Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection

In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 11; p. 3324
Main Authors Ronando, Elsen, Inoue, Sozo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25113324

Cover

Loading…
Abstract In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13 ± 10.71%, outperforming both random selection (59.30 ± 10.13%) and distance-only filtering (67.61 ± 11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios.
AbstractList In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13 ± 10.71%, outperforming both random selection (59.30 ± 10.13%) and distance-only filtering (67.61 ± 11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios.
Audience Academic
Author Ronando, Elsen
Inoue, Sozo
AuthorAffiliation 2 Department of Informatics, Universitas 17 Agustus 1945 Surabaya, Semolowaru No. 45, Kota Surabaya 60118, Indonesia
1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu Ward, Kitakyushu 808-0135, Japan; sozo@brain.kyutech.ac.jp
AuthorAffiliation_xml – name: 1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu Ward, Kitakyushu 808-0135, Japan; sozo@brain.kyutech.ac.jp
– name: 2 Department of Informatics, Universitas 17 Agustus 1945 Surabaya, Semolowaru No. 45, Kota Surabaya 60118, Indonesia
Author_xml – sequence: 1
  givenname: Elsen
  orcidid: 0000-0001-9787-9768
  surname: Ronando
  fullname: Ronando, Elsen
– sequence: 2
  givenname: Sozo
  orcidid: 0000-0003-1109-8130
  surname: Inoue
  fullname: Inoue, Sozo
BookMark eNptkk9rGzEQxZeSQpO0h36DhZ56cKp_K2l7Kcap24BLDk7PYlYabWTslSvtpiSfPkod0hqKQG8YvfdjBHNWnQxxwKp6T8kF5y35lFlDKedMvKpOqWBiphkjJ__Ub6qznDeEMM65Pq3cEn_P1rdxrK_3Y9iFBxhDHGofU73GIRe5hBHqnzkMfb2C1GO5h36CUvyIDrf5cz2vF5CxXo-Tu69LeFkY_YT1JY5on3Bvq9cethnfPet5dbP8erP4Pltdf7tazFczKwQfZ0Jz6pjonOyU7Tr0vhFOY9tSJgGtaxSXQrYtMEkkau8UgGestagcsI6fV1cHrIuwMfsUdpDuTYRg_jRi6g2kMdgtGvBOEqc6BZYLKbXmRYUinSeEgMDC-nJg7aduh87iMCbYHkGPX4Zwa_p4ZyijjWqJLIQPz4QUf02YR7OJUxrK_w1nVCkhdav-unooY4XBx0Kzu5CtmWvRCE15o4vr4j-uchzugi0b4EPpHwU-HgI2xZwT-pfJKTFPi2JeFoU_AogasJM
Cites_doi 10.1145/3594806.3594825
10.3390/s23125756
10.18653/v1/2021.acl-long.295
10.18653/v1/2023.findings-emnlp.334
10.1016/j.asoc.2025.113171
10.1093/jamia/ocae090
10.18653/v1/2022.acl-long.197
10.18653/v1/2022.emnlp-main.759
10.1145/3696461
10.18653/v1/2022.acl-long.365
10.3390/vibration6040059
10.18653/v1/2022.emnlp-main.616
10.1109/CVPR52729.2023.01526
10.18653/v1/2024.findings-naacl.115
10.18653/v1/2024.nlp4pi-1.4
10.1109/ICSP51882.2021.9408933
10.18653/v1/2024.findings-acl.602
10.18653/v1/2021.acl-short.2
10.3390/s21196369
10.18653/v1/2021.emnlp-main.243
10.1016/j.eswa.2019.06.070
10.1016/j.sigpro.2019.107299
10.1109/ACCESS.2022.3231365
10.3758/s13428-022-01965-7
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.3390/s25113324
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e
PMC12157906
A845481358
10_3390_s25113324
GeographicLocations United States
California
GeographicLocations_xml – name: California
– name: United States
GrantInformation_xml – fundername: JST-Mirai Program, Creation of Care Weather Forecasting Services in the Nursing and Medical Field
  grantid: JPMJMI21H3
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
5PM
PUEGO
ID FETCH-LOGICAL-c443t-4831d24bd6b7cbbeff54d8e99126aecd57364699a2606e8fd7aaf229ce7da2b3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:18:59 EDT 2025
Thu Aug 21 18:24:40 EDT 2025
Fri Jul 25 09:53:26 EDT 2025
Thu Jul 03 03:20:27 EDT 2025
Tue Jul 01 05:41:59 EDT 2025
Thu Jul 03 08:43:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-4831d24bd6b7cbbeff54d8e99126aecd57364699a2606e8fd7aaf229ce7da2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
These authors contributed equally to this work.
ORCID 0000-0003-1109-8130
0000-0001-9787-9768
OpenAccessLink https://doaj.org/article/afd60d7b7ac3466883c34470bf000a4e
PQID 3217746897
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157906
proquest_journals_3217746897
gale_infotracmisc_A845481358
gale_infotracacademiconefile_A845481358
crossref_primary_10_3390_s25113324
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_31
ref_30
ref_19
Xue (ref_39) 2025; 177
ref_17
Truong (ref_37) 2020; 167
ref_16
ref_38
ref_15
Chen (ref_36) 2020; 546
Spathis (ref_13) 2023; 31
ref_25
ref_24
ref_23
ref_22
ref_44
ref_21
ref_43
ref_20
ref_41
ref_40
Hospedales (ref_42) 2021; 44
ref_1
ref_3
Shin (ref_9) 2022; 10
ref_2
Cai (ref_18) 2022; 55
ref_29
ref_28
ref_27
ref_26
ref_8
Siraj (ref_32) 2023; 6
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_16
  doi: 10.1145/3594806.3594825
– ident: ref_28
– ident: ref_30
– ident: ref_24
– ident: ref_35
  doi: 10.3390/s23125756
– ident: ref_11
– ident: ref_6
  doi: 10.18653/v1/2021.acl-long.295
– ident: ref_26
  doi: 10.18653/v1/2023.findings-emnlp.334
– volume: 177
  start-page: 113171
  year: 2025
  ident: ref_39
  article-title: Adaptive weighting and nearest neighbor-based area control for imbalanced data classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2025.113171
– volume: 31
  start-page: 2151
  year: 2023
  ident: ref_13
  article-title: The first step is the hardest: Pitfalls of Representing and Tokenizing Temporal Data for Large Language Models
  publication-title: J. Am. Med. Inform. Assoc. JAMIA
  doi: 10.1093/jamia/ocae090
– volume: 546
  start-page: 441
  year: 2020
  ident: ref_36
  article-title: A survey on distance and similarity measures for time-series data analysis
  publication-title: Inf. Sci.
– ident: ref_1
– ident: ref_20
  doi: 10.18653/v1/2022.acl-long.197
– ident: ref_38
  doi: 10.18653/v1/2022.emnlp-main.759
– ident: ref_44
– ident: ref_23
– ident: ref_14
  doi: 10.1145/3696461
– ident: ref_21
  doi: 10.18653/v1/2022.acl-long.365
– volume: 6
  start-page: 1004
  year: 2023
  ident: ref_32
  article-title: A Few-Shot Learning Based Fault Diagnosis Model Using Sensors Data from Industrial Machineries
  publication-title: Vibration
  doi: 10.3390/vibration6040059
– ident: ref_3
  doi: 10.18653/v1/2022.emnlp-main.616
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_5
  doi: 10.1109/CVPR52729.2023.01526
– ident: ref_27
  doi: 10.18653/v1/2024.findings-naacl.115
– ident: ref_2
– ident: ref_22
  doi: 10.18653/v1/2024.nlp4pi-1.4
– ident: ref_34
  doi: 10.1109/ICSP51882.2021.9408933
– ident: ref_12
– ident: ref_8
  doi: 10.18653/v1/2024.findings-acl.602
– volume: 44
  start-page: 5149
  year: 2021
  ident: ref_42
  article-title: Meta-Learning in Neural Networks: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_41
– ident: ref_15
– ident: ref_25
  doi: 10.18653/v1/2021.acl-short.2
– ident: ref_17
– ident: ref_19
– ident: ref_40
  doi: 10.3390/s21196369
– ident: ref_43
  doi: 10.18653/v1/2021.emnlp-main.243
– ident: ref_10
  doi: 10.1016/j.eswa.2019.06.070
– volume: 167
  start-page: 107299
  year: 2020
  ident: ref_37
  article-title: Selective review of offline change point detection methods
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107299
– volume: 10
  start-page: 133186
  year: 2022
  ident: ref_9
  article-title: Active Instance Selection for Few-Shot Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3231365
– volume: 55
  start-page: 3416
  year: 2022
  ident: ref_18
  article-title: Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-022-01965-7
SSID ssj0023338
Score 2.4484642
Snippet In this paper, we propose a novel few-shot optimization with Hybrid Euclidean Distance with Large Language Models (HED-LM) to improve example selection for...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3324
SubjectTerms accelerometer
Accelerometers
Analysis
Case studies
example selection
Fatigue
fatigue detection
few-shot prompting
Graph representations
Language
Large language models
large language models (LLMs)
Machine learning
Methods
Optimization
Physiological aspects
Rankings
Semantics
sensor data
Sensors
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaeimHqk8RCpVVIfUUkbUd2-FSbYEUVaU9QCVulp9QqWQpG1Tx7zuT9S6ESr0kUmJblsfjmW8y-YaQHStDAjOjS8FFBQClkaWNnJdJOheUjZ4nDA0cf5NHP8SXs_osB9zmOa1yeSYOB3WYeYyR73LwnZWQulEfr36XWDUKv67mEhqPyZMJWBrc4br9vAJcHPDXgk2IA7TfnaM7zTkTIxs0UPX_eyA_TJK8Z3Xa5-RZdhfpdCHfF-RR7F6S9Xskgq9IaOOf8uRi1tPvoP6X-b9KCs4oPQGMCrcD21s65AbQr5j4DddFkJJiJbRf8z06pftgzSgmFd5S6NzCGOc3kR7EfkjV6l6T0_bwdP-ozLUTSi8E7zFGOAlMuCCd8s7FlGoRdARvkEmQQKgVl4CMGwt4RkadQC42Mdb4qIJljr8ha92sixuEQm-vGxfqCEM4xWwlopRecuabqKpJQd4vF9NcLRgyDCALXHGzWvGCfMJlXjVAUuvhwez63GQdMTYFWQXllPVcSKk198hHWLkE57YVsSAfUEgGVQ9E4m3-gwDmiSRWZqoF4K8Jr3VBtkYtQWX8-PVSzCar7NzcbbCC6JHoR7Mev-l-XgyU3MjRoZpKbv5_5LfkKcP6wUMUZ4us9dc3cRucmt69G3buX46P-OQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoED4ikCBVkIiVMgazu2g4TQ0rKqEIVDW6k3y8-2UsnCbirov2cmm101wJFLIsV25MzYnvmc8TcAL52KGc2MKaWQFQKURpUuCVFm5X3ULgWRaWvg4IvaP5afTuqTLVjn2BwEuPwntKN8UseLi9e_fly9xwn_jhAnQvY3S3KTBXoGN-AmGiRNGRwO5OZnAhcIw1akQuPqI1PUM_b_vS7_GSt5zfjM7sKdwWtk05Wa78FWau_D7Wtcgg8gztLP8vBs3rGvuAp8G45XMvRJ2SFCVbztuc6xPkSAfab4b7yu9ioZJUS7WL5lU7aLRo1RbOEVw8YzfMfpZWJ7qesjttqHcDT7eLS7Xw4pFMogpehoq3ASufRReR28TznXMpqETiFXqIhYa6EQIDcOYY1KJqN6XOa8CUlHx714BNvtvE2PgWHrYBof64Sv8Jq7SialghI8NElXkwJerIVpv6-IMiwCDJK43Ui8gA8k5k0F4rbuH8wXp3aYKtblqKqovXZBSKWMEYFoCSufcfl2MhXwipRkaUygSoIbDhJgP4nLyk6NRBg2EbUpYGdUE2dOGBev1WzXA88KxGhaKtPoAsxI9aNej0va87OemZuoOnRTqSf_4zufwi1OyYb7LZ8d2O4Wl-kZekCdf96P79-ilQc_
  priority: 102
  providerName: Scholars Portal
Title Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection
URI https://www.proquest.com/docview/3217746897
https://pubmed.ncbi.nlm.nih.gov/PMC12157906
https://doaj.org/article/afd60d7b7ac3466883c34470bf000a4e
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcikHxKOI0LKyEBKnqFnbsZ3eto9QobZUbZH2ZvlJkdoUsamq_nvGSbbawIELF0eKH3JmMp75rPFngI9G-IhuRuWc8QIBSiVyExjLo7DWSxMci2lr4ORUHH3jX-blfOWqr5QT1tMD94LbMdGLwksrjWNcCKWYSyR1hY1ozIaHtPqiz1uCqQFqMURePY8QQ1C_s0iBNGOUj7xPR9L_91L8Z3rkir-pX8DzIVAks36CL2EtNK_g2Qp94GvwdbjPL65uW_IVDf9mOFFJMAwlF4hO8XFgWkO6rABynFK-sey3J0m6A-16sUtmZB_9GEnphA8EO9c4xve7QA5C2yVpNZtwWR9e7h_lw60JueOctWl3cOopt15Y6awNMZbcq4BxIBUoe19KJhATVwaRjAgqokZMpLRyQXpDLXsD681tE94Cwd5OVdaXAYewkpqCByGcYNRVQRbTDD4shal_9twYGjFFkrh-lHgGe0nMjw0SnXX3ApWsByXrfyk5g09JSToZHarEmeHsAM4z0VfpmeKIvKasVBlsj1qisbhx9VLNejDWhWYIyyQXqpIZqJHqR7Me1zQ_rjoy7sTOIatCvPsf37kFGzTdL9zt8mzDevvrLrzHoKe1E3gi5xJLVX-ewNO9w9Oz80n3z2N5wtVvVxcFng
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggnmqggIVAnKJmbcd2kBBauqy2dFsOXaS9WX6lRWqzpZuq6kfxj4yTbNuAxK2XRIrtkTXjeWY8A_DOCF-imlEpZzxDB6UQqQmMpaWw1ksTHCtjaGBvX0x-8G_zfL4Gv1d3YWJa5UomNoLaL1yMkW8xtJ0lF6qQn09_pbFrVPy7umqh0R6L3XB5gS7b8tPOCOn7ntLx19n2JO26CqSOc1bH6NnAU269sNJZG8oy514FtJOowL35XDKBPmNh0NIXQZW4Y1NSWrggvaGWIdg7cBf1bhYzCOX82r9j6O61xYsYK7KtZbTeGaO8p_KazgD_yv-_czJvKLnxI3jYWadk2B6nx7AWqifw4EbNwqfgx-EiPTha1OQ7SpuT7honQduXHKBLjK-RqQ1pUhHINOaZ47ONiZLYeO14-ZEMyTYqTxJzGC8JLh4jjMPzQEahbjLDqmcwuw2kPof1alGFDSC42qnC-jwgCCupyXgQwglGXRFkNkjg7QqZ-rQtyKHRkYkY11cYT-BLRPPVhFhDu_mwODvUHUtqU3qReWmlcYwLoRRzsfxhZktUE4aHBD5EIunI6UgSZ7oLC7jPWDNLDxVHd2_AcpXAZm8mcqjrD6_IrDsJsdTX5zkB1SN9b9f9kernUVMBPJYEkUUmXvwf8hu4N5ntTfV0Z3_3JdynsXVxE0DahPX67Dy8Qnuqtq-bU0xA3zLX_AH7ojbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxQxcKgVRB_ET7paNYji03J7STbZFUTOnkdraxVa4d5CPluh3au9LaU_zX_nZD_aroJvfdmFTTKEmcznTmYA3mjhAqqZIuWMZ-iglCLVnrE0CGOc1N6yEEMDX3fF5g_-ZZ7PV-B3fxcmplX2MrER1G5hY4x8xNB2llwUpRyFLi3i-3T28eRXGjtIxT-tfTuN9ohs-4tzdN-WH7amSOu3lM4-729spl2HgdRyzuoYSRs7yo0TRlpjfAg5d4VHm4kK3KfLJRPoP5YarX7hi4C714HS0nrpNDUMwd6C25Kh1kRWkvMrX4-h69cWMmKszEbLaMkzRvlA_TVdAv7VBX_nZ15TeLMHcL-zVMmkPVoPYcVXj-DetfqFj8HN_Hm6d7ioyTeUPMfdlU6CdjDZQ_cYX1Nda9KkJZCdmHOOzzY-SmITtqPlezIhG6hIScxnvCC4eIYwDs48mfq6yRKrnsD-TSD1KaxWi8qvAcHVtiiNyz2CMJLqjHshrGDUll5m4wRe98hUJ21xDoVOTcS4usR4Ap8imi8nxHrazYfF6YHq2FPp4ETmpJHaMi5EUTAbSyFmJqDK0Nwn8C4SSUWuR5JY3V1ewH3G-llqUnB0_cYsLxJYH8xEbrXD4Z7MqpMWS3V1thMoBqQf7Ho4Uv08bKqBx_IgsszEs_9DfgV3kF_Uztbu9nO4S2MX4yaWtA6r9emZf4GmVW1eNoeYgLphpvkDH-w7Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shot+Optimization+for+Sensor+Data+Using+Large+Language+Models%3A+A+Case+Study+on+Fatigue+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Elsen+Ronando&rft.au=Sozo+Inoue&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=11&rft.spage=3324&rft_id=info:doi/10.3390%2Fs25113324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_afd60d7b7ac3466883c34470bf000a4e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon