Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection
In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depen...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 11; p. 3324 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25113324 |
Cover
Loading…
Abstract | In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13 ± 10.71%, outperforming both random selection (59.30 ± 10.13%) and distance-only filtering (67.61 ± 11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios. |
---|---|
AbstractList | In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13 ± 10.71%, outperforming both random selection (59.30 ± 10.13%) and distance-only filtering (67.61 ± 11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios. |
Audience | Academic |
Author | Ronando, Elsen Inoue, Sozo |
AuthorAffiliation | 2 Department of Informatics, Universitas 17 Agustus 1945 Surabaya, Semolowaru No. 45, Kota Surabaya 60118, Indonesia 1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu Ward, Kitakyushu 808-0135, Japan; sozo@brain.kyutech.ac.jp |
AuthorAffiliation_xml | – name: 1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu Ward, Kitakyushu 808-0135, Japan; sozo@brain.kyutech.ac.jp – name: 2 Department of Informatics, Universitas 17 Agustus 1945 Surabaya, Semolowaru No. 45, Kota Surabaya 60118, Indonesia |
Author_xml | – sequence: 1 givenname: Elsen orcidid: 0000-0001-9787-9768 surname: Ronando fullname: Ronando, Elsen – sequence: 2 givenname: Sozo orcidid: 0000-0003-1109-8130 surname: Inoue fullname: Inoue, Sozo |
BookMark | eNptkk9rGzEQxZeSQpO0h36DhZ56cKp_K2l7Kcap24BLDk7PYlYabWTslSvtpiSfPkod0hqKQG8YvfdjBHNWnQxxwKp6T8kF5y35lFlDKedMvKpOqWBiphkjJ__Ub6qznDeEMM65Pq3cEn_P1rdxrK_3Y9iFBxhDHGofU73GIRe5hBHqnzkMfb2C1GO5h36CUvyIDrf5cz2vF5CxXo-Tu69LeFkY_YT1JY5on3Bvq9cethnfPet5dbP8erP4Pltdf7tazFczKwQfZ0Jz6pjonOyU7Tr0vhFOY9tSJgGtaxSXQrYtMEkkau8UgGestagcsI6fV1cHrIuwMfsUdpDuTYRg_jRi6g2kMdgtGvBOEqc6BZYLKbXmRYUinSeEgMDC-nJg7aduh87iMCbYHkGPX4Zwa_p4ZyijjWqJLIQPz4QUf02YR7OJUxrK_w1nVCkhdav-unooY4XBx0Kzu5CtmWvRCE15o4vr4j-uchzugi0b4EPpHwU-HgI2xZwT-pfJKTFPi2JeFoU_AogasJM |
Cites_doi | 10.1145/3594806.3594825 10.3390/s23125756 10.18653/v1/2021.acl-long.295 10.18653/v1/2023.findings-emnlp.334 10.1016/j.asoc.2025.113171 10.1093/jamia/ocae090 10.18653/v1/2022.acl-long.197 10.18653/v1/2022.emnlp-main.759 10.1145/3696461 10.18653/v1/2022.acl-long.365 10.3390/vibration6040059 10.18653/v1/2022.emnlp-main.616 10.1109/CVPR52729.2023.01526 10.18653/v1/2024.findings-naacl.115 10.18653/v1/2024.nlp4pi-1.4 10.1109/ICSP51882.2021.9408933 10.18653/v1/2024.findings-acl.602 10.18653/v1/2021.acl-short.2 10.3390/s21196369 10.18653/v1/2021.emnlp-main.243 10.1016/j.eswa.2019.06.070 10.1016/j.sigpro.2019.107299 10.1109/ACCESS.2022.3231365 10.3758/s13428-022-01965-7 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.3390/s25113324 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e PMC12157906 A845481358 10_3390_s25113324 |
GeographicLocations | United States California |
GeographicLocations_xml | – name: California – name: United States |
GrantInformation_xml | – fundername: JST-Mirai Program, Creation of Care Weather Forecasting Services in the Nursing and Medical Field grantid: JPMJMI21H3 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. M48 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 5PM PUEGO |
ID | FETCH-LOGICAL-c443t-4831d24bd6b7cbbeff54d8e99126aecd57364699a2606e8fd7aaf229ce7da2b3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:18:59 EDT 2025 Thu Aug 21 18:24:40 EDT 2025 Fri Jul 25 09:53:26 EDT 2025 Thu Jul 03 03:20:27 EDT 2025 Tue Jul 01 05:41:59 EDT 2025 Thu Jul 03 08:43:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-4831d24bd6b7cbbeff54d8e99126aecd57364699a2606e8fd7aaf229ce7da2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 These authors contributed equally to this work. |
ORCID | 0000-0003-1109-8130 0000-0001-9787-9768 |
OpenAccessLink | https://doaj.org/article/afd60d7b7ac3466883c34470bf000a4e |
PQID | 3217746897 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157906 proquest_journals_3217746897 gale_infotracmisc_A845481358 gale_infotracacademiconefile_A845481358 crossref_primary_10_3390_s25113324 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_31 ref_30 ref_19 Xue (ref_39) 2025; 177 ref_17 Truong (ref_37) 2020; 167 ref_16 ref_38 ref_15 Chen (ref_36) 2020; 546 Spathis (ref_13) 2023; 31 ref_25 ref_24 ref_23 ref_22 ref_44 ref_21 ref_43 ref_20 ref_41 ref_40 Hospedales (ref_42) 2021; 44 ref_1 ref_3 Shin (ref_9) 2022; 10 ref_2 Cai (ref_18) 2022; 55 ref_29 ref_28 ref_27 ref_26 ref_8 Siraj (ref_32) 2023; 6 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_16 doi: 10.1145/3594806.3594825 – ident: ref_28 – ident: ref_30 – ident: ref_24 – ident: ref_35 doi: 10.3390/s23125756 – ident: ref_11 – ident: ref_6 doi: 10.18653/v1/2021.acl-long.295 – ident: ref_26 doi: 10.18653/v1/2023.findings-emnlp.334 – volume: 177 start-page: 113171 year: 2025 ident: ref_39 article-title: Adaptive weighting and nearest neighbor-based area control for imbalanced data classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.113171 – volume: 31 start-page: 2151 year: 2023 ident: ref_13 article-title: The first step is the hardest: Pitfalls of Representing and Tokenizing Temporal Data for Large Language Models publication-title: J. Am. Med. Inform. Assoc. JAMIA doi: 10.1093/jamia/ocae090 – volume: 546 start-page: 441 year: 2020 ident: ref_36 article-title: A survey on distance and similarity measures for time-series data analysis publication-title: Inf. Sci. – ident: ref_1 – ident: ref_20 doi: 10.18653/v1/2022.acl-long.197 – ident: ref_38 doi: 10.18653/v1/2022.emnlp-main.759 – ident: ref_44 – ident: ref_23 – ident: ref_14 doi: 10.1145/3696461 – ident: ref_21 doi: 10.18653/v1/2022.acl-long.365 – volume: 6 start-page: 1004 year: 2023 ident: ref_32 article-title: A Few-Shot Learning Based Fault Diagnosis Model Using Sensors Data from Industrial Machineries publication-title: Vibration doi: 10.3390/vibration6040059 – ident: ref_3 doi: 10.18653/v1/2022.emnlp-main.616 – ident: ref_4 – ident: ref_31 – ident: ref_29 – ident: ref_33 – ident: ref_5 doi: 10.1109/CVPR52729.2023.01526 – ident: ref_27 doi: 10.18653/v1/2024.findings-naacl.115 – ident: ref_2 – ident: ref_22 doi: 10.18653/v1/2024.nlp4pi-1.4 – ident: ref_34 doi: 10.1109/ICSP51882.2021.9408933 – ident: ref_12 – ident: ref_8 doi: 10.18653/v1/2024.findings-acl.602 – volume: 44 start-page: 5149 year: 2021 ident: ref_42 article-title: Meta-Learning in Neural Networks: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_41 – ident: ref_15 – ident: ref_25 doi: 10.18653/v1/2021.acl-short.2 – ident: ref_17 – ident: ref_19 – ident: ref_40 doi: 10.3390/s21196369 – ident: ref_43 doi: 10.18653/v1/2021.emnlp-main.243 – ident: ref_10 doi: 10.1016/j.eswa.2019.06.070 – volume: 167 start-page: 107299 year: 2020 ident: ref_37 article-title: Selective review of offline change point detection methods publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107299 – volume: 10 start-page: 133186 year: 2022 ident: ref_9 article-title: Active Instance Selection for Few-Shot Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3231365 – volume: 55 start-page: 3416 year: 2022 ident: ref_18 article-title: Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs publication-title: Behav. Res. Methods doi: 10.3758/s13428-022-01965-7 |
SSID | ssj0023338 |
Score | 2.4484642 |
Snippet | In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3324 |
SubjectTerms | accelerometer Accelerometers Analysis Case studies example selection Fatigue fatigue detection few-shot prompting Graph representations Language Large language models large language models (LLMs) Machine learning Methods Optimization Physiological aspects Rankings Semantics sensor data Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaeimHqk8RCpVVIfUUkbUd2-FSbYEUVaU9QCVulp9QqWQpG1Tx7zuT9S6ESr0kUmJblsfjmW8y-YaQHStDAjOjS8FFBQClkaWNnJdJOheUjZ4nDA0cf5NHP8SXs_osB9zmOa1yeSYOB3WYeYyR73LwnZWQulEfr36XWDUKv67mEhqPyZMJWBrc4br9vAJcHPDXgk2IA7TfnaM7zTkTIxs0UPX_eyA_TJK8Z3Xa5-RZdhfpdCHfF-RR7F6S9Xskgq9IaOOf8uRi1tPvoP6X-b9KCs4oPQGMCrcD21s65AbQr5j4DddFkJJiJbRf8z06pftgzSgmFd5S6NzCGOc3kR7EfkjV6l6T0_bwdP-ozLUTSi8E7zFGOAlMuCCd8s7FlGoRdARvkEmQQKgVl4CMGwt4RkadQC42Mdb4qIJljr8ha92sixuEQm-vGxfqCEM4xWwlopRecuabqKpJQd4vF9NcLRgyDCALXHGzWvGCfMJlXjVAUuvhwez63GQdMTYFWQXllPVcSKk198hHWLkE57YVsSAfUEgGVQ9E4m3-gwDmiSRWZqoF4K8Jr3VBtkYtQWX8-PVSzCar7NzcbbCC6JHoR7Mev-l-XgyU3MjRoZpKbv5_5LfkKcP6wUMUZ4us9dc3cRucmt69G3buX46P-OQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoED4ikCBVkIiVMgazu2g4TQ0rKqEIVDW6k3y8-2UsnCbirov2cmm101wJFLIsV25MzYnvmc8TcAL52KGc2MKaWQFQKURpUuCVFm5X3ULgWRaWvg4IvaP5afTuqTLVjn2BwEuPwntKN8UseLi9e_fly9xwn_jhAnQvY3S3KTBXoGN-AmGiRNGRwO5OZnAhcIw1akQuPqI1PUM_b_vS7_GSt5zfjM7sKdwWtk05Wa78FWau_D7Wtcgg8gztLP8vBs3rGvuAp8G45XMvRJ2SFCVbztuc6xPkSAfab4b7yu9ioZJUS7WL5lU7aLRo1RbOEVw8YzfMfpZWJ7qesjttqHcDT7eLS7Xw4pFMogpehoq3ASufRReR28TznXMpqETiFXqIhYa6EQIDcOYY1KJqN6XOa8CUlHx714BNvtvE2PgWHrYBof64Sv8Jq7SialghI8NElXkwJerIVpv6-IMiwCDJK43Ui8gA8k5k0F4rbuH8wXp3aYKtblqKqovXZBSKWMEYFoCSufcfl2MhXwipRkaUygSoIbDhJgP4nLyk6NRBg2EbUpYGdUE2dOGBev1WzXA88KxGhaKtPoAsxI9aNej0va87OemZuoOnRTqSf_4zufwi1OyYb7LZ8d2O4Wl-kZekCdf96P79-ilQc_ priority: 102 providerName: Scholars Portal |
Title | Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection |
URI | https://www.proquest.com/docview/3217746897 https://pubmed.ncbi.nlm.nih.gov/PMC12157906 https://doaj.org/article/afd60d7b7ac3466883c34470bf000a4e |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcikHxKOI0LKyEBKnqFnbsZ3eto9QobZUbZH2ZvlJkdoUsamq_nvGSbbawIELF0eKH3JmMp75rPFngI9G-IhuRuWc8QIBSiVyExjLo7DWSxMci2lr4ORUHH3jX-blfOWqr5QT1tMD94LbMdGLwksrjWNcCKWYSyR1hY1ozIaHtPqiz1uCqQFqMURePY8QQ1C_s0iBNGOUj7xPR9L_91L8Z3rkir-pX8DzIVAks36CL2EtNK_g2Qp94GvwdbjPL65uW_IVDf9mOFFJMAwlF4hO8XFgWkO6rABynFK-sey3J0m6A-16sUtmZB_9GEnphA8EO9c4xve7QA5C2yVpNZtwWR9e7h_lw60JueOctWl3cOopt15Y6awNMZbcq4BxIBUoe19KJhATVwaRjAgqokZMpLRyQXpDLXsD681tE94Cwd5OVdaXAYewkpqCByGcYNRVQRbTDD4shal_9twYGjFFkrh-lHgGe0nMjw0SnXX3ApWsByXrfyk5g09JSToZHarEmeHsAM4z0VfpmeKIvKasVBlsj1qisbhx9VLNejDWhWYIyyQXqpIZqJHqR7Me1zQ_rjoy7sTOIatCvPsf37kFGzTdL9zt8mzDevvrLrzHoKe1E3gi5xJLVX-ewNO9w9Oz80n3z2N5wtVvVxcFng |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggnmqggIVAnKJmbcd2kBBauqy2dFsOXaS9WX6lRWqzpZuq6kfxj4yTbNuAxK2XRIrtkTXjeWY8A_DOCF-imlEpZzxDB6UQqQmMpaWw1ksTHCtjaGBvX0x-8G_zfL4Gv1d3YWJa5UomNoLaL1yMkW8xtJ0lF6qQn09_pbFrVPy7umqh0R6L3XB5gS7b8tPOCOn7ntLx19n2JO26CqSOc1bH6NnAU269sNJZG8oy514FtJOowL35XDKBPmNh0NIXQZW4Y1NSWrggvaGWIdg7cBf1bhYzCOX82r9j6O61xYsYK7KtZbTeGaO8p_KazgD_yv-_czJvKLnxI3jYWadk2B6nx7AWqifw4EbNwqfgx-EiPTha1OQ7SpuT7honQduXHKBLjK-RqQ1pUhHINOaZ47ONiZLYeO14-ZEMyTYqTxJzGC8JLh4jjMPzQEahbjLDqmcwuw2kPof1alGFDSC42qnC-jwgCCupyXgQwglGXRFkNkjg7QqZ-rQtyKHRkYkY11cYT-BLRPPVhFhDu_mwODvUHUtqU3qReWmlcYwLoRRzsfxhZktUE4aHBD5EIunI6UgSZ7oLC7jPWDNLDxVHd2_AcpXAZm8mcqjrD6_IrDsJsdTX5zkB1SN9b9f9kernUVMBPJYEkUUmXvwf8hu4N5ntTfV0Z3_3JdynsXVxE0DahPX67Dy8Qnuqtq-bU0xA3zLX_AH7ojbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxQxcKgVRB_ET7paNYji03J7STbZFUTOnkdraxVa4d5CPluh3au9LaU_zX_nZD_aroJvfdmFTTKEmcznTmYA3mjhAqqZIuWMZ-iglCLVnrE0CGOc1N6yEEMDX3fF5g_-ZZ7PV-B3fxcmplX2MrER1G5hY4x8xNB2llwUpRyFLi3i-3T28eRXGjtIxT-tfTuN9ohs-4tzdN-WH7amSOu3lM4-729spl2HgdRyzuoYSRs7yo0TRlpjfAg5d4VHm4kK3KfLJRPoP5YarX7hi4C714HS0nrpNDUMwd6C25Kh1kRWkvMrX4-h69cWMmKszEbLaMkzRvlA_TVdAv7VBX_nZ15TeLMHcL-zVMmkPVoPYcVXj-DetfqFj8HN_Hm6d7ioyTeUPMfdlU6CdjDZQ_cYX1Nda9KkJZCdmHOOzzY-SmITtqPlezIhG6hIScxnvCC4eIYwDs48mfq6yRKrnsD-TSD1KaxWi8qvAcHVtiiNyz2CMJLqjHshrGDUll5m4wRe98hUJ21xDoVOTcS4usR4Ap8imi8nxHrazYfF6YHq2FPp4ETmpJHaMi5EUTAbSyFmJqDK0Nwn8C4SSUWuR5JY3V1ewH3G-llqUnB0_cYsLxJYH8xEbrXD4Z7MqpMWS3V1thMoBqQf7Ho4Uv08bKqBx_IgsszEs_9DfgV3kF_Uztbu9nO4S2MX4yaWtA6r9emZf4GmVW1eNoeYgLphpvkDH-w7Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shot+Optimization+for+Sensor+Data+Using+Large+Language+Models%3A+A+Case+Study+on+Fatigue+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Elsen+Ronando&rft.au=Sozo+Inoue&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=11&rft.spage=3324&rft_id=info:doi/10.3390%2Fs25113324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |