Codon usage influences fitness through RNA toxicity

Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quant...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 34; pp. 8639 - 8644
Main Authors Mittal, Pragya, Brindle, James, Stephen, Julie, Plotkin, Joshua B., Kudla, Grzegorz
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.08.2018
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1810022115

Cover

Loading…
Abstract Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
AbstractList Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in , and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Synonymous mutations in genes do not change protein sequence, but they may affect gene expression and cellular function. Here we describe an unexpected toxic effect of synonymous mutations in Escherichia coli , with potentially large implications for bacterial physiology and evolution. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We hypothesize that the mechanism we identified influences the evolution of endogenous genes in bacteria by imposing selective constraints on synonymous mutations that arise in the genome. Of interest for biotechnology and synthetic biology, we identify bacterial strains and growth conditions that alleviate RNA toxicity, thus allowing efficient overexpression of heterologous proteins. Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli , and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli . Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain.
Author Plotkin, Joshua B.
Kudla, Grzegorz
Mittal, Pragya
Brindle, James
Stephen, Julie
Author_xml – sequence: 1
  givenname: Pragya
  surname: Mittal
  fullname: Mittal, Pragya
  organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
– sequence: 2
  givenname: James
  surname: Brindle
  fullname: Brindle, James
  organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
– sequence: 3
  givenname: Julie
  surname: Stephen
  fullname: Stephen, Julie
  organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
– sequence: 4
  givenname: Joshua B.
  surname: Plotkin
  fullname: Plotkin, Joshua B.
  organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 5
  givenname: Grzegorz
  surname: Kudla
  fullname: Kudla, Grzegorz
  organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30082392$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtr3DAUhUVJaSaPdVYJhm66caIrybK8KYShLwgJhGQtNPL1jAaPNJHk0Pz72kwebaCrC7rfORzdc0D2fPBIyAnQc6A1v9h6k85BAaWMAVQfyAxoA6UUDd0js_G1LpVgYp8cpLSmlDaVop_IPqdUMd6wGeHz0AZfDMkssXC-6wf0FlPRuewxpSKvYhiWq-L2-rLI4bezLj8dkY-d6RMeP89Dcv_92938Z3l18-PX_PKqtELwXAplmkpUUnGFUEvGVbtoOS7QKGuwlRyNULZT2NFamprLphGCGbBMcWQI_JB83fluh8UGW4s-R9PrbXQbE590ME7_u_FupZfhUUsAVovJ4MuzQQwPA6asNy5Z7HvjMQxJM6pEA5yzCf38Dl2HIfrxe5oBFVCDrNhInf2d6DXKyz1HoNoBNoaUInZ6PJjJLkwBXa-B6qk3PfWm33obdRfvdC_W_1ec7hTrlEN8xZmsOAVV8T-z86NE
CitedBy_id crossref_primary_10_1038_s42003_021_02493_4
crossref_primary_10_3390_genes13010053
crossref_primary_10_1038_s41598_024_63148_y
crossref_primary_10_1007_s00203_024_03871_2
crossref_primary_10_1134_S0006297923140109
crossref_primary_10_1016_j_sbi_2020_11_007
crossref_primary_10_3390_pathogens12020325
crossref_primary_10_1093_nar_gkaf020
crossref_primary_10_1016_j_ab_2020_113936
crossref_primary_10_3389_fmicb_2021_606087
crossref_primary_10_7717_peerj_8717
crossref_primary_10_1038_s41467_021_23573_3
crossref_primary_10_1146_annurev_biochem_071320_112701
crossref_primary_10_1007_s12010_023_04369_1
crossref_primary_10_1073_pnas_1907126117
crossref_primary_10_1016_j_copbio_2019_09_005
crossref_primary_10_1016_j_cels_2020_03_001
crossref_primary_10_1038_s41576_023_00686_7
crossref_primary_10_1007_s12298_023_01289_6
crossref_primary_10_3390_ijms252111622
crossref_primary_10_3390_v11121087
crossref_primary_10_1016_j_biotechadv_2024_108417
crossref_primary_10_1016_j_pep_2024_106458
crossref_primary_10_3390_genes12121913
crossref_primary_10_1016_j_molcel_2020_09_014
crossref_primary_10_1021_acssynbio_2c00358
crossref_primary_10_1007_s11274_025_04270_5
crossref_primary_10_35118_apjmbb_2024_032_3_11
crossref_primary_10_1016_j_jare_2023_07_006
crossref_primary_10_1371_journal_pcbi_1009461
crossref_primary_10_1186_s12864_021_07560_y
crossref_primary_10_1111_1462_2920_16512
crossref_primary_10_1002_bit_27553
crossref_primary_10_1126_sciadv_adk3485
crossref_primary_10_1186_s12864_024_10366_3
crossref_primary_10_1186_s12934_022_01787_4
crossref_primary_10_3390_microorganisms9091986
crossref_primary_10_1128_jb_00468_22
crossref_primary_10_1371_journal_pcbi_1012185
crossref_primary_10_1093_gbe_evab106
crossref_primary_10_1016_j_biotechadv_2021_107859
crossref_primary_10_1186_s12934_020_01343_y
crossref_primary_10_1002_bit_27558
crossref_primary_10_3389_fmolb_2021_673363
crossref_primary_10_1093_nar_gkz831
crossref_primary_10_3390_plants12010097
crossref_primary_10_1021_acssynbio_3c00412
crossref_primary_10_1371_journal_pgen_1008304
crossref_primary_10_1186_s12934_022_01917_y
crossref_primary_10_1093_molbev_msz184
crossref_primary_10_1186_s12870_022_03750_2
crossref_primary_10_1016_j_bbamem_2019_183058
crossref_primary_10_1021_acssynbio_1c00359
crossref_primary_10_1038_s41598_021_03817_4
crossref_primary_10_1038_s41576_020_00307_7
crossref_primary_10_1016_j_tibtech_2019_09_007
crossref_primary_10_1002_eng2_12393
crossref_primary_10_1038_s41467_020_19921_4
crossref_primary_10_1038_s41586_019_1192_5
crossref_primary_10_3390_ijms25158398
crossref_primary_10_1016_j_gene_2020_144340
crossref_primary_10_1016_j_synbio_2020_05_002
crossref_primary_10_1038_s41598_020_57512_x
crossref_primary_10_1186_s12934_021_01661_9
crossref_primary_10_1128_mSystems_00342_19
Cites_doi 10.1093/molbev/msw035
10.1093/genetics/136.3.927
10.1073/pnas.1606724113
10.1073/pnas.91.22.10747
10.1016/j.molcel.2016.11.007
10.1038/nature16509
10.1126/science.1170160
10.1038/srep16076
10.1016/j.cell.2015.02.029
10.1038/nrg1770
10.1371/journal.pcbi.1000664
10.1073/pnas.1205683109
10.1128/mr.54.2.198-210.1990
10.1016/j.cels.2016.11.004
10.1093/nar/gkr729
10.1016/0022-2836(89)90260-X
10.1021/sb5000115
10.1073/pnas.0502288102
10.1371/journal.pgen.1005926
10.1038/nbt.1568
10.1038/nrg2899
10.1016/j.celrep.2015.02.029
10.1016/j.cell.2008.05.042
10.1038/nature22386
10.1126/science.1241934
10.1093/molbev/msw028
10.1006/jmbi.1996.0399
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Aug 21, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Aug 21, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1810022115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1091-6490
EndPage 8644
ExternalDocumentID PMC6112741
30082392
10_1073_pnas_1810022115
26530185
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 097383
– fundername: Medical Research Council
  grantid: MC_UU_00007/12
– fundername: Medical Research Council
  grantid: MC_UU_12018/23
– fundername: Wellcome Trust
  grantid: 207507
– fundername: RCUK | Medical Research Council (MRC)
  grantid: MC_UU_12018/23
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-48a95456838e176238dbd3ebea8caed63ea48cf8ef076a73699442a1c283e2e13
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:08:25 EDT 2025
Fri Jul 11 01:27:40 EDT 2025
Mon Jun 30 08:09:20 EDT 2025
Sat May 31 02:04:57 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 03:19:52 EDT 2025
Fri May 30 11:17:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords synthetic biology
experimental evolution
RNA
codon usage
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-48a95456838e176238dbd3ebea8caed63ea48cf8ef076a73699442a1c283e2e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: P.M. and G.K. designed research; P.M., J.B., J.S., and G.K. performed research; P.M., J.B.P., and G.K. analyzed data; and P.M. and G.K. wrote the paper.
Edited by Gisela Storz, National Institute of Child Health and Human Development, Bethesda, MD, and approved July 18, 2018 (received for review June 13, 2018)
ORCID 0000-0002-7924-2744
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6112741
PMID 30082392
PQID 2104171652
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112741
proquest_miscellaneous_2084913321
proquest_journals_2104171652
pubmed_primary_30082392
crossref_citationtrail_10_1073_pnas_1810022115
crossref_primary_10_1073_pnas_1810022115
jstor_primary_26530185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-21
PublicationDateYYYYMMDD 2018-08-21
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Kwon SK (e_1_3_3_23_2) 2015; 5
Akashi H (e_1_3_3_5_2) 1994; 136
Plotkin JB (e_1_3_3_9_2) 2011; 12
Krzyzosiak WJ (e_1_3_3_21_2) 2012; 40
Kelsic ED (e_1_3_3_12_2) 2016; 3
Sørensen MA (e_1_3_3_4_2) 1989; 207
Knöppel A (e_1_3_3_13_2) 2016; 33
Drummond DA (e_1_3_3_6_2) 2008; 134
Goodman DB (e_1_3_3_3_2) 2013; 342
Mairhofer J (e_1_3_3_20_2) 2015; 4
Chamary JV (e_1_3_3_11_2) 2006; 7
Jain A (e_1_3_3_29_2) 2017; 546
Pagani F (e_1_3_3_8_2) 2005; 102
Andersson SG (e_1_3_3_28_2) 1990; 54
Kudla G (e_1_3_3_2_2) 2009; 324
Gu W (e_1_3_3_10_2) 2010; 6
Agashe D (e_1_3_3_15_2) 2016; 33
Boël G (e_1_3_3_25_2) 2016; 529
Cambray G (e_1_3_3_27_2) 2017
Schlegel S (e_1_3_3_24_2) 2015; 10
Zhou Z (e_1_3_3_1_2) 2016; 113
Miroux B (e_1_3_3_22_2) 1996; 260
Stemmer WP (e_1_3_3_19_2) 1994; 91
Neme R (e_1_3_3_26_2) 2017
Salis HM (e_1_3_3_18_2) 2009; 27
Presnyak V (e_1_3_3_7_2) 2015; 160
Raghavan R (e_1_3_3_16_2) 2012; 109
Frumkin I (e_1_3_3_14_2) 2017; 65
Brandis G (e_1_3_3_17_2) 2016; 12
30275292 - Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9753. doi: 10.1073/pnas.1815812115.
References_xml – volume: 33
  start-page: 1542
  year: 2016
  ident: e_1_3_3_15_2
  article-title: Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw035
– volume: 136
  start-page: 927
  year: 1994
  ident: e_1_3_3_5_2
  article-title: Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy
  publication-title: Genetics
  doi: 10.1093/genetics/136.3.927
– volume: 113
  start-page: E6117
  year: 2016
  ident: e_1_3_3_1_2
  article-title: Codon usage is an important determinant of gene expression levels largely through its effects on transcription
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1606724113
– volume: 91
  start-page: 10747
  year: 1994
  ident: e_1_3_3_19_2
  article-title: DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.22.10747
– volume: 65
  start-page: 142
  year: 2017
  ident: e_1_3_3_14_2
  article-title: Gene architectures that minimize cost of gene expression
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.11.007
– volume: 529
  start-page: 358
  year: 2016
  ident: e_1_3_3_25_2
  article-title: Codon influence on protein expression in E. coli correlates with mRNA levels
  publication-title: Nature
  doi: 10.1038/nature16509
– volume: 324
  start-page: 255
  year: 2009
  ident: e_1_3_3_2_2
  article-title: Coding-sequence determinants of gene expression in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1170160
– volume: 5
  start-page: 16076
  year: 2015
  ident: e_1_3_3_23_2
  article-title: Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction
  publication-title: Sci Rep
  doi: 10.1038/srep16076
– volume: 160
  start-page: 1111
  year: 2015
  ident: e_1_3_3_7_2
  article-title: Codon optimality is a major determinant of mRNA stability
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.029
– volume: 7
  start-page: 98
  year: 2006
  ident: e_1_3_3_11_2
  article-title: Hearing silence: Non-neutral evolution at synonymous sites in mammals
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1770
– volume: 6
  start-page: e1000664
  year: 2010
  ident: e_1_3_3_10_2
  article-title: A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000664
– volume: 109
  start-page: 14504
  year: 2012
  ident: e_1_3_3_16_2
  article-title: A selective force favoring increased G+C content in bacterial genes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1205683109
– volume: 54
  start-page: 198
  year: 1990
  ident: e_1_3_3_28_2
  article-title: Codon preferences in free-living microorganisms
  publication-title: Microbiol Rev
  doi: 10.1128/mr.54.2.198-210.1990
– volume: 3
  start-page: 563
  year: 2016
  ident: e_1_3_3_12_2
  article-title: RNA structural determinants of optimal codons revealed by MAGE-seq
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.11.004
– volume: 40
  start-page: 11
  year: 2012
  ident: e_1_3_3_21_2
  article-title: Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr729
– volume: 207
  start-page: 365
  year: 1989
  ident: e_1_3_3_4_2
  article-title: Codon usage determines translation rate in Escherichia coli
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(89)90260-X
– volume: 4
  start-page: 265
  year: 2015
  ident: e_1_3_3_20_2
  article-title: Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability
  publication-title: ACS Synth Biol
  doi: 10.1021/sb5000115
– volume: 102
  start-page: 6368
  year: 2005
  ident: e_1_3_3_8_2
  article-title: Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0502288102
– volume: 12
  start-page: e1005926
  year: 2016
  ident: e_1_3_3_17_2
  article-title: The selective advantage of synonymous codon usage bias in Salmonella
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005926
– volume: 27
  start-page: 946
  year: 2009
  ident: e_1_3_3_18_2
  article-title: Automated design of synthetic ribosome binding sites to control protein expression
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1568
– volume: 12
  start-page: 32
  year: 2011
  ident: e_1_3_3_9_2
  article-title: Synonymous but not the same: The causes and consequences of codon bias
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2899
– year: 2017
  ident: e_1_3_3_27_2
  article-title: Massive factorial design untangles coding sequences determinants of translation efficacy
  publication-title: bioRxiv
– volume: 10
  start-page: 1758
  year: 2015
  ident: e_1_3_3_24_2
  article-title: De-convoluting the genetic adaptations of E. coli C41(DE3) in real time reveals how alleviating protein production stress improves yields
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.02.029
– volume: 134
  start-page: 341
  year: 2008
  ident: e_1_3_3_6_2
  article-title: Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.042
– volume: 546
  start-page: 243
  year: 2017
  ident: e_1_3_3_29_2
  article-title: RNA phase transitions in repeat expansion disorders
  publication-title: Nature
  doi: 10.1038/nature22386
– volume: 342
  start-page: 475
  year: 2013
  ident: e_1_3_3_3_2
  article-title: Causes and effects of N-terminal codon bias in bacterial genes
  publication-title: Science
  doi: 10.1126/science.1241934
– volume: 33
  start-page: 1461
  year: 2016
  ident: e_1_3_3_13_2
  article-title: Compensating the fitness costs of synonymous mutations
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw028
– volume: 260
  start-page: 289
  year: 1996
  ident: e_1_3_3_22_2
  article-title: Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0399
– year: 2017
  ident: e_1_3_3_26_2
  article-title: Random sequences are an abundant source of bioactive RNAs or peptides
  publication-title: Nat Ecol Evol
– reference: 30275292 - Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9753. doi: 10.1073/pnas.1815812115.
SSID ssj0009580
Score 2.5193532
Snippet Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the...
Synonymous mutations in genes do not change protein sequence, but they may affect gene expression and cellular function. Here we describe an unexpected toxic...
Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8639
SubjectTerms Analgesics
Angiotensin
Angiotensin II
Biological Sciences
Biology
Cellular structure
Codon - genetics
Codon - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Fitness
Ganglia
Gene expression
Genes
Hypersensitivity
Immune system
Inflammation
Macrophages
Mutation
Neuralgia
Pain
Pain perception
Peripheral neuropathy
Proteins
Ribonucleic acid
RNA
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Sensory neurons
Structural damage
Toxicity
Transplantation
Title Codon usage influences fitness through RNA toxicity
URI https://www.jstor.org/stable/26530185
https://www.ncbi.nlm.nih.gov/pubmed/30082392
https://www.proquest.com/docview/2104171652
https://www.proquest.com/docview/2084913321
https://pubmed.ncbi.nlm.nih.gov/PMC6112741
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqIaG9IAYMCgMFiYehKqX-Ucd5LBUwIbWq0Cb1LXIcl0Xa0mlJJbZ_iH-Tc2wnaRkI9hJVieOkvs_nO-fuO4TeqYjIdBwrcEviNGSRVGGKZRRmht0MLGwcCZM7PJvzkzP2dTle9no_O1FLmyodqts780ruI1U4B3I1WbL_IdmmUzgBv0G-cAQJw_GfZDwFn7IYbExsmImqstVGysEqr2oF5mvwfJtPwMT8kau82vqIu2gWr9KHCsz93uCkzTRx078chIPFvK1bPMurStoCyNfy-03Hsc8NcUMTgtvs4dh4Mp-U3QBqcbGufE2wdXm-kYOPw-5eBDbc1iFp9yL-9o5dJUxgYWQ2dXqord4FsyXkzFYObRSzTfR0CHR7nlbPCm4pkPyazS2J5G_rASgwU8S4kOUQTBljsLhOO-i4uqzhQeuPjrYw3w4F92I25WCXRoYg4QEBf8SUyviyxB12Z2Fzndw_8xxSEf2w8-x99NA_aMsSssGwd7k5u9G6HfPn9DF65PyWYGJBeIB6uniCDvywB8eOvvz9U0RrVAY1KoMWlYFDZeBQGQAqA4_KZ-js86fT6UnoSnOEijFahUzI2NjeggqNYT2lIkszCgpBCiV1xqmWTKiV0KtRxGVEeRwzRiRWYM1qojE9RHvFutAvUAAeBMZZLDMaa8aYFOlKKMIVI1oJrnQfDf0wJcrx1pvyKRdJHT8R0cQMcdIOcR8dNzdcWcqWPzc9rMe9aUf4GFY8AReOvCASN-HLhOARM-xSY9JHb5vLoI7NNzZZ6PUG2owEizGlBPfRcyu3pnMv-D6KtiTaNDBU79tXivy8pnx38Ht57ztfof12wh6hvep6o1-DOV2lb2oo_wLqeMmD
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Codon+usage+influences+fitness+through+RNA+toxicity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mittal%2C+Pragya&rft.au=Brindle%2C+James&rft.au=Stephen%2C+Julie&rft.au=Plotkin%2C+Joshua+B.&rft.date=2018-08-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=34&rft.spage=8639&rft.epage=8644&rft_id=info:doi/10.1073%2Fpnas.1810022115&rft_id=info%3Apmid%2F30082392&rft.externalDocID=PMC6112741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon