Quality assessment of DNA and hemoglobin by Fourier transform infrared spectroscopy in occupational exposure to extremely low-frequency magnetic field

Previous studies have shown the effect of extremely low-frequency (ELF) magnetic fields on the hematopoietic system. However, molecular modification and biological toxicity are not known yet. The aim of this study was to investigate the effect of occupational exposure to ELF magnetic field on the he...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 27; no. 36; pp. 45374 - 45380
Main Authors Zendehdel, Rezvan, Asadi, Sareh, Alizadeh, Somayeh, Ranjbarian, Mouhammad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have shown the effect of extremely low-frequency (ELF) magnetic fields on the hematopoietic system. However, molecular modification and biological toxicity are not known yet. The aim of this study was to investigate the effect of occupational exposure to ELF magnetic field on the hemoglobin and DNA alteration using Fourier transform infrared (FTIR) spectroscopy. Twenty nine individuals were selected among those working as the controller in a powerhouse in order to be studied as the population exposed to ELF magnetic field. Control group comprised of 29 administrative employees voluntarily participated who were matched with the exposed subjects in terms of sex, age, work experiences, smoking habit, and socioeconomic status. DNA and hemoglobin were extracted from blood samples and then were studied by FTIR spectroscopy. The results showed the level of magnetic field exposure was between 0.38 to 50 μT in the exposed subjects while the level of magnetic field exposure was between 0.19 and 20 μT for the unexposed people. Hemoglobin level was equal to 15.67 ± 1.42 g/dL for exposed subjects which is significantly lower than that of the unexposed people ( p  = 0.0001). There was a significant alteration in CH content and COO structure of the hemoglobin structure. Moreover, DNA showed significant changes by functional group of organic base. This change in the structure of DNA and hemoglobin can lead to the creation of risks in human health. In conclusion, FTIR method could reveal the quality of DNA and hemoglobin structure in subjects after exposure to ELF magnetic field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-020-09503-8