Iron promotes oxidative cell death caused by bisretinoids of retina

Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate re...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 19; pp. 4963 - 4968
Main Authors Ueda, Keiko, Kim, Hye Jin, Zhao, Jin, Song, Ying, Dunaief, Joshua L., Sparrow, Janet R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.05.2018
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1722601115

Cover

Abstract Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4 −/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4 −/−. In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
AbstractList Cells are subject to metabolic sources of oxidizing species and to the need to regulate Fe, a redox-active metal. Retinal pigment epithelial (RPE) cells have to contend with an additional, unique source of oxidative stress: photooxidative insult from bisretinoids that accumulate as lipofuscin. Here we report that Fe can interact with bisretinoids in RPE to promote cell damage. These findings inform disease processes in both Fe-related and bisretinoid-associated retinal degeneration. The link between Fe and bisretinoid oxidation also highlights opportunities for repurposed and combination therapies. This could include visual cycle inhibitors as a treatment for maculopathy associated with elevated retinal Fe, and Fe chelation to aid in suppressing the damaging effects of bisretinoids in juvenile and age-related macular degeneration. Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4 −/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4 −/− . In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4 −/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4 −/−. In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4-/- and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4-/- In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4-/- and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4-/- In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4−/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4−/−. In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Author Kim, Hye Jin
Ueda, Keiko
Sparrow, Janet R.
Song, Ying
Zhao, Jin
Dunaief, Joshua L.
Author_xml – sequence: 1
  givenname: Keiko
  surname: Ueda
  fullname: Ueda, Keiko
  organization: Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032
– sequence: 2
  givenname: Hye Jin
  surname: Kim
  fullname: Kim, Hye Jin
  organization: Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032
– sequence: 3
  givenname: Jin
  surname: Zhao
  fullname: Zhao, Jin
  organization: Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032
– sequence: 4
  givenname: Ying
  surname: Song
  fullname: Song, Ying
  organization: F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 5
  givenname: Joshua L.
  surname: Dunaief
  fullname: Dunaief, Joshua L.
  organization: F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 6
  givenname: Janet R.
  surname: Sparrow
  fullname: Sparrow, Janet R.
  organization: Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29686088$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vFSEUxYlpY1-ra1eaSbpxM-3lYxjYmJiXqk2auNE1YRiwvMyDJzCN_e_L9NVWu-iKEH7ncO49x-ggxGAReofhDENPz3dB5zPcE8IBY9y9QisMErecSThAKwDSt4IRdoSOc94AgOwEvEZHRHLBQYgVWl-mGJpdittYbG7iHz_q4m9sY-w0NaPV5boxes52bIbbZvA52eJD9GNlXXN_0W_QodNTtm8fzhP088vFj_W39ur718v156vWMEZLy6w0vav_cqsZMc4JcIOEfqRCc0MHwnsKDMtxpEZYKZ0msiPaSM0GzbmjJ-jT3nc3D1s7GhtK0pPaJb_V6VZF7dX_L8Ffq1_xRnWSCSlJNfj4YJDi79nmorY-L4PqYOOcFQGKgTIguKKnz9BNnFOo4ymCAcse161X6sO_iR6j_N1vBc73gEkx1925RwSDWhpUS4PqqcGq6J4pjC-1kriM5KcXdO_3uk0uMT0l4d1SOqN31reqCQ
CitedBy_id crossref_primary_10_1073_pnas_2100122118
crossref_primary_10_2147_JIR_S306456
crossref_primary_10_1146_annurev_vision_100419_115156
crossref_primary_10_3390_ijms241612928
crossref_primary_10_1016_j_aopr_2023_02_001
crossref_primary_10_1039_D1MH01969D
crossref_primary_10_1194_jlr_TR120000742
crossref_primary_10_1186_s11658_025_00700_2
crossref_primary_10_1016_j_preteyeres_2019_100774
crossref_primary_10_1073_pnas_2216935120
crossref_primary_10_1002_adhm_202304626
crossref_primary_10_3390_antiox10091382
crossref_primary_10_1111_jcmm_17294
crossref_primary_10_1016_j_exer_2025_110303
crossref_primary_10_1038_s41598_023_47721_5
crossref_primary_10_15252_emmm_202216525
crossref_primary_10_1016_j_jbc_2021_100259
crossref_primary_10_3390_cells13100871
crossref_primary_10_1080_13543784_2019_1631284
crossref_primary_10_3390_cells9030705
crossref_primary_10_3390_ijms24129892
crossref_primary_10_1111_acel_13490
crossref_primary_10_1016_j_ajpath_2019_05_022
crossref_primary_10_1155_2022_1792894
crossref_primary_10_3390_antiox13050568
crossref_primary_10_1080_17469899_2020_1725474
crossref_primary_10_1038_s41598_023_45855_0
crossref_primary_10_1016_j_preteyeres_2020_100936
crossref_primary_10_1007_s10753_024_02077_4
crossref_primary_10_1016_j_preteyeres_2020_100939
crossref_primary_10_3233_NPM_200679
crossref_primary_10_1097_IAE_0000000000002367
crossref_primary_10_1016_j_freeradbiomed_2024_01_053
crossref_primary_10_3390_antiox12122111
crossref_primary_10_3390_ijms21072499
crossref_primary_10_1038_s41420_019_0171_9
crossref_primary_10_3390_ijms21197290
crossref_primary_10_1051_medsci_2020096
crossref_primary_10_1002_wrna_1652
crossref_primary_10_1016_j_exer_2019_05_001
crossref_primary_10_1016_j_arr_2021_101510
crossref_primary_10_14336_AD_2020_0912
crossref_primary_10_7759_cureus_24495
crossref_primary_10_1016_j_biomaterials_2021_120739
crossref_primary_10_1242_dmm_050066
crossref_primary_10_3389_fcell_2021_720288
crossref_primary_10_3389_fopht_2023_1305864
Cites_doi 10.1001/archopht.121.8.1099
10.1073/pnas.1600474113
10.1016/j.preteyeres.2011.11.001
10.1074/jbc.M115.680363
10.1002/anie.200701235
10.1002/1521-3773(20020301)41:5<814::AID-ANIE814>3.0.CO;2-2
10.1111/j.1442-9071.2011.02666.x
10.1016/j.molcata.2007.05.005
10.1167/iovs.14-13867
10.1016/j.preteyeres.2007.07.004
10.1016/S0140-6736(86)90837-8
10.1038/ng.2578
10.1093/acprof:oso/9780198717478.001.0001
10.1016/j.ophtha.2004.12.029
10.1016/j.survophthal.2015.08.005
10.1073/pnas.0708714104
10.1073/pnas.0913112107
10.1016/0014-4835(88)90025-5
10.1167/iovs.17-21557
10.1001/archophthalmol.2011.309
10.1136/bjophthalmol-2012-302281
10.1167/iovs.11-8632
10.1167/iovs.08-2618
10.1001/archopht.126.10.1396
10.1001/archopht.123.12.1745
10.1038/eye.2014.55
10.1074/jbc.M910191199
10.1562/2004-12-14-RA-402.1
10.1038/90089
10.1073/pnas.95.25.14609
10.1016/j.exer.2004.05.005
10.1016/j.mam.2012.03.006
10.1001/archopht.1993.01090040106042
10.1167/iovs.14-14568
10.1073/pnas.0405146101
10.1089/rej.2006.9.256
10.1097/IAE.0000000000000756
10.1016/j.exer.2015.05.019
10.1167/iovs.07-1470
10.1016/j.ajpath.2011.12.041
10.1167/iovs.05-1135
10.1016/j.preteyeres.2009.11.004
10.1016/S0092-8674(00)80602-9
10.1371/journal.pone.0041309
10.1074/jbc.M300457200
10.1001/jamaophthalmol.2016.1475
10.1073/pnas.1524774113
10.1167/iovs.12-10204
10.1001/archopht.122.5.750
10.1167/iovs.12-11490
10.1167/iovs.07-1430
10.1016/S0040-4020(01)00952-8
10.1016/j.visres.2009.09.015
10.1167/tvst.1.3.2
10.1167/iovs.14-14136
10.1007/978-1-4419-1399-9_61
10.1016/j.preteyeres.2011.12.001
10.1073/pnas.222551899
10.3389/fnagi.2013.00024
10.1016/j.ophtha.2009.06.025
10.1167/iovs.14-15025
10.1016/j.exer.2004.06.024
10.1016/j.ophtha.2016.02.009
10.1074/jbc.M504933200
10.1167/iovs.14-14602
10.1167/iovs.10-6207
10.1562/0031-8655(2003)077<0253:COTAPO>2.0.CO;2
10.1016/S0009-2797(01)00269-1
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences May 8, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences May 8, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1722601115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4968
ExternalDocumentID PMC5948992
29686088
10_1073_pnas_1722601115
26509584
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY012951
– fundername: NEI NIH HHS
  grantid: P30 EY019007
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: P30EY019007
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY012951
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-4e9c7f8606ea42cff80fb907d38a6c3b26730419dd3c8e99fa2952ac9a4ba66f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:30:08 EDT 2025
Thu Sep 04 16:14:03 EDT 2025
Mon Jun 30 08:30:06 EDT 2025
Thu Apr 03 07:05:19 EDT 2025
Tue Jul 01 03:19:48 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Fri May 30 11:17:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords iron
lipofuscin
bisretinoid
retinal pigment epithelium
macular degeneration
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-4e9c7f8606ea42cff80fb907d38a6c3b26730419dd3c8e99fa2952ac9a4ba66f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.L.D. and J.R.S. designed research; K.U., H.J.K., J.Z., and Y.S. performed research; J.L.D. contributed new reagents/analytic tools; K.U., H.J.K., J.Z., and J.R.S. analyzed data; and J.L.D. and J.R.S. wrote the paper.
Edited by Paul S. Bernstein, University of Utah School of Medicine, Salt Lake City, UT, and accepted by Editorial Board Member Jeremy Nathans April 5, 2018 (received for review January 2, 2018)
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5948992
PMID 29686088
PQID 2101971172
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948992
proquest_miscellaneous_2031034021
proquest_journals_2101971172
pubmed_primary_29686088
crossref_primary_10_1073_pnas_1722601115
crossref_citationtrail_10_1073_pnas_1722601115
jstor_primary_26509584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_71_2
Cruickshanks KJ (e_1_3_3_64_2) 2001; 119
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
Handa JT (e_1_3_3_15_2) 1999; 40
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
Dorey CK (e_1_3_3_8_2) 1989; 30
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Chen L (e_1_3_3_52_2) 2003; 9
Sparrow JR (e_1_3_3_42_2) 2002; 43
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_5_2
  doi: 10.1001/archopht.121.8.1099
– ident: e_1_3_3_70_2
  doi: 10.1073/pnas.1600474113
– ident: e_1_3_3_50_2
  doi: 10.1016/j.preteyeres.2011.11.001
– ident: e_1_3_3_71_2
  doi: 10.1074/jbc.M115.680363
– ident: e_1_3_3_48_2
  doi: 10.1002/anie.200701235
– ident: e_1_3_3_10_2
  doi: 10.1002/1521-3773(20020301)41:5<814::AID-ANIE814>3.0.CO;2-2
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1442-9071.2011.02666.x
– ident: e_1_3_3_47_2
  doi: 10.1016/j.molcata.2007.05.005
– ident: e_1_3_3_53_2
  doi: 10.1167/iovs.14-13867
– ident: e_1_3_3_33_2
  doi: 10.1016/j.preteyeres.2007.07.004
– ident: e_1_3_3_37_2
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_3_3_56_2
  doi: 10.1038/ng.2578
– ident: e_1_3_3_1_2
  doi: 10.1093/acprof:oso/9780198717478.001.0001
– ident: e_1_3_3_2_2
  doi: 10.1016/j.ophtha.2004.12.029
– ident: e_1_3_3_4_2
  doi: 10.1016/j.survophthal.2015.08.005
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0708714104
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0913112107
– ident: e_1_3_3_7_2
  doi: 10.1016/0014-4835(88)90025-5
– ident: e_1_3_3_72_2
  doi: 10.1167/iovs.17-21557
– ident: e_1_3_3_3_2
  doi: 10.1001/archophthalmol.2011.309
– ident: e_1_3_3_69_2
  doi: 10.1136/bjophthalmol-2012-302281
– ident: e_1_3_3_29_2
  doi: 10.1167/iovs.11-8632
– ident: e_1_3_3_19_2
  doi: 10.1167/iovs.08-2618
– ident: e_1_3_3_68_2
  doi: 10.1001/archopht.126.10.1396
– ident: e_1_3_3_60_2
  doi: 10.1001/archopht.123.12.1745
– ident: e_1_3_3_66_2
  doi: 10.1038/eye.2014.55
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M910191199
– ident: e_1_3_3_59_2
  doi: 10.1562/2004-12-14-RA-402.1
– ident: e_1_3_3_35_2
  doi: 10.1038/90089
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.95.25.14609
– ident: e_1_3_3_41_2
  doi: 10.1016/j.exer.2004.05.005
– volume: 43
  start-page: 1222
  year: 2002
  ident: e_1_3_3_42_2
  article-title: Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_57_2
  doi: 10.1016/j.mam.2012.03.006
– ident: e_1_3_3_62_2
  doi: 10.1001/archopht.1993.01090040106042
– ident: e_1_3_3_25_2
  doi: 10.1167/iovs.14-14568
– ident: e_1_3_3_38_2
  doi: 10.1073/pnas.0405146101
– ident: e_1_3_3_58_2
  doi: 10.1089/rej.2006.9.256
– ident: e_1_3_3_67_2
  doi: 10.1097/IAE.0000000000000756
– ident: e_1_3_3_6_2
  doi: 10.1016/j.exer.2015.05.019
– ident: e_1_3_3_27_2
  doi: 10.1167/iovs.07-1470
– ident: e_1_3_3_39_2
  doi: 10.1016/j.ajpath.2011.12.041
– ident: e_1_3_3_61_2
  doi: 10.1167/iovs.05-1135
– ident: e_1_3_3_51_2
  doi: 10.1016/j.preteyeres.2009.11.004
– ident: e_1_3_3_28_2
  doi: 10.1016/S0092-8674(00)80602-9
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0041309
– ident: e_1_3_3_45_2
  doi: 10.1074/jbc.M300457200
– ident: e_1_3_3_18_2
  doi: 10.1001/jamaophthalmol.2016.1475
– volume: 9
  start-page: 151
  year: 2003
  ident: e_1_3_3_52_2
  article-title: Increased expression of ceruloplasmin in the retina following photic injury
  publication-title: Mol Vis
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1524774113
– ident: e_1_3_3_34_2
  doi: 10.1167/iovs.12-10204
– ident: e_1_3_3_63_2
  doi: 10.1001/archopht.122.5.750
– ident: e_1_3_3_31_2
  doi: 10.1167/iovs.12-11490
– ident: e_1_3_3_20_2
  doi: 10.1167/iovs.07-1430
– ident: e_1_3_3_43_2
  doi: 10.1016/S0040-4020(01)00952-8
– ident: e_1_3_3_12_2
  doi: 10.1016/j.visres.2009.09.015
– ident: e_1_3_3_24_2
  doi: 10.1167/tvst.1.3.2
– ident: e_1_3_3_32_2
  doi: 10.1167/iovs.14-14136
– volume: 40
  start-page: 775
  year: 1999
  ident: e_1_3_3_15_2
  article-title: Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_36_2
  doi: 10.1007/978-1-4419-1399-9_61
– ident: e_1_3_3_73_2
  doi: 10.1016/j.preteyeres.2011.12.001
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.222551899
– ident: e_1_3_3_26_2
  doi: 10.3389/fnagi.2013.00024
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ophtha.2009.06.025
– ident: e_1_3_3_54_2
  doi: 10.1167/iovs.14-15025
– ident: e_1_3_3_46_2
  doi: 10.1016/j.exer.2004.06.024
– ident: e_1_3_3_55_2
  doi: 10.1016/j.ophtha.2016.02.009
– ident: e_1_3_3_44_2
  doi: 10.1074/jbc.M504933200
– ident: e_1_3_3_65_2
  doi: 10.1167/iovs.14-14602
– volume: 119
  start-page: 246
  year: 2001
  ident: e_1_3_3_64_2
  article-title: Sunlight and the 5-year incidence of early age-related maculopathy: The beaver dam eye study
  publication-title: Arch Ophthalmol
– ident: e_1_3_3_23_2
  doi: 10.1167/iovs.10-6207
– volume: 30
  start-page: 1691
  year: 1989
  ident: e_1_3_3_8_2
  article-title: Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_40_2
  doi: 10.1562/0031-8655(2003)077<0253:COTAPO>2.0.CO;2
– ident: e_1_3_3_49_2
  doi: 10.1016/S0009-2797(01)00269-1
SSID ssj0009580
Score 2.4801261
Snippet Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal...
Cells are subject to metabolic sources of oxidizing species and to the need to regulate Fe, a redox-active metal. Retinal pigment epithelial (RPE) cells have...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4963
SubjectTerms Adducts
Animals
ATP-Binding Cassette Transporters - deficiency
Biological Sciences
Cell death
Cell Death - drug effects
Cell Death - genetics
Cells
Ceruloplasmin
Chromatography
Deferiprone
Electron transfer
Gene expression
High performance liquid chromatography
Intracellular
Iron
Iron Chelating Agents - pharmacology
Lipofuscin - genetics
Lipofuscin - metabolism
Liquid chromatography
Mice
Mice, Knockout
Organic chemistry
Oxidation
Photodegradation
Proteins
Pyridones - pharmacology
Reactive oxygen species
Retina
Retinal Pigment Epithelium - metabolism
Retinal Pigment Epithelium - pathology
Retinaldehyde
Retinaldehyde - genetics
Retinaldehyde - metabolism
Retinoids - metabolism
Transferrin
Transferrins
Vitamin A
Title Iron promotes oxidative cell death caused by bisretinoids of retina
URI https://www.jstor.org/stable/26509584
https://www.ncbi.nlm.nih.gov/pubmed/29686088
https://www.proquest.com/docview/2101971172
https://www.proquest.com/docview/2031034021
https://pubmed.ncbi.nlm.nih.gov/PMC5948992
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKuHBBDBgUBjISh6EqpUkcxz5OE1B2qCaxSoVLZMeOFoEStLQS4wfwu3m24yStOmlwiRLHseK8L-892-99RuitTEDFcSID8KVhgFJwOCuoCgidsVTEihJho3wXdL4k56tkNRr9GUQtbdZymv_em1fyP1KFMpCryZL9B8l2jUIBnIN84QgShuOdZPz5urYRVvC5DXfsr1I5Gm8zGz9Rxrmb5GLTOCdTlo3JWKzqUtnwDXshhs7pRWfMGh86sPBzhad95kmrDppJMLlY9PsYL7Vy6WW6_F73S_sWb_MbPTkvOxx-uxJuwacv-tKGBn_1prSdiQiZjftjQ-0agcUjLid6qp1CBX8koMRtCdppXJfB6aHFBwqU8FbfaX_J9ip60Exmd-JKNFNwwQwvmm90i1J7x9R1AYh26T2NM9NA1jdwD92P0tQu939ahQPyZuZSmdr-eYqoNH6_8wZb3o0LcN03dNmNwB24NJeP0MN2LIJPHbAO0UhXj9GhFy8-aSnJ3z1BZwZp2CMNd0jDBmnYIg07pGF5g4dIw3WBHdKeouXHD5dn86DdfiPICYnXAdE8TwsGI1wtSJQXBZsVks9SFTNB81hGFKwDCblScc4054WIeBKJnAsiBaVFfIQOqrrSzxEOE6U5lTPO5IyI0KzuijQBz1XFlIENGaOp_2xZ3nLTmy1SfmS3CGqMTroHfjpalturHlk5dPUiQxoJfvcYHXvBZO1P3WQRmCiehvD4GL3pboPKNd9TVLreQB1DpxsT8I7H6JmTY984ABbUHPQo3ZJwV8HQuW_fqcorS-tuiJM4j17cvWsv0YP-PzxGB-vrjX4FPvJavrYA_gv-ZLiT
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+promotes+oxidative+cell+death+caused+by+bisretinoids+of+retina&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ueda%2C+Keiko&rft.au=Kim%2C+Hye+Jin&rft.au=Zhao%2C+Jin&rft.au=Song%2C+Ying&rft.date=2018-05-08&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=19&rft.spage=4963&rft.epage=4968&rft_id=info:doi/10.1073%2Fpnas.1722601115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1722601115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon