Analysis of the responsible site for favipiravir resistance in RNA-dependent RNA polymerase of influenza virus A/PR/8/34 (H1N1) using site-directed mutagenesis
Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide ana...
Saved in:
Published in | Antiviral Research Vol. 205; p. 105387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier B.V
01.09.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRP) of influenza virus. Our previous experiments failed in an attempt to obtain a favipiravir-resistant influenza virus in vitro using influenza virus A/PR/8/34(H1N1). Conversely, Goldhill et al. reported a favipiravir-resistant influenza virus generated by in vitro passage of influenza virus A/England/195/2009 (H1N1), an early isolate from the 2009 H1N1 pandemic (pdm09), in the presence of favipiravir with K229R mutation in PB1. This study focused on K229R mutation near the NTP cross-linked region in PB1 based on the above conflicting findings to confirm whether K229R mutation brings favipiravir resistance to influenza virus A/PR/8/34. Thirty PB1 mutants generated by site-directed mutagenesis of the NTP cross-linked region were evaluated using an influenza virus A/PR/8/34 replicon system. Among the 30 mutants, 10 possessed but 20 lost replicon activity. When susceptibility to favipiravir in 10 mutants was further assessed, the PB1 E491D mutant was five times more sensitive than the wild-type (WT), while only the PB1 K229R mutant was resistant to favipiravir. Results suggested that the evaluated region was essential for polymerase activity, and K229 mutation was responsible for polymerase inhibition of favipiravir in the influenza virus A/PR/8/34. Interestingly, the tested K229X series mutants entirely lost replicon activity, except for K229R. This suggested that the amino acid at position 229 in PB1 of influenza virus may play a pivotal role in polymerase activity. Moreover, this lysine residue is highly conserved among positive- and negative-sense single-stranded RNA viruses, in which favipiravir showed potent activity, suggesting that this mutation may determine the characterization of the in vitro broad-spectrum activity of favipiravir. Additionally, this mutation acquisition greatly influences the viral replication and the susceptibility to favipiravir. |
---|---|
AbstractList | Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRP) of influenza virus. Our previous experiments failed in an attempt to obtain a favipiravir-resistant influenza virus in vitro using influenza virus A/PR/8/34(H1N1). Conversely, Goldhill et al. reported a favipiravir-resistant influenza virus generated by in vitro passage of influenza virus A/England/195/2009 (H1N1), an early isolate from the 2009 H1N1 pandemic (pdm09), in the presence of favipiravir with K229R mutation in PB1. This study focused on K229R mutation near the NTP cross-linked region in PB1 based on the above conflicting findings to confirm whether K229R mutation brings favipiravir resistance to influenza virus A/PR/8/34. Thirty PB1 mutants generated by site-directed mutagenesis of the NTP cross-linked region were evaluated using an influenza virus A/PR/8/34 replicon system. Among the 30 mutants, 10 possessed but 20 lost replicon activity. When susceptibility to favipiravir in 10 mutants was further assessed, the PB1 E491D mutant was five times more sensitive than the wild-type (WT), while only the PB1 K229R mutant was resistant to favipiravir. Results suggested that the evaluated region was essential for polymerase activity, and K229 mutation was responsible for polymerase inhibition of favipiravir in the influenza virus A/PR/8/34. Interestingly, the tested K229X series mutants entirely lost replicon activity, except for K229R. This suggested that the amino acid at position 229 in PB1 of influenza virus may play a pivotal role in polymerase activity. Moreover, this lysine residue is highly conserved among positive- and negative-sense single-stranded RNA viruses, in which favipiravir showed potent activity, suggesting that this mutation may determine the characterization of the in vitro broad-spectrum activity of favipiravir. Additionally, this mutation acquisition greatly influences the viral replication and the susceptibility to favipiravir.Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRP) of influenza virus. Our previous experiments failed in an attempt to obtain a favipiravir-resistant influenza virus in vitro using influenza virus A/PR/8/34(H1N1). Conversely, Goldhill et al. reported a favipiravir-resistant influenza virus generated by in vitro passage of influenza virus A/England/195/2009 (H1N1), an early isolate from the 2009 H1N1 pandemic (pdm09), in the presence of favipiravir with K229R mutation in PB1. This study focused on K229R mutation near the NTP cross-linked region in PB1 based on the above conflicting findings to confirm whether K229R mutation brings favipiravir resistance to influenza virus A/PR/8/34. Thirty PB1 mutants generated by site-directed mutagenesis of the NTP cross-linked region were evaluated using an influenza virus A/PR/8/34 replicon system. Among the 30 mutants, 10 possessed but 20 lost replicon activity. When susceptibility to favipiravir in 10 mutants was further assessed, the PB1 E491D mutant was five times more sensitive than the wild-type (WT), while only the PB1 K229R mutant was resistant to favipiravir. Results suggested that the evaluated region was essential for polymerase activity, and K229 mutation was responsible for polymerase inhibition of favipiravir in the influenza virus A/PR/8/34. Interestingly, the tested K229X series mutants entirely lost replicon activity, except for K229R. This suggested that the amino acid at position 229 in PB1 of influenza virus may play a pivotal role in polymerase activity. Moreover, this lysine residue is highly conserved among positive- and negative-sense single-stranded RNA viruses, in which favipiravir showed potent activity, suggesting that this mutation may determine the characterization of the in vitro broad-spectrum activity of favipiravir. Additionally, this mutation acquisition greatly influences the viral replication and the susceptibility to favipiravir. Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRP) of influenza virus. Our previous experiments failed in an attempt to obtain a favipiravir-resistant influenza virus in vitro using influenza virus A/PR/8/34(H1N1). Conversely, Goldhill et al. reported a favipiravir-resistant influenza virus generated by in vitro passage of influenza virus A/England/195/2009 (H1N1), an early isolate from the 2009 H1N1 pandemic (pdm09), in the presence of favipiravir with K229R mutation in PB1. This study focused on K229R mutation near the NTP cross-linked region in PB1 based on the above conflicting findings to confirm whether K229R mutation brings favipiravir resistance to influenza virus A/PR/8/34. Thirty PB1 mutants generated by site-directed mutagenesis of the NTP cross-linked region were evaluated using an influenza virus A/PR/8/34 replicon system. Among the 30 mutants, 10 possessed but 20 lost replicon activity. When susceptibility to favipiravir in 10 mutants was further assessed, the PB1 E491D mutant was five times more sensitive than the wild-type (WT), while only the PB1 K229R mutant was resistant to favipiravir. Results suggested that the evaluated region was essential for polymerase activity, and K229 mutation was responsible for polymerase inhibition of favipiravir in the influenza virus A/PR/8/34. Interestingly, the tested K229X series mutants entirely lost replicon activity, except for K229R. This suggested that the amino acid at position 229 in PB1 of influenza virus may play a pivotal role in polymerase activity. Moreover, this lysine residue is highly conserved among positive- and negative-sense single-stranded RNA viruses, in which favipiravir showed potent activity, suggesting that this mutation may determine the characterization of the in vitro broad-spectrum activity of favipiravir. Additionally, this mutation acquisition greatly influences the viral replication and the susceptibility to favipiravir. |
ArticleNumber | 105387 |
Author | Komeno, Takashi Tani, Hideki Nakajima, Nozomi Furuta, Yousuke Morinaga, Yoshitomo |
Author_xml | – sequence: 1 givenname: Takashi surname: Komeno fullname: Komeno, Takashi email: takashi.komeno@fujifilm.com organization: Toyama Pharmaceutical Research Department, FUJIFILM Toyama Chemical Co., Ltd., Toyama, Japan – sequence: 2 givenname: Yousuke surname: Furuta fullname: Furuta, Yousuke organization: Toyama Pharmaceutical Research Department, FUJIFILM Toyama Chemical Co., Ltd., Toyama, Japan – sequence: 3 givenname: Nozomi surname: Nakajima fullname: Nakajima, Nozomi organization: Toyama Pharmaceutical Research Department, FUJIFILM Toyama Chemical Co., Ltd., Toyama, Japan – sequence: 4 givenname: Hideki surname: Tani fullname: Tani, Hideki organization: Department of Virology, Toyama Institute of Health, Toyama, Japan – sequence: 5 givenname: Yoshitomo surname: Morinaga fullname: Morinaga, Yoshitomo email: morinaga@med.u-toyama.ac.jp organization: Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan |
BackLink | https://cir.nii.ac.jp/crid/1870865118189506944$$DView record in CiNii |
BookMark | eNqNkcFu1DAURSNUJKaFb8ALFmWRGdtJnHjBYlQBRaoKqmBtOfFzeaOMHWxnpOFn-FUcgliwgY0tW_e--3TPZXHhvIOieMnollEmdoetdglPGPS45ZTz_NtUXfuk2LCu5aWkUlwUm6wUZdXU_FlxGeOBUipa2W2KH3unx3PESLwl6SuQAHHyLmI_AomYgFgfiNUnnHJCTlkEGJN2AxB05OF-XxqYwBlwaXmRyY_nIwQdYRmJzo4zuO-aZO8cyX736WHX7aqaXN-ye_aazBHd46-k0mCAIYEhxznpR3BL0PPiqdVjhBe_76viy7u3n29uy7uP7z_c7O_Koa6rVNZGci7MANIIAN73g6y4tH1lgA61lY1trW4NFY2sRVd1VWNoLqNqdC970UN1VVyvc6fgv80QkzpiHGActQM_R8WFlC1lUtRZ2q7SIfgYA1g1BTzqcFaMqgWJOqg_SNSCRK1IsvPNX84Bk07oXQoax__wv1r9DjFblzMzpp1oGOtYJxsqZL0suF9lkAs7IQQVB4QMbC1YGY__jPoJoM675A |
CitedBy_id | crossref_primary_10_3390_biomedicines10123074 crossref_primary_10_13005_bbra_3102 |
Cites_doi | 10.1016/j.antiviral.2008.07.009 10.1016/j.antiviral.2016.06.007 10.1126/scitranslmed.abb5883 10.1128/JVI.74.1.547-551.2000 10.1128/AAC.00356-07 10.1128/mSphere.00061-15 10.1093/infdis/jiv586 10.1046/j.1365-2443.1999.00275.x 10.1016/j.antiviral.2014.02.014 10.1128/AAC.11.6.946 10.1177/095632020301400502 10.1016/j.virol.2003.09.009 10.1016/j.antiviral.2009.02.198 10.1128/AAC.01219-10 10.1371/journal.pone.0206416 10.1128/JVI.00220-08 10.1038/s41467-021-21992-w 10.1128/JVI.02343-10 10.1371/journal.pone.0036113 10.2183/pjab.93.027 10.1016/j.virol.2003.09.046 10.1073/pnas.1811345115 10.1128/AAC.46.4.977-981.2002 10.1038/s41422-020-0282-0 10.1073/pnas.2014441117 10.1128/AAC.49.3.981-986.2005 10.1074/jbc.M204657200 10.1128/JVI.00487-17 10.1093/jac/dku209 10.1128/AAC.00649-13 10.1093/oxfordjournals.jbchem.a021799 10.1128/AAC.01074-08 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | RYH AAYXX CITATION 7X8 |
DOI | 10.1016/j.antiviral.2022.105387 |
DatabaseName | CiNii Complete CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1872-9096 |
ExternalDocumentID | 10_1016_j_antiviral_2022_105387 S0166354222001565 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ABZDS ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJRQY AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSP SSZ T5K TEORI WUQ ZGI ZXP ~G- AAYWO ACIEU ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP RYH AAYXX AGQPQ CITATION 7X8 EFKBS |
ID | FETCH-LOGICAL-c443t-4d9226dce9d6ee2bbc9329fb3de0c4f95f7fa7d06594683835d054235ab9b6be3 |
IEDL.DBID | .~1 |
ISSN | 0166-3542 1872-9096 |
IngestDate | Mon Jul 21 11:18:34 EDT 2025 Tue Jul 01 01:32:13 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Fri Jun 27 00:23:57 EDT 2025 Sun Apr 06 06:54:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RNA polymerase RLuc RTP DMEM Influenza virus FBS RdRP T-705 Favipiravir EC50 vRNA WT Replicon assay |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-4d9226dce9d6ee2bbc9329fb3de0c4f95f7fa7d06594683835d054235ab9b6be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2699701964 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2699701964 crossref_primary_10_1016_j_antiviral_2022_105387 crossref_citationtrail_10_1016_j_antiviral_2022_105387 nii_cinii_1870865118189506944 elsevier_sciencedirect_doi_10_1016_j_antiviral_2022_105387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-01 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Antiviral Research |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Eriksson, Helgstrand, Johansson, Larsson, Misiorny, Norén, Philipson, Stenberg, Stening, Stridh, Oberg (bib6) 1977; 11 Mendenhall, Russell, Juelich, Messina, Smee, Freiberg, Holbrook, Furuta, de la Torre, Nunberg, Gowen (bib21) 2010; 55 Furuta, Takahashi, Fukuda, Kuno, Kamiyama, Kozaki, Nomura, Egawa, Minami, Watanabe, Narita, Shiraki (bib7) 2002; 46 Julander, Shafer, Smee, Morrey, Furuta (bib17) 2009; 53 Neumann, Watanabe, Kawaoka (bib23) 2000; 74 Furuta, Komeno, Nakamura (bib10) 2017; 93 Yamada, Noguchi, Komeno, Furuta, Nishizono (bib35) 2016; 213 Morrey, Taro, Siddharthan, Wang, Smee, Christensen, Furuta (bib22) 2008; 80 Honda, Mizumoto, Ishihama (bib15) 1999; 4 Kinsella, Martin, Grolla, Czub, Feldmann, Flick (bib19) 2004; 321 Oestereich, Lüdtke, Wurr, Rieger, Muñoz-Fontela, Günther (bib24) 2014; 105 Vieth, Torda, Asper, Schmitz, Günther (bib33) 2004; 318 Hass, Lelke, Busch, Becker-Ziaja, Günther (bib14) 2008; 82 Tani, Komeno, Fukuma, Fukushi, Taniguchi, Shimojima, Uda, Morikawa, Nakajima, Furuta, Saijo (bib32) 2018; 13 Takahashi (bib29) 2011; 66 Delang, Segura Guerrero, Tas, Quérat, Pastorino, Froeyen, Dallmeier, Jochmans, Herdewijn, Bello, Snijder, de Lamballerie, Martina, Neyts, van Hemert, Leyssen (bib4) 2014; 69 Goldhill, Te Velthuis, Fletcher, Langat, Zambon, Lackenby, Barclay (bib11) 2018; 115 Kaptein, Jacobs, Langendries, Seldeslachts, Ter Horst, Liesenborghs, Hens, Vergote, Heylen, Barthelemy, Maas, De Keyzer, Bervoets, Rymenants, Van Buyten, Zhang, Abdelnabi, Pang, Williams, Thibaut, Dallmeier, Boudewijns, Wouters, Augustijns, Verougstraete, Cawthorne, Breuer, Solas, Weynand, Annaert, Spriet, Vande Velde, Neyts, Rocha-Pereira, Delang (bib18) 2020; 117 Chu, Fan, Li, Macken, Kim, Hatta, Neumann, Kawaoka (bib3) 2012; 7 Takahashi, Furuta, Fukuda, Kuno, Kamiyama, Kozaki, Nomura, Egawa, Minami, Shiraki (bib28) 2003; 14 Takashita, Ejima, Ogawa, Fujisaki, Neumann, Furuta, Kawaoka, Tashiro, Odagiri (bib30) 2016; 132 Labonté, Axelrod, Agarwal, Aulabaugh, Amin, Mak (bib20) 2002; 277 Sakamoto (bib25) 2011; 37 Sangawa, Komeno, Nishikawa, Yoshida, Takahashi, Nomura (bib26) 2013; 57 Wang, Cao, Zhang, Yang, Liu, Xu, Shi, Hu, Zhong, Xiao (bib34) 2020; 30 Driouich, Cochin, Lingas, Moureau, Touret, Petit, Piorkowski, Barthélémy, Laprie, Coutard, Guedj, de Lamballerie, Solas, Nougairède (bib5) 2021; 12 Asano, Ishihama (bib2) 1997; 122 Gowen, Wong, Jung, Sanders, Mendenhall, Bailey, Furuta, Sidwell (bib13) 2007; 51 Goldhill, Yan, Frise, Zhou, Shelley, Gallego Cortés, Miah, Akinbami, Galiano, Zambon, Lackenby, Barclay (bib12) 2021; vol. 17 Furuta, Takahashi, Shiraki, Sakamoto, Smee, Barnard, Gowen, Julander, Morrey (bib9) 2009; 82 Furuta, Takahashi, Kuno-Maekawa, Sangawa, Uehara, Kozaki, Nomura, Egawa, Shiraki (bib8) 2005; 49 Sheahan, Sims, Zhou, Graham, Pruijssers, Agostini, Leist, Schäfer, Dinnon, Stevens, Chappell, Lu, Hughes, George, Hill, Montgomery, Brown, Bluemling, Natchus, Saindane, Kolykhalov, Painter, Harcourt, Tamin, Thornburg, Swanstrom, Denison, Baric (bib27) 2020; 12 Tani, Fukuma, Fukushi, Taniguchi, Yoshikawa, Iwata-Yoshikawa, Sato, Suzuki, Nagata, Hasegawa, Kawai, Uda, Morikawa, Shimojima, Watanabe, Saijo (bib31) 2016; 1 Abdelnabi, Morais, Leyssen, Imbert, Beaucourt, Blanc, Froeyen, Vignuzzi, Canard, Neyts, Delang (bib1) 2017; 91 Iglesias, Filomatori, Gamarnik (bib16) 2011; 85 Goldhill (10.1016/j.antiviral.2022.105387_bib12) 2021; vol. 17 Sheahan (10.1016/j.antiviral.2022.105387_bib27) 2020; 12 Gowen (10.1016/j.antiviral.2022.105387_bib13) 2007; 51 Takashita (10.1016/j.antiviral.2022.105387_bib30) 2016; 132 Mendenhall (10.1016/j.antiviral.2022.105387_bib21) 2010; 55 Driouich (10.1016/j.antiviral.2022.105387_bib5) 2021; 12 Neumann (10.1016/j.antiviral.2022.105387_bib23) 2000; 74 Honda (10.1016/j.antiviral.2022.105387_bib15) 1999; 4 Sakamoto (10.1016/j.antiviral.2022.105387_bib25) 2011; 37 Yamada (10.1016/j.antiviral.2022.105387_bib35) 2016; 213 Asano (10.1016/j.antiviral.2022.105387_bib2) 1997; 122 Eriksson (10.1016/j.antiviral.2022.105387_bib6) 1977; 11 Hass (10.1016/j.antiviral.2022.105387_bib14) 2008; 82 Labonté (10.1016/j.antiviral.2022.105387_bib20) 2002; 277 Morrey (10.1016/j.antiviral.2022.105387_bib22) 2008; 80 Tani (10.1016/j.antiviral.2022.105387_bib31) 2016; 1 Tani (10.1016/j.antiviral.2022.105387_bib32) 2018; 13 Oestereich (10.1016/j.antiviral.2022.105387_bib24) 2014; 105 Wang (10.1016/j.antiviral.2022.105387_bib34) 2020; 30 Abdelnabi (10.1016/j.antiviral.2022.105387_bib1) 2017; 91 Iglesias (10.1016/j.antiviral.2022.105387_bib16) 2011; 85 Furuta (10.1016/j.antiviral.2022.105387_bib10) 2017; 93 Kinsella (10.1016/j.antiviral.2022.105387_bib19) 2004; 321 Takahashi (10.1016/j.antiviral.2022.105387_bib29) 2011; 66 Sangawa (10.1016/j.antiviral.2022.105387_bib26) 2013; 57 Furuta (10.1016/j.antiviral.2022.105387_bib8) 2005; 49 Vieth (10.1016/j.antiviral.2022.105387_bib33) 2004; 318 Chu (10.1016/j.antiviral.2022.105387_bib3) 2012; 7 Furuta (10.1016/j.antiviral.2022.105387_bib7) 2002; 46 Takahashi (10.1016/j.antiviral.2022.105387_bib28) 2003; 14 Delang (10.1016/j.antiviral.2022.105387_bib4) 2014; 69 Julander (10.1016/j.antiviral.2022.105387_bib17) 2009; 53 Furuta (10.1016/j.antiviral.2022.105387_bib9) 2009; 82 Goldhill (10.1016/j.antiviral.2022.105387_bib11) 2018; 115 Kaptein (10.1016/j.antiviral.2022.105387_bib18) 2020; 117 |
References_xml | – volume: 321 start-page: 23 year: 2004 end-page: 28 ident: bib19 article-title: Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment publication-title: Virology – volume: 69 start-page: 2770 year: 2014 end-page: 2784 ident: bib4 article-title: Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral publication-title: J. Antimicrob. Chemother. – volume: 80 start-page: 377 year: 2008 end-page: 379 ident: bib22 article-title: Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents publication-title: Antivir. Res. – volume: 37 start-page: 45 year: 2011 end-page: 49 ident: bib25 article-title: In vitro activities of antiviral agents against foot-and-mouth disease virus RNA-dependent RNA polymerase publication-title: Jpn. J. Anim. Hyg – volume: 132 start-page: 170 year: 2016 end-page: 177 ident: bib30 article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir publication-title: Antivir. Res. – volume: 7 year: 2012 ident: bib3 article-title: Functional analysis of conserved motifs in influenza virus PB1 protein publication-title: PLoS One – volume: 30 start-page: 269 year: 2020 end-page: 271 ident: bib34 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. – volume: 122 start-page: 627 year: 1997 end-page: 634 ident: bib2 article-title: Identification of two nucleotide-binding domains on the PB1 subunit of influenza virus RNA polymerase publication-title: J. Biochem. – volume: vol. 17 year: 2021 ident: bib12 publication-title: Favipiravir-resistant Influenza A Virus Shows Potential for Transmission – volume: 91 year: 2017 ident: bib1 article-title: Understanding the mechanism of the broad-spectrum antiviral activity of Favipiravir (T-705): key role of the F1 motif of the viral polymerase publication-title: J. Virol. – volume: 53 start-page: 202 year: 2009 end-page: 209 ident: bib17 article-title: Activity of T-705 in a hamster model of yellow fever virus infection in comparison with that of a chemically related compound, T-1106 publication-title: Antimicrob. Agents Chemother. – volume: 55 start-page: 782 year: 2010 end-page: 787 ident: bib21 article-title: T-705 (favipiravir) inhibition of arenavirus replication in cell culture publication-title: Antimicrob. Agents Chemother. – volume: 57 start-page: 5202 year: 2013 end-page: 5208 ident: bib26 article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase publication-title: Antimicrob. Agents Chemother. – volume: 11 start-page: 946 year: 1977 end-page: 951 ident: bib6 article-title: Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate publication-title: Antimicrob. Agents Chemother. – volume: 105 year: 2014 ident: bib24 article-title: Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model publication-title: Antivir. Res. – volume: 1 year: 2016 ident: bib31 article-title: Efficacy of T-705 (favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus publication-title: mSphere – volume: 82 start-page: 10207 year: 2008 end-page: 10217 ident: bib14 article-title: Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome publication-title: J. Virol. – volume: 117 start-page: 26955 year: 2020 end-page: 26965 ident: bib18 article-title: Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 318 start-page: 153 year: 2004 end-page: 168 ident: bib33 article-title: Sequence analysis of L RNA of Lassa virus publication-title: Virology – volume: 66 start-page: 429 year: 2011 end-page: 441 ident: bib29 article-title: Anti influenza viral drugs and pharmacological effect of favipiravir (Japanese) publication-title: Jon. Med. Pharm. Sci. – volume: 93 start-page: 449 year: 2017 end-page: 463 ident: bib10 article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 4 start-page: 475 year: 1999 end-page: 485 ident: bib15 article-title: Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase publication-title: Gene Cell. – volume: 13 year: 2018 ident: bib32 article-title: Therapeutic effects of favipiravir against severe fever with thrombocytopenia syndrome virus infection in a lethal mouse model: dose-efficacy studies upon oral administration publication-title: PLoS One – volume: 74 start-page: 547 year: 2000 end-page: 551 ident: bib23 article-title: Plasmid-driven formation of influenza virus-like particles publication-title: J. Virol. – volume: 277 start-page: 38838 year: 2002 end-page: 38846 ident: bib20 article-title: Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis publication-title: J. Biol. Chem. – volume: 12 start-page: 1735 year: 2021 ident: bib5 article-title: Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model publication-title: Nat. Commun. – volume: 49 start-page: 981 year: 2005 end-page: 986 ident: bib8 article-title: Mechanism of action of T-705 against influenza virus publication-title: Antimicrob. Agents Chemother. – volume: 85 start-page: 5745 year: 2011 end-page: 5756 ident: bib16 article-title: The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis publication-title: J. Virol. – volume: 14 start-page: 235 year: 2003 end-page: 241 ident: bib28 article-title: In vitro and in vivo activities of T-705 and oseltamivir against influenza virus publication-title: Antivir. Chem. Chemother. – volume: 82 start-page: 95 year: 2009 end-page: 102 ident: bib9 article-title: T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections publication-title: Antivir. Res. – volume: 115 start-page: 11613 year: 2018 end-page: 11618 ident: bib11 article-title: The mechanism of resistance to favipiravir in influenza publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 213 start-page: 1253 year: 2016 end-page: 1261 ident: bib35 article-title: Efficacy of Favipiravir (T-705) in rabies postexposure prophylaxis publication-title: J. Infect. Dis. – volume: 51 start-page: 3168 year: 2007 end-page: 3176 ident: bib13 article-title: In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections publication-title: Antimicrob. Agents Chemother. – volume: 46 start-page: 977 year: 2002 end-page: 981 ident: bib7 article-title: In vitro and in vivo activities of anti-influenza virus compound T-705 publication-title: Antimicrob. Agents Chemother. – volume: 12 year: 2020 ident: bib27 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice publication-title: Sci. Transl. Med. – volume: 80 start-page: 377 year: 2008 ident: 10.1016/j.antiviral.2022.105387_bib22 article-title: Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2008.07.009 – volume: 132 start-page: 170 year: 2016 ident: 10.1016/j.antiviral.2022.105387_bib30 article-title: Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2016.06.007 – volume: 12 year: 2020 ident: 10.1016/j.antiviral.2022.105387_bib27 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb5883 – volume: 74 start-page: 547 year: 2000 ident: 10.1016/j.antiviral.2022.105387_bib23 article-title: Plasmid-driven formation of influenza virus-like particles publication-title: J. Virol. doi: 10.1128/JVI.74.1.547-551.2000 – volume: 51 start-page: 3168 year: 2007 ident: 10.1016/j.antiviral.2022.105387_bib13 article-title: In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00356-07 – volume: 1 year: 2016 ident: 10.1016/j.antiviral.2022.105387_bib31 article-title: Efficacy of T-705 (favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus publication-title: mSphere doi: 10.1128/mSphere.00061-15 – volume: 213 start-page: 1253 year: 2016 ident: 10.1016/j.antiviral.2022.105387_bib35 article-title: Efficacy of Favipiravir (T-705) in rabies postexposure prophylaxis publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiv586 – volume: 4 start-page: 475 year: 1999 ident: 10.1016/j.antiviral.2022.105387_bib15 article-title: Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase publication-title: Gene Cell. doi: 10.1046/j.1365-2443.1999.00275.x – volume: 105 year: 2014 ident: 10.1016/j.antiviral.2022.105387_bib24 article-title: Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2014.02.014 – volume: 11 start-page: 946 year: 1977 ident: 10.1016/j.antiviral.2022.105387_bib6 article-title: Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.11.6.946 – volume: 14 start-page: 235 year: 2003 ident: 10.1016/j.antiviral.2022.105387_bib28 article-title: In vitro and in vivo activities of T-705 and oseltamivir against influenza virus publication-title: Antivir. Chem. Chemother. doi: 10.1177/095632020301400502 – volume: 318 start-page: 153 year: 2004 ident: 10.1016/j.antiviral.2022.105387_bib33 article-title: Sequence analysis of L RNA of Lassa virus publication-title: Virology doi: 10.1016/j.virol.2003.09.009 – volume: 82 start-page: 95 year: 2009 ident: 10.1016/j.antiviral.2022.105387_bib9 article-title: T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2009.02.198 – volume: 55 start-page: 782 year: 2010 ident: 10.1016/j.antiviral.2022.105387_bib21 article-title: T-705 (favipiravir) inhibition of arenavirus replication in cell culture publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01219-10 – volume: 13 year: 2018 ident: 10.1016/j.antiviral.2022.105387_bib32 article-title: Therapeutic effects of favipiravir against severe fever with thrombocytopenia syndrome virus infection in a lethal mouse model: dose-efficacy studies upon oral administration publication-title: PLoS One doi: 10.1371/journal.pone.0206416 – volume: 82 start-page: 10207 year: 2008 ident: 10.1016/j.antiviral.2022.105387_bib14 article-title: Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome publication-title: J. Virol. doi: 10.1128/JVI.00220-08 – volume: 12 start-page: 1735 year: 2021 ident: 10.1016/j.antiviral.2022.105387_bib5 article-title: Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model publication-title: Nat. Commun. doi: 10.1038/s41467-021-21992-w – volume: 66 start-page: 429 year: 2011 ident: 10.1016/j.antiviral.2022.105387_bib29 article-title: Anti influenza viral drugs and pharmacological effect of favipiravir (Japanese) publication-title: Jon. Med. Pharm. Sci. – volume: 85 start-page: 5745 year: 2011 ident: 10.1016/j.antiviral.2022.105387_bib16 article-title: The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis publication-title: J. Virol. doi: 10.1128/JVI.02343-10 – volume: 7 year: 2012 ident: 10.1016/j.antiviral.2022.105387_bib3 article-title: Functional analysis of conserved motifs in influenza virus PB1 protein publication-title: PLoS One doi: 10.1371/journal.pone.0036113 – volume: 93 start-page: 449 year: 2017 ident: 10.1016/j.antiviral.2022.105387_bib10 article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.93.027 – volume: 321 start-page: 23 year: 2004 ident: 10.1016/j.antiviral.2022.105387_bib19 article-title: Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment publication-title: Virology doi: 10.1016/j.virol.2003.09.046 – volume: 115 start-page: 11613 year: 2018 ident: 10.1016/j.antiviral.2022.105387_bib11 article-title: The mechanism of resistance to favipiravir in influenza publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1811345115 – volume: 46 start-page: 977 year: 2002 ident: 10.1016/j.antiviral.2022.105387_bib7 article-title: In vitro and in vivo activities of anti-influenza virus compound T-705 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.46.4.977-981.2002 – volume: 30 start-page: 269 year: 2020 ident: 10.1016/j.antiviral.2022.105387_bib34 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – volume: 117 start-page: 26955 year: 2020 ident: 10.1016/j.antiviral.2022.105387_bib18 article-title: Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2014441117 – volume: 49 start-page: 981 year: 2005 ident: 10.1016/j.antiviral.2022.105387_bib8 article-title: Mechanism of action of T-705 against influenza virus publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.3.981-986.2005 – volume: 277 start-page: 38838 year: 2002 ident: 10.1016/j.antiviral.2022.105387_bib20 article-title: Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M204657200 – volume: 91 year: 2017 ident: 10.1016/j.antiviral.2022.105387_bib1 article-title: Understanding the mechanism of the broad-spectrum antiviral activity of Favipiravir (T-705): key role of the F1 motif of the viral polymerase publication-title: J. Virol. doi: 10.1128/JVI.00487-17 – volume: 69 start-page: 2770 year: 2014 ident: 10.1016/j.antiviral.2022.105387_bib4 article-title: Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dku209 – volume: 57 start-page: 5202 year: 2013 ident: 10.1016/j.antiviral.2022.105387_bib26 article-title: Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00649-13 – volume: 122 start-page: 627 year: 1997 ident: 10.1016/j.antiviral.2022.105387_bib2 article-title: Identification of two nucleotide-binding domains on the PB1 subunit of influenza virus RNA polymerase publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021799 – volume: vol. 17 year: 2021 ident: 10.1016/j.antiviral.2022.105387_bib12 – volume: 37 start-page: 45 year: 2011 ident: 10.1016/j.antiviral.2022.105387_bib25 article-title: In vitro activities of antiviral agents against foot-and-mouth disease virus RNA-dependent RNA polymerase publication-title: Jpn. J. Anim. Hyg – volume: 53 start-page: 202 year: 2009 ident: 10.1016/j.antiviral.2022.105387_bib17 article-title: Activity of T-705 in a hamster model of yellow fever virus infection in comparison with that of a chemically related compound, T-1106 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01074-08 |
SSID | ssj0006798 ssib006543761 |
Score | 2.3683918 |
Snippet | Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo.... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105387 |
SubjectTerms | Amides Antiviral Agents Drug Resistance, Viral Favipiravir Humans Influenza A Virus, H1N1 Subtype Influenza virus Influenza, Human Mutagenesis, Site-Directed Pyrazines Replicon assay RNA polymerase RNA-Dependent RNA Polymerase T-705 Virus Replication Viruses |
Title | Analysis of the responsible site for favipiravir resistance in RNA-dependent RNA polymerase of influenza virus A/PR/8/34 (H1N1) using site-directed mutagenesis |
URI | https://dx.doi.org/10.1016/j.antiviral.2022.105387 https://cir.nii.ac.jp/crid/1870865118189506944 https://www.proquest.com/docview/2699701964 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BatwwEBVpQksvJUlbsm0TVOihPajetWVZ6m0JCZuELiVtIDchWVJw2HqXrLeQHvor-dXMWHZKaCGHXAwylj1opNGT580MIR9KG4osFCkTVnHGg_TM5EoyCRcVSpOb0Gb7nIrJGT8-z8_XyH4fC4O0ys72R5veWuvuTtKNZrKoquQ7gBXYLfEXRhsPjIHmnBc4yz__-UvzQC9DzO8tGD59j-MFwlfIpUUfRJpizdsMuXX_36Ge1FX1j8Vut6HDTfKiw490HEXcImu-3iZPY0XJ623y7GvnK39Jbvp8I3QeKMA8etXTYWeeos-YAl6lwfyq0NcO8uEDiCZhCGhV09PpmPUlchts0cV8do3_sJYeX1nF8ia_DYW-qyUdJ99OE5lknH6cjKajTxQp9Rftl1gcZO_oz1UDBqzGD70iZ4cHP_YnrCvHwErOs4ZxpwCrudIrJ7xPrS0B-6lgM-eHJQ8qD0UwhUNHLRcSTr65AzyYZrmxygrrs9dkvZ7XfofQzAUnhtzyoQ8cY1m5DKWUyjgwCs4WAyJ6Feiyy1WOJTNmuielXeo73WnUnY66G5DhXcdFTNfxcJcvvY71vZmnYVN5uPMuzAqQEa8jsH1S4JFtJFWOEcV8QN7380XDukVnjKn9fLXUqVAKU-EL_uYxArwlz7EVWW_vyHpztfK7AJMau9eugz2yMT46mUxvAT8hEXU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaraBcEBQQCxSMxAEOVnYT27G5rSqqlLYRKq3UmxXHdhW0ZFfdbKXyZ_irzOSxUgVSD1wi5THxyGOPP3tehHwobUiTkMZMWs0ZD8qzQmjFFFx0KAtRhDbbZy6zC_71UlxukYMhFgbdKnvd3-n0Vlv3T6K-N6NlVUXfAazAaolHGG08sNgmO5idSozIzuzoOMs3ChkNDV2Kb8mQ4I6bF_BfoTstmiHiGMveJuhe9-9Faruuqr-UdrsSHT4hj3sISWcdl0_Jlq_3yIOuqOTtHnl42pvLn5HfQ8oRuggUkB69Hjxi556i2ZgCZKWhuKnQ3A784QcIKKEXaFXTs3zGhiq5Dd7R5WJ-i8dYK4-_rLoKJ78KCrTrFZ1F384iFSWcfsym-fQTRa_6q7Yl1vWzd_TnugEdVmNDz8nF4Zfzg4z1FRlYyXnSMO40wDVXeu2k97G1JcA_HWzi_KTkQYuQhiJ1aKvlUsHmVziAhHEiCquttD55QUb1ovYvCU1ccHLCLZ_4wDGclatQKqULB3rB2XRM5CACU_bpyrFqxtwMfmk_zEZ2BmVnOtmNyWRDuOwydtxP8nmQsbkz-AysK_cT78OoAB7xOgX1pyTu2qZKCwwq5mPyfhgvBqYu2mOK2i_WKxNLrTEbvuSv_oeBd2Q3Oz89MSdH-fFr8gjfdE5wb8iouV77fUBNjX3bz4o_kiUUJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+responsible+site+for+favipiravir+resistance+in+RNA-dependent+RNA+polymerase+of+influenza+virus+A%2FPR%2F8%2F34+%28H1N1%29+using+site-directed+mutagenesis&rft.jtitle=Antiviral+research&rft.au=Komeno%2C+Takashi&rft.au=Furuta%2C+Yousuke&rft.au=Nakajima%2C+Nozomi&rft.au=Tani%2C+Hideki&rft.date=2022-09-01&rft.issn=0166-3542&rft.volume=205&rft.spage=105387&rft_id=info:doi/10.1016%2Fj.antiviral.2022.105387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_antiviral_2022_105387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon |