Codon usage influences fitness through RNA toxicity
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quant...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 34; pp. 8639 - 8644 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1810022115 |
Cover
Loading…
Abstract | Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression. |
---|---|
AbstractList | Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression. Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in , and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression. Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression. Synonymous mutations in genes do not change protein sequence, but they may affect gene expression and cellular function. Here we describe an unexpected toxic effect of synonymous mutations in Escherichia coli , with potentially large implications for bacterial physiology and evolution. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We hypothesize that the mechanism we identified influences the evolution of endogenous genes in bacteria by imposing selective constraints on synonymous mutations that arise in the genome. Of interest for biotechnology and synthetic biology, we identify bacterial strains and growth conditions that alleviate RNA toxicity, thus allowing efficient overexpression of heterologous proteins. Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli , and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli . Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression. Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain. |
Author | Plotkin, Joshua B. Kudla, Grzegorz Mittal, Pragya Brindle, James Stephen, Julie |
Author_xml | – sequence: 1 givenname: Pragya surname: Mittal fullname: Mittal, Pragya organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom – sequence: 2 givenname: James surname: Brindle fullname: Brindle, James organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom – sequence: 3 givenname: Julie surname: Stephen fullname: Stephen, Julie organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom – sequence: 4 givenname: Joshua B. surname: Plotkin fullname: Plotkin, Joshua B. organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 5 givenname: Grzegorz surname: Kudla fullname: Kudla, Grzegorz organization: Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30082392$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtr3DAUhUVJaSaPdVYJhm66caIrybK8KYShLwgJhGQtNPL1jAaPNJHk0Pz72kwebaCrC7rfORzdc0D2fPBIyAnQc6A1v9h6k85BAaWMAVQfyAxoA6UUDd0js_G1LpVgYp8cpLSmlDaVop_IPqdUMd6wGeHz0AZfDMkssXC-6wf0FlPRuewxpSKvYhiWq-L2-rLI4bezLj8dkY-d6RMeP89Dcv_92938Z3l18-PX_PKqtELwXAplmkpUUnGFUEvGVbtoOS7QKGuwlRyNULZT2NFamprLphGCGbBMcWQI_JB83fluh8UGW4s-R9PrbXQbE590ME7_u_FupZfhUUsAVovJ4MuzQQwPA6asNy5Z7HvjMQxJM6pEA5yzCf38Dl2HIfrxe5oBFVCDrNhInf2d6DXKyz1HoNoBNoaUInZ6PJjJLkwBXa-B6qk3PfWm33obdRfvdC_W_1ec7hTrlEN8xZmsOAVV8T-z86NE |
CitedBy_id | crossref_primary_10_1038_s42003_021_02493_4 crossref_primary_10_3390_genes13010053 crossref_primary_10_1038_s41598_024_63148_y crossref_primary_10_1007_s00203_024_03871_2 crossref_primary_10_1134_S0006297923140109 crossref_primary_10_1016_j_sbi_2020_11_007 crossref_primary_10_3390_pathogens12020325 crossref_primary_10_1093_nar_gkaf020 crossref_primary_10_1016_j_ab_2020_113936 crossref_primary_10_3389_fmicb_2021_606087 crossref_primary_10_7717_peerj_8717 crossref_primary_10_1038_s41467_021_23573_3 crossref_primary_10_1146_annurev_biochem_071320_112701 crossref_primary_10_1007_s12010_023_04369_1 crossref_primary_10_1073_pnas_1907126117 crossref_primary_10_1016_j_copbio_2019_09_005 crossref_primary_10_1016_j_cels_2020_03_001 crossref_primary_10_1038_s41576_023_00686_7 crossref_primary_10_1007_s12298_023_01289_6 crossref_primary_10_3390_ijms252111622 crossref_primary_10_3390_v11121087 crossref_primary_10_1016_j_biotechadv_2024_108417 crossref_primary_10_1016_j_pep_2024_106458 crossref_primary_10_3390_genes12121913 crossref_primary_10_1016_j_molcel_2020_09_014 crossref_primary_10_1021_acssynbio_2c00358 crossref_primary_10_1007_s11274_025_04270_5 crossref_primary_10_35118_apjmbb_2024_032_3_11 crossref_primary_10_1016_j_jare_2023_07_006 crossref_primary_10_1371_journal_pcbi_1009461 crossref_primary_10_1186_s12864_021_07560_y crossref_primary_10_1111_1462_2920_16512 crossref_primary_10_1002_bit_27553 crossref_primary_10_1126_sciadv_adk3485 crossref_primary_10_1186_s12864_024_10366_3 crossref_primary_10_1186_s12934_022_01787_4 crossref_primary_10_3390_microorganisms9091986 crossref_primary_10_1128_jb_00468_22 crossref_primary_10_1371_journal_pcbi_1012185 crossref_primary_10_1093_gbe_evab106 crossref_primary_10_1016_j_biotechadv_2021_107859 crossref_primary_10_1186_s12934_020_01343_y crossref_primary_10_1002_bit_27558 crossref_primary_10_3389_fmolb_2021_673363 crossref_primary_10_1093_nar_gkz831 crossref_primary_10_3390_plants12010097 crossref_primary_10_1021_acssynbio_3c00412 crossref_primary_10_1371_journal_pgen_1008304 crossref_primary_10_1186_s12934_022_01917_y crossref_primary_10_1093_molbev_msz184 crossref_primary_10_1186_s12870_022_03750_2 crossref_primary_10_1016_j_bbamem_2019_183058 crossref_primary_10_1021_acssynbio_1c00359 crossref_primary_10_1038_s41598_021_03817_4 crossref_primary_10_1038_s41576_020_00307_7 crossref_primary_10_1016_j_tibtech_2019_09_007 crossref_primary_10_1002_eng2_12393 crossref_primary_10_1038_s41467_020_19921_4 crossref_primary_10_1038_s41586_019_1192_5 crossref_primary_10_3390_ijms25158398 crossref_primary_10_1016_j_gene_2020_144340 crossref_primary_10_1016_j_synbio_2020_05_002 crossref_primary_10_1038_s41598_020_57512_x crossref_primary_10_1186_s12934_021_01661_9 crossref_primary_10_1128_mSystems_00342_19 |
Cites_doi | 10.1093/molbev/msw035 10.1093/genetics/136.3.927 10.1073/pnas.1606724113 10.1073/pnas.91.22.10747 10.1016/j.molcel.2016.11.007 10.1038/nature16509 10.1126/science.1170160 10.1038/srep16076 10.1016/j.cell.2015.02.029 10.1038/nrg1770 10.1371/journal.pcbi.1000664 10.1073/pnas.1205683109 10.1128/mr.54.2.198-210.1990 10.1016/j.cels.2016.11.004 10.1093/nar/gkr729 10.1016/0022-2836(89)90260-X 10.1021/sb5000115 10.1073/pnas.0502288102 10.1371/journal.pgen.1005926 10.1038/nbt.1568 10.1038/nrg2899 10.1016/j.celrep.2015.02.029 10.1016/j.cell.2008.05.042 10.1038/nature22386 10.1126/science.1241934 10.1093/molbev/msw028 10.1006/jmbi.1996.0399 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences Aug 21, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Aug 21, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1810022115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1091-6490 |
EndPage | 8644 |
ExternalDocumentID | PMC6112741 30082392 10_1073_pnas_1810022115 26530185 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 097383 – fundername: Medical Research Council grantid: MC_UU_00007/12 – fundername: Medical Research Council grantid: MC_UU_12018/23 – fundername: Wellcome Trust grantid: 207507 – fundername: RCUK | Medical Research Council (MRC) grantid: MC_UU_12018/23 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-48a95456838e176238dbd3ebea8caed63ea48cf8ef076a73699442a1c283e2e13 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:08:25 EDT 2025 Fri Jul 11 01:27:40 EDT 2025 Mon Jun 30 08:09:20 EDT 2025 Sat May 31 02:04:57 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 03:19:52 EDT 2025 Fri May 30 11:17:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | synthetic biology experimental evolution RNA codon usage |
Language | English |
License | Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-48a95456838e176238dbd3ebea8caed63ea48cf8ef076a73699442a1c283e2e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: P.M. and G.K. designed research; P.M., J.B., J.S., and G.K. performed research; P.M., J.B.P., and G.K. analyzed data; and P.M. and G.K. wrote the paper. Edited by Gisela Storz, National Institute of Child Health and Human Development, Bethesda, MD, and approved July 18, 2018 (received for review June 13, 2018) |
ORCID | 0000-0002-7924-2744 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6112741 |
PMID | 30082392 |
PQID | 2104171652 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6112741 proquest_miscellaneous_2084913321 proquest_journals_2104171652 pubmed_primary_30082392 crossref_citationtrail_10_1073_pnas_1810022115 crossref_primary_10_1073_pnas_1810022115 jstor_primary_26530185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-21 |
PublicationDateYYYYMMDD | 2018-08-21 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Kwon SK (e_1_3_3_23_2) 2015; 5 Akashi H (e_1_3_3_5_2) 1994; 136 Plotkin JB (e_1_3_3_9_2) 2011; 12 Krzyzosiak WJ (e_1_3_3_21_2) 2012; 40 Kelsic ED (e_1_3_3_12_2) 2016; 3 Sørensen MA (e_1_3_3_4_2) 1989; 207 Knöppel A (e_1_3_3_13_2) 2016; 33 Drummond DA (e_1_3_3_6_2) 2008; 134 Goodman DB (e_1_3_3_3_2) 2013; 342 Mairhofer J (e_1_3_3_20_2) 2015; 4 Chamary JV (e_1_3_3_11_2) 2006; 7 Jain A (e_1_3_3_29_2) 2017; 546 Pagani F (e_1_3_3_8_2) 2005; 102 Andersson SG (e_1_3_3_28_2) 1990; 54 Kudla G (e_1_3_3_2_2) 2009; 324 Gu W (e_1_3_3_10_2) 2010; 6 Agashe D (e_1_3_3_15_2) 2016; 33 Boël G (e_1_3_3_25_2) 2016; 529 Cambray G (e_1_3_3_27_2) 2017 Schlegel S (e_1_3_3_24_2) 2015; 10 Zhou Z (e_1_3_3_1_2) 2016; 113 Miroux B (e_1_3_3_22_2) 1996; 260 Stemmer WP (e_1_3_3_19_2) 1994; 91 Neme R (e_1_3_3_26_2) 2017 Salis HM (e_1_3_3_18_2) 2009; 27 Presnyak V (e_1_3_3_7_2) 2015; 160 Raghavan R (e_1_3_3_16_2) 2012; 109 Frumkin I (e_1_3_3_14_2) 2017; 65 Brandis G (e_1_3_3_17_2) 2016; 12 30275292 - Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9753. doi: 10.1073/pnas.1815812115. |
References_xml | – volume: 33 start-page: 1542 year: 2016 ident: e_1_3_3_15_2 article-title: Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium publication-title: Mol Biol Evol doi: 10.1093/molbev/msw035 – volume: 136 start-page: 927 year: 1994 ident: e_1_3_3_5_2 article-title: Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy publication-title: Genetics doi: 10.1093/genetics/136.3.927 – volume: 113 start-page: E6117 year: 2016 ident: e_1_3_3_1_2 article-title: Codon usage is an important determinant of gene expression levels largely through its effects on transcription publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1606724113 – volume: 91 start-page: 10747 year: 1994 ident: e_1_3_3_19_2 article-title: DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.22.10747 – volume: 65 start-page: 142 year: 2017 ident: e_1_3_3_14_2 article-title: Gene architectures that minimize cost of gene expression publication-title: Mol Cell doi: 10.1016/j.molcel.2016.11.007 – volume: 529 start-page: 358 year: 2016 ident: e_1_3_3_25_2 article-title: Codon influence on protein expression in E. coli correlates with mRNA levels publication-title: Nature doi: 10.1038/nature16509 – volume: 324 start-page: 255 year: 2009 ident: e_1_3_3_2_2 article-title: Coding-sequence determinants of gene expression in Escherichia coli publication-title: Science doi: 10.1126/science.1170160 – volume: 5 start-page: 16076 year: 2015 ident: e_1_3_3_23_2 article-title: Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction publication-title: Sci Rep doi: 10.1038/srep16076 – volume: 160 start-page: 1111 year: 2015 ident: e_1_3_3_7_2 article-title: Codon optimality is a major determinant of mRNA stability publication-title: Cell doi: 10.1016/j.cell.2015.02.029 – volume: 7 start-page: 98 year: 2006 ident: e_1_3_3_11_2 article-title: Hearing silence: Non-neutral evolution at synonymous sites in mammals publication-title: Nat Rev Genet doi: 10.1038/nrg1770 – volume: 6 start-page: e1000664 year: 2010 ident: e_1_3_3_10_2 article-title: A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000664 – volume: 109 start-page: 14504 year: 2012 ident: e_1_3_3_16_2 article-title: A selective force favoring increased G+C content in bacterial genes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1205683109 – volume: 54 start-page: 198 year: 1990 ident: e_1_3_3_28_2 article-title: Codon preferences in free-living microorganisms publication-title: Microbiol Rev doi: 10.1128/mr.54.2.198-210.1990 – volume: 3 start-page: 563 year: 2016 ident: e_1_3_3_12_2 article-title: RNA structural determinants of optimal codons revealed by MAGE-seq publication-title: Cell Syst doi: 10.1016/j.cels.2016.11.004 – volume: 40 start-page: 11 year: 2012 ident: e_1_3_3_21_2 article-title: Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr729 – volume: 207 start-page: 365 year: 1989 ident: e_1_3_3_4_2 article-title: Codon usage determines translation rate in Escherichia coli publication-title: J Mol Biol doi: 10.1016/0022-2836(89)90260-X – volume: 4 start-page: 265 year: 2015 ident: e_1_3_3_20_2 article-title: Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability publication-title: ACS Synth Biol doi: 10.1021/sb5000115 – volume: 102 start-page: 6368 year: 2005 ident: e_1_3_3_8_2 article-title: Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502288102 – volume: 12 start-page: e1005926 year: 2016 ident: e_1_3_3_17_2 article-title: The selective advantage of synonymous codon usage bias in Salmonella publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005926 – volume: 27 start-page: 946 year: 2009 ident: e_1_3_3_18_2 article-title: Automated design of synthetic ribosome binding sites to control protein expression publication-title: Nat Biotechnol doi: 10.1038/nbt.1568 – volume: 12 start-page: 32 year: 2011 ident: e_1_3_3_9_2 article-title: Synonymous but not the same: The causes and consequences of codon bias publication-title: Nat Rev Genet doi: 10.1038/nrg2899 – year: 2017 ident: e_1_3_3_27_2 article-title: Massive factorial design untangles coding sequences determinants of translation efficacy publication-title: bioRxiv – volume: 10 start-page: 1758 year: 2015 ident: e_1_3_3_24_2 article-title: De-convoluting the genetic adaptations of E. coli C41(DE3) in real time reveals how alleviating protein production stress improves yields publication-title: Cell Rep doi: 10.1016/j.celrep.2015.02.029 – volume: 134 start-page: 341 year: 2008 ident: e_1_3_3_6_2 article-title: Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution publication-title: Cell doi: 10.1016/j.cell.2008.05.042 – volume: 546 start-page: 243 year: 2017 ident: e_1_3_3_29_2 article-title: RNA phase transitions in repeat expansion disorders publication-title: Nature doi: 10.1038/nature22386 – volume: 342 start-page: 475 year: 2013 ident: e_1_3_3_3_2 article-title: Causes and effects of N-terminal codon bias in bacterial genes publication-title: Science doi: 10.1126/science.1241934 – volume: 33 start-page: 1461 year: 2016 ident: e_1_3_3_13_2 article-title: Compensating the fitness costs of synonymous mutations publication-title: Mol Biol Evol doi: 10.1093/molbev/msw028 – volume: 260 start-page: 289 year: 1996 ident: e_1_3_3_22_2 article-title: Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0399 – year: 2017 ident: e_1_3_3_26_2 article-title: Random sequences are an abundant source of bioactive RNAs or peptides publication-title: Nat Ecol Evol – reference: 30275292 - Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9753. doi: 10.1073/pnas.1815812115. |
SSID | ssj0009580 |
Score | 2.5193532 |
Snippet | Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the... Synonymous mutations in genes do not change protein sequence, but they may affect gene expression and cellular function. Here we describe an unexpected toxic... Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8639 |
SubjectTerms | Analgesics Angiotensin Angiotensin II Biological Sciences Biology Cellular structure Codon - genetics Codon - metabolism Escherichia coli - genetics Escherichia coli - metabolism Fitness Ganglia Gene expression Genes Hypersensitivity Immune system Inflammation Macrophages Mutation Neuralgia Pain Pain perception Peripheral neuropathy Proteins Ribonucleic acid RNA RNA, Bacterial - genetics RNA, Bacterial - metabolism Sensory neurons Structural damage Toxicity Transplantation |
Title | Codon usage influences fitness through RNA toxicity |
URI | https://www.jstor.org/stable/26530185 https://www.ncbi.nlm.nih.gov/pubmed/30082392 https://www.proquest.com/docview/2104171652 https://www.proquest.com/docview/2084913321 https://pubmed.ncbi.nlm.nih.gov/PMC6112741 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqIaG9IAYMCgMFiYehKqX-Ucd5LBUwIbWq0Cb1LXIcl0Xa0mlJJbZ_iH-Tc2wnaRkI9hJVieOkvs_nO-fuO4TeqYjIdBwrcEviNGSRVGGKZRRmht0MLGwcCZM7PJvzkzP2dTle9no_O1FLmyodqts780ruI1U4B3I1WbL_IdmmUzgBv0G-cAQJw_GfZDwFn7IYbExsmImqstVGysEqr2oF5mvwfJtPwMT8kau82vqIu2gWr9KHCsz93uCkzTRx078chIPFvK1bPMurStoCyNfy-03Hsc8NcUMTgtvs4dh4Mp-U3QBqcbGufE2wdXm-kYOPw-5eBDbc1iFp9yL-9o5dJUxgYWQ2dXqord4FsyXkzFYObRSzTfR0CHR7nlbPCm4pkPyazS2J5G_rASgwU8S4kOUQTBljsLhOO-i4uqzhQeuPjrYw3w4F92I25WCXRoYg4QEBf8SUyviyxB12Z2Fzndw_8xxSEf2w8-x99NA_aMsSssGwd7k5u9G6HfPn9DF65PyWYGJBeIB6uniCDvywB8eOvvz9U0RrVAY1KoMWlYFDZeBQGQAqA4_KZ-js86fT6UnoSnOEijFahUzI2NjeggqNYT2lIkszCgpBCiV1xqmWTKiV0KtRxGVEeRwzRiRWYM1qojE9RHvFutAvUAAeBMZZLDMaa8aYFOlKKMIVI1oJrnQfDf0wJcrx1pvyKRdJHT8R0cQMcdIOcR8dNzdcWcqWPzc9rMe9aUf4GFY8AReOvCASN-HLhOARM-xSY9JHb5vLoI7NNzZZ6PUG2owEizGlBPfRcyu3pnMv-D6KtiTaNDBU79tXivy8pnx38Ht57ztfof12wh6hvep6o1-DOV2lb2oo_wLqeMmD |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Codon+usage+influences+fitness+through+RNA+toxicity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mittal%2C+Pragya&rft.au=Brindle%2C+James&rft.au=Stephen%2C+Julie&rft.au=Plotkin%2C+Joshua+B.&rft.date=2018-08-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=34&rft.spage=8639&rft.epage=8644&rft_id=info:doi/10.1073%2Fpnas.1810022115&rft_id=info%3Apmid%2F30082392&rft.externalDocID=PMC6112741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |