Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain
Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic muco...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 26; pp. 15281 - 15292 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain. |
---|---|
AbstractList | Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain. Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gα and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain. Significance G protein-coupled receptors are considered to function principally at the cell surface. We present evidence that the δ-opioid receptor (DOPr) signals from endosomes to cause a sustained inhibition of pain. Opioids from the inflamed human and mouse colon, along with selective agonists that evoked DOPr internalization, inhibited the excitability of nociceptors by a mechanism requiring DOPr endocytosis. DOPr in endosomes generated a subset of signals in subcellular compartments that inhibited neuronal excitability. A DOPr agonist that was encapsulated into nanoparticles designed to selectively activate DOPr in endosomes of nociceptors caused a long-lasting inhibition of neuronal excitability and pain. Our results support the hypothesis that endosomal signaling of DOPr is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gα i/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain. G protein-coupled receptors are considered to function principally at the cell surface. We present evidence that the δ-opioid receptor (DOPr) signals from endosomes to cause a sustained inhibition of pain. Opioids from the inflamed human and mouse colon, along with selective agonists that evoked DOPr internalization, inhibited the excitability of nociceptors by a mechanism requiring DOPr endocytosis. DOPr in endosomes generated a subset of signals in subcellular compartments that inhibited neuronal excitability. A DOPr agonist that was encapsulated into nanoparticles designed to selectively activate DOPr in endosomes of nociceptors caused a long-lasting inhibition of neuronal excitability and pain. Our results support the hypothesis that endosomal signaling of DOPr is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gα i/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain. |
Author | Jaramillo-Polanco, Josue Lopez-Lopez, Cintya Vanner, Stephen J. Gong, Jing Jimenez-Vargas, Nestor N. Veldhuis, Nicholas A. Latorre, Rocco Halls, Michelle L. Reed, David E. DiCello, Jesse J. Rajasekhar, Pradeep Hegron, Alan Lomax, Alan E. Canals, Meritxell Carbone, Simona E. Yu, Yang Poole, Daniel P. Jensen, Dane D. Schmidt, Brian L. Bunnett, Nigel W. Wisdom, Matthew J. Teng, Shavonne Leong, Kam W. |
Author_xml | – sequence: 1 givenname: Nestor N. surname: Jimenez-Vargas fullname: Jimenez-Vargas, Nestor N. – sequence: 2 givenname: Jing surname: Gong fullname: Gong, Jing – sequence: 3 givenname: Matthew J. surname: Wisdom fullname: Wisdom, Matthew J. – sequence: 4 givenname: Dane D. surname: Jensen fullname: Jensen, Dane D. – sequence: 5 givenname: Rocco surname: Latorre fullname: Latorre, Rocco – sequence: 6 givenname: Alan surname: Hegron fullname: Hegron, Alan – sequence: 7 givenname: Shavonne surname: Teng fullname: Teng, Shavonne – sequence: 8 givenname: Jesse J. surname: DiCello fullname: DiCello, Jesse J. – sequence: 9 givenname: Pradeep surname: Rajasekhar fullname: Rajasekhar, Pradeep – sequence: 10 givenname: Nicholas A. surname: Veldhuis fullname: Veldhuis, Nicholas A. – sequence: 11 givenname: Simona E. surname: Carbone fullname: Carbone, Simona E. – sequence: 12 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 13 givenname: Cintya surname: Lopez-Lopez fullname: Lopez-Lopez, Cintya – sequence: 14 givenname: Josue surname: Jaramillo-Polanco fullname: Jaramillo-Polanco, Josue – sequence: 15 givenname: Meritxell surname: Canals fullname: Canals, Meritxell – sequence: 16 givenname: David E. surname: Reed fullname: Reed, David E. – sequence: 17 givenname: Alan E. surname: Lomax fullname: Lomax, Alan E. – sequence: 18 givenname: Brian L. surname: Schmidt fullname: Schmidt, Brian L. – sequence: 19 givenname: Kam W. surname: Leong fullname: Leong, Kam W. – sequence: 20 givenname: Stephen J. surname: Vanner fullname: Vanner, Stephen J. – sequence: 21 givenname: Michelle L. surname: Halls fullname: Halls, Michelle L. – sequence: 22 givenname: Nigel W. surname: Bunnett fullname: Bunnett, Nigel W. – sequence: 23 givenname: Daniel P. surname: Poole fullname: Poole, Daniel P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32546520$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1v1DAQxS1URLeFMyeQJc5px1_x-oKEqvIhVeICZ8ubTLJeJXawHaQe-c_xassCp5Fmfu-NPe-KXIQYkJDXDG4YaHG7BJdvOAAoAMb0M7JhYFjTSgMXZAPAdbOVXF6Sq5wPFTNqCy_IpeBKtorDhvy6D33McXYTzX4MbvJhpHGgPU7F0bj46HuasMOlxJSpz9QFilUzYohrpjN2exd8nmu_p2WPyS24Ft_R4tKIhQ4xVf3kcaBDijP1YZjcPLtq90gX58NL8nxwU8ZXT_WafP94_-3uc_Pw9dOXuw8PTSelKI3sh1b3LYctODAGRc8MQisVR6U7afhOSNAosZdctcLsJMgO60eNQDFwENfk_cl3WXcz9h2Gktxkl-Rnlx5tdN7-Pwl-b8f402oh6hZZDd49GaT4Y8Vc7CGuqZ4sWy45MM2kOlK3J6pLMeeEw3kDA3vMzB4zs38zq4q3_z7szP8JqQJvTsAh16ud57w1QoHeit9kQaCh |
CitedBy_id | crossref_primary_10_1016_j_pharmthera_2022_108331 crossref_primary_10_3389_fphar_2021_669227 crossref_primary_10_1016_j_ceb_2021_03_002 crossref_primary_10_3166_dea_2022_0223 crossref_primary_10_1007_s00232_020_00158_7 crossref_primary_10_1021_acs_biochem_0c00644 crossref_primary_10_3390_antiox12122085 crossref_primary_10_1073_pnas_2220979120 crossref_primary_10_3389_fendo_2023_1179600 crossref_primary_10_1053_j_gastro_2024_01_045 crossref_primary_10_1097_j_pain_0000000000003013 crossref_primary_10_1523_JNEUROSCI_2098_21_2022 crossref_primary_10_1016_j_actbio_2023_07_049 crossref_primary_10_1016_j_celrep_2024_114164 crossref_primary_10_31466_kfbd_1214649 crossref_primary_10_1007_s12031_022_02016_8 crossref_primary_10_1016_j_nantod_2021_101223 crossref_primary_10_1016_j_tips_2023_10_003 crossref_primary_10_1016_j_jbc_2023_105497 crossref_primary_10_1016_j_lfs_2023_121803 crossref_primary_10_1152_ajpgi_00297_2021 crossref_primary_10_1126_scisignal_abq7038 crossref_primary_10_1007_s40473_024_00277_8 crossref_primary_10_1016_j_peptides_2022_170752 crossref_primary_10_1126_scisignal_adf8299 crossref_primary_10_1126_scisignal_adj9760 crossref_primary_10_1007_s11916_022_01055_5 crossref_primary_10_3390_molecules25184257 crossref_primary_10_1111_jnc_15506 crossref_primary_10_3390_ijms221810139 crossref_primary_10_1016_j_jep_2022_115817 crossref_primary_10_1126_sciadv_adf6059 crossref_primary_10_1136_gutjnl_2021_324070 crossref_primary_10_1016_j_actbio_2023_01_004 crossref_primary_10_3390_ijerph19116485 crossref_primary_10_1038_s41580_021_00375_5 crossref_primary_10_3390_cells11030528 crossref_primary_10_1073_pnas_2112059119 crossref_primary_10_1186_s12974_021_02352_3 crossref_primary_10_1097_j_pain_0000000000002826 crossref_primary_10_1111_bph_16023 crossref_primary_10_1016_j_neuropharm_2023_109526 crossref_primary_10_1016_j_biomaterials_2022_121536 crossref_primary_10_1089_hs_2022_0014 crossref_primary_10_1002_bmm2_12049 crossref_primary_10_3390_pharmaceutics15092309 crossref_primary_10_1016_j_jbc_2024_105668 crossref_primary_10_1039_D3TB00156C crossref_primary_10_1016_j_coph_2023_102384 crossref_primary_10_1042_BST20210650 crossref_primary_10_3390_molecules26185448 crossref_primary_10_1136_gutjnl_2020_321193 crossref_primary_10_3389_fncel_2021_745178 crossref_primary_10_1146_annurev_biochem_081820_092427 crossref_primary_10_3390_biomedicines11071993 crossref_primary_10_1146_annurev_pharmtox_040623_115054 crossref_primary_10_1073_pnas_2208749120 crossref_primary_10_1016_j_conb_2022_102601 crossref_primary_10_1016_j_ijpharm_2023_123425 crossref_primary_10_1136_gutjnl_2021_324618 crossref_primary_10_3389_fphys_2022_840763 crossref_primary_10_1111_febs_15773 crossref_primary_10_1097_j_pain_0000000000003026 crossref_primary_10_1016_j_addr_2022_114359 crossref_primary_10_1016_j_jbc_2021_100345 crossref_primary_10_3389_fncel_2021_814547 |
Cites_doi | 10.1016/j.neuron.2018.04.021 10.1038/nature12000 10.1083/jcb.148.6.1267 10.1016/S0168-3659(99)00248-5 10.1016/j.tips.2006.11.003 10.1053/j.gastro.2004.04.008 10.1371/journal.pbio.1000172 10.1073/pnas.1706656114 10.1074/jbc.RA118.001975 10.1053/j.gastro.2013.09.020 10.1523/JNEUROSCI.19-01-00056.1999 10.1038/s41565-019-0568-x 10.1136/gut.2008.170811 10.1007/978-1-4939-2914-6_10 10.1523/JNEUROSCI.3748-10.2010 10.1053/j.gastro.2011.05.042 10.1111/bph.14222 10.1073/pnas.1721891115 10.1111/nmo.12008 10.1073/pnas.190276697 10.1136/gutjnl-2016-311456 10.1083/jcb.122.3.565 10.1021/nn900002m 10.1053/j.gastro.2006.01.045 10.1038/ajg.2013.241 10.1016/j.tips.2017.09.005 10.2147/IJN.S596 10.1002/adma.201405084 10.1124/pr.116.013367 10.1038/nprot.2014.046 10.1126/scitranslmed.aal3447 10.1038/ncomms12178 10.1021/nn403325f 10.1371/journal.pone.0175642 10.1016/j.actbio.2018.05.054 10.1371/journal.pone.0005425 10.1146/annurev-neuro-080317-061522 10.1002/adma.201801198 10.1073/pnas.0603359103 10.1016/j.cellsig.2017.07.004 10.1016/S0021-9258(18)98476-0 10.1021/cr940351u 10.1152/ajpgi.00025.2018 10.1074/jbc.M114.578179 10.1002/0471141755.ph0214s70 10.1038/nrd.2017.178 10.1111/j.1476-5381.1996.tb15610.x 10.1016/j.neuron.2015.11.001 10.1523/JNEUROSCI.4124-15.2016 10.1016/j.tips.2018.08.003 10.1038/nprot.2014.106 10.1016/j.ceb.2013.10.003 10.1073/pnas.0906541106 10.1073/pnas.92.17.7686 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 30, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 30, 2020 – notice: 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.2000500117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 15292 |
ExternalDocumentID | 10_1073_pnas_2000500117 32546520 26935078 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK118971 – fundername: NINDS NIH HHS grantid: R01 NS102722 – fundername: NIDCR NIH HHS grantid: R01 DE026806 – fundername: NHLBI NIH HHS grantid: T32 HL120826 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c443t-4df67d62080a099e3d19e06452e57c492b3407e4ed425639b404ce32593e3f203 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:57:52 EDT 2024 Thu Oct 10 18:49:01 EDT 2024 Fri Aug 23 01:31:43 EDT 2024 Sat Sep 28 08:31:41 EDT 2024 Fri Feb 02 07:18:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | nanomedicine pain G protein-coupled receptors signaling inflammation |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-4df67d62080a099e3d19e06452e57c492b3407e4ed425639b404ce32593e3f203 |
Notes | Author contributions: N.N.J.-V., J.G., D.D.J., R.L., A.H., J.J.D., P.R., N.A.V., S.E.C., Y.Y., C.L.-L., J.J.-P., M.C., D.E.R., A.E.L., B.L.S., K.W.L., S.J.V., M.L.H., N.W.B., and D.P.P. designed research; N.N.J.-V., J.G., M.J.W., D.D.J., R.L., A.H., S.T., J.J.D., P.R., N.A.V., S.E.C., Y.Y., C.L.-L., J.J.-P., D.E.R., and A.E.L. performed research; N.N.J.-V., J.G., M.J.W., D.D.J., R.L., A.H., J.J.D., P.R., N.A.V., S.E.C., Y.Y., C.L.-L., J.J.-P., M.C., D.E.R., A.E.L., B.L.S., K.W.L., S.J.V., M.L.H., N.W.B., and D.P.P. analyzed data; and N.N.J.-V., A.H., B.L.S., K.W.L., S.J.V., M.L.H., N.W.B., and D.P.P. wrote the paper. Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC, and approved May 18, 2020 (received for review January 9, 2020) |
ORCID | 0000-0002-8902-9365 0000-0002-4350-6357 0000-0002-4444-6149 0000-0002-6168-8422 0000-0002-8133-4955 0000-0001-8555-8959 0000-0003-3367-0644 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/26/15281.full.pdf |
PMID | 32546520 |
PQID | 2420171454 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334524 proquest_journals_2420171454 crossref_primary_10_1073_pnas_2000500117 pubmed_primary_32546520 jstor_primary_26935078 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-30 |
PublicationDateYYYYMMDD | 2020-06-30 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 Park R. J. (e_1_3_3_51_2) 2013; 126 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_40_2 doi: 10.1016/j.neuron.2018.04.021 – ident: e_1_3_3_50_2 doi: 10.1038/nature12000 – ident: e_1_3_3_5_2 doi: 10.1083/jcb.148.6.1267 – ident: e_1_3_3_46_2 doi: 10.1016/S0168-3659(99)00248-5 – ident: e_1_3_3_38_2 doi: 10.1016/j.tips.2006.11.003 – ident: e_1_3_3_53_2 doi: 10.1053/j.gastro.2004.04.008 – ident: e_1_3_3_49_2 doi: 10.1371/journal.pbio.1000172 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1706656114 – ident: e_1_3_3_29_2 doi: 10.1074/jbc.RA118.001975 – ident: e_1_3_3_15_2 doi: 10.1053/j.gastro.2013.09.020 – ident: e_1_3_3_42_2 doi: 10.1523/JNEUROSCI.19-01-00056.1999 – ident: e_1_3_3_12_2 doi: 10.1038/s41565-019-0568-x – ident: e_1_3_3_54_2 doi: 10.1136/gut.2008.170811 – ident: e_1_3_3_55_2 doi: 10.1007/978-1-4939-2914-6_10 – ident: e_1_3_3_39_2 doi: 10.1523/JNEUROSCI.3748-10.2010 – ident: e_1_3_3_28_2 doi: 10.1053/j.gastro.2011.05.042 – ident: e_1_3_3_16_2 doi: 10.1111/bph.14222 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.1721891115 – ident: e_1_3_3_18_2 doi: 10.1111/nmo.12008 – volume: 126 start-page: 5305 year: 2013 ident: e_1_3_3_51_2 article-title: Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors publication-title: J. Cell Sci. contributor: fullname: Park R. J. – ident: e_1_3_3_4_2 doi: 10.1073/pnas.190276697 – ident: e_1_3_3_17_2 doi: 10.1136/gutjnl-2016-311456 – ident: e_1_3_3_34_2 doi: 10.1083/jcb.122.3.565 – ident: e_1_3_3_44_2 doi: 10.1021/nn900002m – ident: e_1_3_3_19_2 doi: 10.1053/j.gastro.2006.01.045 – ident: e_1_3_3_52_2 doi: 10.1038/ajg.2013.241 – ident: e_1_3_3_33_2 doi: 10.1016/j.tips.2017.09.005 – ident: e_1_3_3_43_2 doi: 10.2147/IJN.S596 – ident: e_1_3_3_47_2 doi: 10.1002/adma.201405084 – ident: e_1_3_3_3_2 doi: 10.1124/pr.116.013367 – ident: e_1_3_3_21_2 doi: 10.1038/nprot.2014.046 – ident: e_1_3_3_10_2 doi: 10.1126/scitranslmed.aal3447 – ident: e_1_3_3_31_2 doi: 10.1038/ncomms12178 – ident: e_1_3_3_48_2 doi: 10.1021/nn403325f – ident: e_1_3_3_30_2 doi: 10.1371/journal.pone.0175642 – ident: e_1_3_3_35_2 doi: 10.1016/j.actbio.2018.05.054 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pone.0005425 – ident: e_1_3_3_14_2 doi: 10.1146/annurev-neuro-080317-061522 – ident: e_1_3_3_36_2 doi: 10.1002/adma.201801198 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0603359103 – ident: e_1_3_3_2_2 doi: 10.1016/j.cellsig.2017.07.004 – ident: e_1_3_3_24_2 doi: 10.1016/S0021-9258(18)98476-0 – ident: e_1_3_3_45_2 doi: 10.1021/cr940351u – ident: e_1_3_3_37_2 doi: 10.1152/ajpgi.00025.2018 – ident: e_1_3_3_26_2 doi: 10.1074/jbc.M114.578179 – ident: e_1_3_3_32_2 doi: 10.1002/0471141755.ph0214s70 – ident: e_1_3_3_1_2 doi: 10.1038/nrd.2017.178 – ident: e_1_3_3_41_2 doi: 10.1111/j.1476-5381.1996.tb15610.x – ident: e_1_3_3_9_2 doi: 10.1016/j.neuron.2015.11.001 – ident: e_1_3_3_23_2 doi: 10.1523/JNEUROSCI.4124-15.2016 – ident: e_1_3_3_8_2 doi: 10.1016/j.tips.2018.08.003 – ident: e_1_3_3_22_2 doi: 10.1038/nprot.2014.106 – ident: e_1_3_3_6_2 doi: 10.1016/j.ceb.2013.10.003 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.0906541106 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.92.17.7686 |
SSID | ssj0009580 |
Score | 2.604374 |
Snippet | Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report... Significance G protein-coupled receptors are considered to function principally at the cell surface. We present evidence that the δ-opioid receptor (DOPr)... G protein-coupled receptors are considered to function principally at the cell surface. We present evidence that the δ-opioid receptor (DOPr) signals from... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15281 |
SubjectTerms | Activation Agonists Animals Biological Sciences Biopsy Colitis Colon Colon - innervation Cytosol Endocytosis Endosomes Enkephalin, Leucine-2-Alanine - administration & dosage Enkephalin, Leucine-2-Alanine - pharmacology Excitability Extracellular signal-regulated kinase G protein-coupled receptors HEK293 Cells Humans Inflammation Inflammation - complications Kinases Membranes Metabolic pathways Mice Mucosa Nanoparticles Nanoparticles - administration & dosage Narcotics Neurons Nociceptors Nociceptors - metabolism Opioid receptors (type delta) Pain Pain - drug therapy Pain - metabolism Pain perception Protein kinase C Proteins Receptors Receptors, Opioid, delta - agonists Receptors, Opioid, delta - metabolism Signal processing Signal Transduction - drug effects Signal Transduction - physiology Signaling Silica Silicon dioxide Therapeutic applications |
Title | Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain |
URI | https://www.jstor.org/stable/26935078 https://www.ncbi.nlm.nih.gov/pubmed/32546520 https://www.proquest.com/docview/2420171454 https://pubmed.ncbi.nlm.nih.gov/PMC7334524 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PaBeEC0UAqXygUM5pJu1x3FyRFWrfqiIA5V6ixzbEZEaJ-ouP4B_zthJli3ixDXxSJZnbL-R37wB-LSsJRqe2VTrUqQotU2LOnMpZR4l5stcGxdqh---5lf3ePMgH3ZAzrUwkbRv6vbMP3Znvv0RuZVDZxYzT2zx7e5cCYGS42IXdilA5xR9o7RbjHUnnI5f5Djr-SixGLyOCt2ZjFJo-_BCBDl4GZp9b91KIzHxX5Dzb-bk1lV0-QpeThiSfRnnegA7zh_CwbRLV-x0kpL-_Bp-XXjbr_qORgeihg6156xvmHWPa836oe1by-jMc0NousPaFdOeObIZpVtZ50JhcLvq6LtlW7VabGSQM4K8ZE84tmGhUIVRvFKIdfHpng269W_g_vLi-_lVOjVdSA2iWKdom1zZnBOS1IQenbDL0gVRO-6kMljyWlAO6NBZ2u0Eb2rM0Dhax1I40fBMHMGe7717BwwpndTCCO7yGrEsCsNVzQXWeUM3p1IJnM6LXg2jtkYV38SVqIKrqj-uSuAoOmUzjuelIChbJHA8e6madh_ZIY-N3SUm8HZ02MZw9ngC6pkrNwOC3vbzPxSGUXd7Crv3_235AfZ5SNcj3fAY9tZPP91HwjTr-oTQ_PXtSYzk3-cM9tk |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9RAEB6FIEEaIEDAEGALilD4zrc7fpUoSnRALqJIUDprX6dYxA9xTpMu_5zZtX1cIhpo7Z1iNY_91v7mG4CPMxWj5pEJpcxFiLE0YaYiG9LNI8dklkhtXe_w4jSZn-PXi_hiC-KxF8aT9rUqJ_VVNanLS8-tbCs9HXli0--Lw1QIjDlOH8BDytcIx0v6Wms36ztPOBVg5Dgq-qRi2tbSa3RHsRdD24FHwgnCx27c98a51FMT_wY673MnNw6j46fwY9xGz0H5Obnu1ETf3FN4_Od9PoMnAzxln_vXu7Bl6-ewOxSAFTsYVKo_vYDbo9o0q6ai1Y4DIl1bO2uWzNirTrKmLZvSMCqntnXzfFi5YrJmlmx6VVhWWddzXK4qem7YRhsY68npjNA02RNEXjLXA8MoFSh6K88KYK0s65dwfnx0djgPh3kOoUYUXYhmmaQm4QRSJQFTK8wst04vj9s41ZhzJeh6adEaKiSEnBRGqC05KBdWLHkk9mC7bmr7GhjSTVUKLbhNFGKeZZqnigtUyZIO5TQN4GD0ZtH2sh2F_92eisLFQPEnBgLY895er-NJLgglZwHsj-4vhsQmO-R-ZnyMAbzqI2FtOIZSAOmdGFkvcFLed9-Q572k9-DpN_9t-QEez88WJ8XJl9Nvb2GHu68CntW4D9vdr2v7jqBTp977RPkNPNMX4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9RAEB5BkKI0gQABQ4AtKELhO9_u-FWikFN4JEpBpIjG2peFRfxQzmno-OfMru3jElGltWeK1czufmN_8w3A-4WKUfPIhFLmIsRYmjBTkQ2p8sgxWSRSW9c7fHqWnFzgl8v4cmPUlyfta1XNmqt61lQ_Pbeyq_V84onNz0-PUiEw5jjvTDl_CI9oz0bJVKiv9XazofuE0yGMHCdVn1TMu0Z6ne4o9oJoO7AtnCh87EZ-b9xNAz3xf8DzLn9y40JaPoYf01IGHsqv2U2vZvr3HZXHe631CeyOMJV9HEz24IFtnsLeeBCs2OGoVv3hGfw5bky7amuydlwQ6drbWVsyY696ydquaivD6Fi1nZvrw6oVkw2z5DOow7Laut7jalXTc8M22sHYQFJnhKrJn6ByyVwvDKMtQVlce3YA62TVPIeL5fH3o5NwnOsQakTRh2jKJDUJJ7AqCaBaYRa5dbp53MapxpwrQWWmRWvoQCEEpTBCbSlIubCi5JHYh62mbexLYEgVqxRacJsoxDzLNE8VF6iSki7nNA3gcIpo0Q3yHYX_7Z6KwuVB8S8PAtj3EV_b8SQXhJazAA6mFCjGDU5-yP3s-BgDeDFkw9pxSqcA0lt5sjZwkt6331D0vbT3GO1X9_Z8B9vnn5bFt89nX1_DDncfBzy58QC2-usb-4YQVK_e-r3yFwPlGmE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endosomal+signaling+of+delta+opioid+receptors+is+an+endogenous+mechanism+and+therapeutic+target+for+relief+from+inflammatory+pain&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jimenez-Vargas%2C+Nestor+N.&rft.au=Gong%2C+Jing&rft.au=Wisdom%2C+Matthew+J.&rft.au=Jensen%2C+Dane+D.&rft.date=2020-06-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=26&rft.spage=15281&rft.epage=15292&rft_id=info:doi/10.1073%2Fpnas.2000500117&rft_id=info%3Apmid%2F32546520&rft.externalDBID=PMC7334524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |