05940-9
10.1006/cyto.2000.0799
10.1016/S0083-6729(06)74009-2
10.1073/pnas.1111982108
10.1074/jbc.RA118.003698
10.1073/pnas.1523212113
10.3389/fmicb.2014.00762
10.1073/pnas.1416714111
10.1684/ecn.2011.0288
10.1038/s41419-018-0664-0
10.1074/jbc.273.6.3285
10.1002/eji.201545828
10.1038/ni.3103
10.2119/molmed.2017.00022
10.1016/j.ejphar.2017.09.044
10.1038/ni.1944
10.1093/rheumatology/kex348
10.1073/pnas.1619667114
10.1073/pnas.1716095115
10.1073/pnas.1619011114
10.1073/pnas.1324140111
10.1016/j.jaut.2014.02.012
10.1111/imr.12605
10.4049/jimmunol.180.8.5477
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 5, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Mar 5, 2019
– notice: 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1821111116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4461
ExternalDocumentID 10_1073_pnas_1821111116
30792349
26683116
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI015614
– fundername: NIAID NIH HHS
  grantid: R56 AI015614
– fundername: NCATS NIH HHS
  grantid: UL1 TR002535
– fundername: NIAID NIH HHS
  grantid: R21 AI128443
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI-128443
– fundername: Wings for Life International Foundation for Research in Paraplegia
  grantid: Research in Paraplegia
– fundername: the Spanish Ministry of Science, Innovation and University
  grantid: FPU fellowship
– fundername: DFG Grant
  grantid: BU 1222/7-1
– fundername: CCTSI
  grantid: mentored faculty pilot grant
– fundername: the Spanish Ministry of Economy and Competitiveness
  grantid: SAF2016-79774-R
– fundername: the Fondo de Investigación Sanitaria of Spain
  grantid: TERCEL and CIBERNED
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI-015614
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c443t-50f83d2eeb86a7ca0f3fe8fc1082cd1017865ea769be314e06d5004cd80183f13
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:38 EDT 2024
Fri Aug 16 10:21:14 EDT 2024
Thu Oct 10 17:04:53 EDT 2024
Fri Aug 23 01:45:50 EDT 2024
Sat Sep 28 08:29:58 EDT 2024
Fri Feb 02 07:30:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords suppression
mutation
IL-37
inflammation
caspase-1
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-50f83d2eeb86a7ca0f3fe8fc1082cd1017865ea769be314e06d5004cd80183f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewers: D.B., Institute of Protein Biochemistry; and T.C.T., Tufts University School of Medicine.
Contributed by Charles A. Dinarello, January 3, 2019 (sent for review December 13, 2018; reviewed by Diana Boraschi and Theoharis C. Theoharides)
Author contributions: S.L., J.A.-A., R.L.-V., and C.A.D. designed research; S.L., J.A.-A., C.P.N., I.W.T., T.A., P.B., and C.A.D. performed research; S.L., C.P.N., B.E.P., P.B., and C.A.D. contributed new reagents/analytic tools; S.L., J.A.-A., C.P.N., R.L.-V., and C.A.D. analyzed data; and S.L. and C.A.D. wrote the paper.
ORCID 0000-0002-5073-8316
0000-0001-7615-9550
OpenAccessLink https://www.pnas.org/content/pnas/116/10/4456.full.pdf
PMID 30792349
PQID 2194130896
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410848
proquest_miscellaneous_2185565990
proquest_journals_2194130896
crossref_primary_10_1073_pnas_1821111116
pubmed_primary_30792349
jstor_primary_26683116
PublicationCentury 2000
PublicationDate 2019-03-05
PublicationDateYYYYMMDD 2019-03-05
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_8_2
  doi: 10.1038/ncomms5711
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0915018107
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1424626112
– ident: e_1_3_3_25_2
  doi: 10.1002/j.1460-2075.1996.tb00542.x
– ident: e_1_3_3_24_2
  doi: 10.1016/S0898-6568(00)00149-2
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.212519099
– ident: e_1_3_3_18_2
  doi: 10.1038/s41467-018-05940-9
– ident: e_1_3_3_28_2
  doi: 10.1006/cyto.2000.0799
– ident: e_1_3_3_1_2
  doi: 10.1016/S0083-6729(06)74009-2
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1111982108
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.RA118.003698
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.1523212113
– ident: e_1_3_3_11_2
  doi: 10.3389/fmicb.2014.00762
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1416714111
– ident: e_1_3_3_2_2
  doi: 10.1684/ecn.2011.0288
– ident: e_1_3_3_5_2
  doi: 10.1038/s41419-018-0664-0
– ident: e_1_3_3_26_2
  doi: 10.1074/jbc.273.6.3285
– ident: e_1_3_3_3_2
  doi: 10.1002/eji.201545828
– ident: e_1_3_3_20_2
  doi: 10.1038/ni.3103
– ident: e_1_3_3_17_2
  doi: 10.2119/molmed.2017.00022
– ident: e_1_3_3_19_2
  doi: 10.1016/j.ejphar.2017.09.044
– ident: e_1_3_3_6_2
  doi: 10.1038/ni.1944
– ident: e_1_3_3_15_2
  doi: 10.1093/rheumatology/kex348
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.1619667114
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1716095115
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1619011114
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.1324140111
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jaut.2014.02.012
– ident: e_1_3_3_4_2
  doi: 10.1111/imr.12605
– ident: e_1_3_3_21_2
  doi: 10.4049/jimmunol.180.8.5477
SSID ssj0009580
Score 2.5219502
Snippet The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in...
Significance Interleukin-1 family members are highly inflammatory, but member IL-37 is unique in broadly suppressing inflammation and specific immunity. IL-37...
Interleukin-1 family members are highly inflammatory, but member IL-37 is unique in broadly suppressing inflammation and specific immunity. IL-37 is a...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4456
SubjectTerms Alanine
Amino acids
Animals
Aspartic acid
Biological Sciences
Caspase
Caspase-1
Cell activation
Cell Nucleus - metabolism
Cytokines
Cytokines - metabolism
Endotoxemia
Female
IL-1β
Immunity
Immunity, Innate - genetics
Inflammation
Innate immunity
Interleukin 1
Interleukin 6
Interleukin-1 - genetics
Interleukin-1 - physiology
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Liver
Lungs
Macrophages
Macrophages, Peritoneal - drug effects
Macrophages, Peritoneal - metabolism
Male
MAP kinase
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mutation
NF-kappa B - metabolism
NF-κB protein
Nuclear transport
Peritoneum
Protein Transport
Receptors
Rodents
Transgenic animals
Transgenic mice
Translocation
Tumor necrosis factor-α
γ-Interferon
Title Role for nuclear interleukin-37 in the suppression of innate immunity
URI https://www.jstor.org/stable/26683116
https://www.ncbi.nlm.nih.gov/pubmed/30792349
https://www.proquest.com/docview/2194130896
https://search.proquest.com/docview/2185565990
https://pubmed.ncbi.nlm.nih.gov/PMC6410848
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ukxfx7foiggc9dLftJG16FFFEUEQUvJU0TXFxzS77OPjvnaQPH3iyt3bSB5OZfF_J5AvAKSJGUaZlQOBcBlylYVCYEAOFYSk04ZP2u5bc3Sc3z_z2RbwsgWjXwviifV0M-3b03rfDV19bOXnXg7ZObPBwd5nwyMnAD5ZhOUVsf9E7pV1ZrzuJafjlMW_1fFIcTKya9YlQR_5wuxdRhBPDcUKa31CpLkz8i3L-rpz8BkXX67DWcEh2UX_rBiwZuwkbTZbO2FkjJX2-BVeP45FhxEuZdbrFasqcPMR0ZBZvQ0tZT6eMGCCbLSZNQaxl44quWqKgbOjXjsw_tuH5-urp8iZoNk4INOc4D0RYSSxjYwqZqFSrsMLKyEqT12JduiSUiTAqTbLCYMRNmJSCkkWXBFcSqwh3YMWOrdkDRl1cEKMzQqXK4Z2KVZxQ2hqFSZbxqAdnrePySa2Pkft57RRz5-78y9092PGO7doRN5DoDYetp_Mmg2Y5jaTufTIj80lnpth3ExrKmvHCtZGCCCkBag92647pHt72bA_SH13WNXC62j8tFG5eX7sJr_1_33kAq8SrMl-qJg5hZT5dmCPiLvPi2CGHOPYR-wn2Kuyl
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSX8miB5VUj9UAPySaxnThHhEDblkVVBRW3yHEcsWLxrnaTQ_vrO3YePMSlzS0Z52F9npkv8vgzwGdKaRimSniYnAuPySTwch1QT9Kg4Arzk3K7loyv4tEN-3bLb1eAd2thXNG-yie-mT74ZnLnaivnD2rY1YkNf4zPYhZaGfjhG1hDf41495Pea-2KZuVJhAGYRaxT9EnocG7k0kdKHbrD7l-EYxw5jpXSfJKXmtLE10jny9rJJ8noYh1-dd1oalDu_brKffXnhcLjP_dzA9639JScNuZNWNFmCzbbALAkJ61K9ZcPcP5zNtUEKS8xVhJZLohVnlhMdX0_MRhQ8JQguSTLet7W2hoyK_GqQXZLJm5ZSvX7I9xcnF-fjbx2TwZPMUYrjweloEWkdS5imSgZlLTUolT4oZEqrH-LmGuZxGmuach0EBcc_VAVmAkFLUO6DatmZvQuEBw9OZJFzWUibSqVkYxijAha0jhNWTiAkw6RbN5Ib2RuyjyhmcUxe8RxANsOsb4d0g5BneGggzBrnXOZYZC27xMpmo97M7qVnSuRRs9q20Zw5LqYqwew0yDeP7wbMgNIno2FvoGV7H5uQYSddHeL6N5_3_kJ3o6ux5fZ5der7_vwDulb6iri-AGsVotaHyJFqvIj5xB_Ae73DcM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH5qqVT1QllKmbLUSBzoIaudxDkiYERbQKgqEuolchxHHTF4opnk0P56np2FAXEit-Q5i_W2L_Lz9wAOKaVBkEruYHIuHCYS38mVTx1B_SKSmJ-k7VpyeRWf37Aft9HtUqsvW7Qv84mrp_eunvy1tZXVvfT6OjHv-vIkZoGhgfeqovTewjv02TDpf9QHvl3e7j4JMQizkPWsPgn1Ki0WLsLqwB6mhxHaOeIcQ6e5lJva8sSXgOfz-smlhDT-CH_6qbR1KHduU-eu_P-M5fFVc12D1Q6mkuN2yDq8UXoD1rtAsCBHHVv1t004-zWbKoLQl2hDjSzmxDBQzKequZtoDCx4ShBkkkVTdTW3msxKvKoR5ZKJ3Z5S__sEN-Oz3yfnTtebwZGM0dqJ_JLTIlQq57FIpPBLWipeSvzYUBbGz3kcKZHEaa5owJQfFxH6oywwI3JaBnQLVvRMq20gaEU5gkYViUSYlCpCEcYYGZSgcZqyYARHvVayqqXgyOzSeUIzo8vsUZcj2LJaG8Yh_ODUCnZ7NWadky4yDNbmfTxF8cEgRvcyayZCq1ljxvAIMS_m7BF8brU-PLw3mxEkT-xhGGCou59KUMuWwrvT6pdX3_kV3l-fjrOL71c_d-ADorjUFsZFu7BSzxu1h0ipzvetTzwAddoQQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+for+nuclear+interleukin-37+in+the+suppression+of+innate+immunity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Suzhao&rft.au=Amo-Aparicio%2C+Jesus&rft.au=Neff%2C+Charles+P.&rft.au=Tengesdal%2C+Isak+W.&rft.date=2019-03-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=10&rft.spage=4456&rft.epage=4461&rft_id=info:doi/10.1073%2Fpnas.1821111116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1821111116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon