Partial organic substitution for chemical fertilizer reduces N2O emissions but increases the risk of N loss through nitrification in Tibetan farmland

The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N 2 O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 14503 - 14
Main Authors Huang, Xiaofang, Yu, Chengqun, Sun, Wei, Shi, Peili, Wu, Junxi, Yu, Jialuo, Wang, Jiabao, Mu, Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.04.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N 2 O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N 2 O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N 2 O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N 2 O emissions. Fertilization treatments primarily regulate potential N 2 O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA ) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N 2 O emissions. In addition, NO 3 − –N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N 2 O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N 2 O emissions.
AbstractList The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N 2 O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N 2 O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N 2 O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N 2 O emissions. Fertilization treatments primarily regulate potential N 2 O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA ) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N 2 O emissions. In addition, NO 3 − –N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N 2 O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N 2 O emissions.
The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.
Abstract The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3 −–N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.
ArticleNumber 14503
Author Sun, Wei
Wu, Junxi
Wang, Jiabao
Huang, Xiaofang
Yu, Jialuo
Mu, Tao
Yu, Chengqun
Shi, Peili
Author_xml – sequence: 1
  givenname: Xiaofang
  surname: Huang
  fullname: Huang, Xiaofang
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chengqun
  surname: Yu
  fullname: Yu, Chengqun
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Peili
  surname: Shi
  fullname: Shi, Peili
  email: shipl@igsnrr.ac.cn
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Junxi
  surname: Wu
  fullname: Wu, Junxi
  email: wujx@igsnrr.ac.cn
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jialuo
  surname: Yu
  fullname: Yu, Jialuo
  organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Jiabao
  surname: Wang
  fullname: Wang, Jiabao
  organization: College of Plant Science and Technology, Huazhong Agricultural University
– sequence: 8
  givenname: Tao
  surname: Mu
  fullname: Mu, Tao
  organization: Institute of Plateau Biology, Lhasa Science and Technology Bureau
BookMark eNp9UstuFDEQtFAQCUt-gJOPXCb4NQ-fEIogRIoSDuFseTztXS-zdrA9keA_-F96dyNELvhiq7u6Sq6u1-QkpgiEvOXsgjM5vC-Kt3pomGgb3Xdt3_AX5Eww1TZCCnHyz_uUnJeyZXhaoRXXr8ipYmLgTHRn5PdXm2uwM015bWNwtCxjqaEuNaRIfcrUbWAXHCI8IHIOvyDTDNPioNBbcUexWwqCCx2XSkN0GWzBXt0AzaF8p8nTWzqnsi_ltKw3NIaag0fSg0iI9D6MUC3q2bybbZzekJfezgXOn-4V-fb50_3ll-bm7ur68uNN45SStVG97LxwenCOj1zIwfXcc680TLobecslKOtG20tuteZdp6F3Aj_vtFaTs3JFro-8U7Jb85DDzuafJtlgDgX0xOztcTMYr5TQ0nsnmVXgRo0U_SDbwUPLAFeyIh-OXA_LuIPJQazZzs9In3di2Jh1ejRcMClwN8jw7okhpx8LlGrQWgczOgJpKUZy3fad1B1HqDhCXUZjM_i_OpyZfT7MMR8G82EO-TD7IXkcKgiOa8hmm5Yc0eD_Tf0BZlvBZQ
Cites_doi 10.1016/j.jenvman.2023.119390
10.1016/j.apsoil.2020.103786
10.1016/B978-0-12-800137-0.00006-6
10.1016/j.jenvman.2022.116794
10.1016/j.scitotenv.2024.176283
10.1016/j.soilbio.2017.09.007
10.1007/s11356-017-1116-6
10.1038/ismej.2016.2
10.1016/j.scitotenv.2022.154316
10.1038/ismej.2013.220
10.1038/s41467-018-07920-5
10.1016/j.soilbio.2017.06.001
10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
10.1016/j.apsoil.2023.105049
10.3389/fmicb.2013.00237
10.1016/j.soilbio.2016.01.012
10.1126/science.1176985
10.1016/j.jece.2023.111341
10.1038/ngeo613
10.1016/j.scitotenv.2019.05.394
10.1016/j.soilbio.2015.11.005
10.1098/rstb.2011.0415
10.1021/es5021058
10.1016/j.scitotenv.2017.08.258
10.1016/j.scitotenv.2020.143048
10.1016/j.jenvman.2015.06.021
10.1038/s41598-023-46019-w
10.1016/j.jclepro.2021.129442
10.1038/ismej.2012.51
10.1016/j.soilbio.2018.01.027
10.1038/srep44235
10.1016/j.catena.2024.108007
10.1111/gcb.12274
10.1016/j.jes.2017.05.016
10.1186/s40168-023-01466-5
10.1016/j.agee.2022.108188
10.1016/j.still.2024.106274
10.1016/j.jclepro.2022.131686
10.1111/gcb.15863
10.1007/s00374-008-0302-6
10.1016/j.ecoenv.2020.110291
10.1007/s00374-017-1239-4
10.1038/s43016-024-00953-8
10.1016/j.soilbio.2009.07.012
10.1016/j.soilbio.2010.07.008
10.1038/s41598-021-99269-x
10.1139/cjss-2022-0101
10.1016/j.apsoil.2015.06.010
10.1016/j.agee.2014.02.030
10.1128/AEM.00441-08
10.1016/j.scitotenv.2022.155983
10.1038/ismej.2010.191
10.1016/j.soilbio.2022.108637
10.1016/j.biortech.2022.127359
10.1038/s41467-022-28651-8
10.1016/j.geoderma.2023.116716
10.1016/j.envres.2020.109818
10.1002/jpln.201400577
10.1016/j.soilbio.2015.01.008
10.1038/ngeo2907
10.1016/j.syapm.2008.09.007
10.1093/oxfordjournals.molbev.a026330
10.1016/j.jenvman.2022.116335
10.1007/s00248-011-9909-5
10.1111/j.1365-2486.2010.02334.x
10.1038/s42003-022-03211-4
10.1038/nature16459
10.1016/j.apsoil.2019.08.010
10.1016/j.soilbio.2019.06.004
10.1016/j.agee.2018.11.022
10.1111/j.1462-2920.2007.01358.x
10.1016/j.soilbio.2015.10.008
10.1002/2017GL074338
10.1016/j.geoderma.2012.08.018
10.1016/j.jclepro.2021.128984
10.1016/j.soilbio.2015.02.028
10.1016/j.soilbio.2007.03.006
10.1038/s41598-023-44147-x
10.1016/j.ecolind.2021.107722
10.1038/ngeo608
10.1007/s12665-015-5126-8
10.1038/ngeo1265
10.1016/j.jclepro.2020.123174
10.1016/j.agee.2021.107620
10.1016/j.scitotenv.2017.12.216
10.1016/j.soilbio.2023.109254
10.1007/s11368-022-03324-7
10.1038/nature16461
10.1016/j.envpol.2023.122664
10.3390/microorganisms9050983
10.1038/s41586-024-07464-3
10.1016/j.agee.2018.05.031
10.1016/j.still.2018.12.001
10.1016/j.soilbio.2020.108123
10.1016/j.agee.2019.106628
10.1016/j.agrformet.2019.107672
10.1016/j.apsoil.2018.11.006
10.1038/nclimate1458
10.1016/j.soilbio.2022.108563
10.1016/j.scitotenv.2017.01.141
10.1128/MRA.00459-19
10.1016/j.soilbio.2020.107974
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1038/s41598-025-97657-1
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_f44293ffc30a4ecb999478358fe50e10
PMC12032052
10_1038_s41598_025_97657_1
GrantInformation_xml – fundername: Key Science and Technology Projects in Lhasa City
  grantid: LSKJ202206
– fundername: Key Research and Development Program in Xizang Autonomous Region
  grantid: XZ202201ZY0003N; XZ202501ZY0056
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c443t-4736f2c98cc1b1238c71f1f49ed96b1513e4acba731a991669e7c2402c994dca3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Aug 21 18:26:57 EDT 2025
Fri Jul 11 18:30:36 EDT 2025
Tue Jul 01 05:08:44 EDT 2025
Sat Apr 26 01:28:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Partial organic substitution
Microbial gene abundance
Nitrification
Denitrification
O emissions
Soil incubation
N
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-4736f2c98cc1b1238c71f1f49ed96b1513e4acba731a991669e7c2402c994dca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-97657-1
PMID 40281026
PQID 3195763961
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f44293ffc30a4ecb999478358fe50e10
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12032052
proquest_miscellaneous_3195763961
crossref_primary_10_1038_s41598_025_97657_1
springer_journals_10_1038_s41598_025_97657_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Y Yan (97657_CR45) 2018; 265
W Lin (97657_CR60) 2020; 188
AR Ravishankara (97657_CR4) 2009; 326
AE Taylor (97657_CR69) 2012; 6
S Wasai-Hara (97657_CR79) 2023; 13
R Cai (97657_CR42) 2023; 11
Z Zhang (97657_CR93) 2022; 340
J Wu (97657_CR47) 2023; 191
EJ Daly (97657_CR7) 2024; 189
M Chen (97657_CR80) 2021; 127
CM Jones (97657_CR6) 2022; 5
I Mukumbuta (97657_CR63) 2018; 54
C Lazcano (97657_CR10) 2021; 9
X Su (97657_CR2) 2021; 27
MAHJ van Kessel (97657_CR26) 2015; 528
X Zeng (97657_CR41) 2018; 9
X Li (97657_CR78) 2023; 11
Z Li (97657_CR91) 2022; 353
AJ Thomson (97657_CR29) 2012; 367
J Duan (97657_CR43) 2024; 5
H Gao (97657_CR8) 2023; 326
X Kou (97657_CR39) 2024; 240
Y Wang (97657_CR72) 2009; 32
EA Davidson (97657_CR97) 2009; 2
A Shah (97657_CR51) 2016; 75
DT Verhamme (97657_CR81) 2011; 5
J He (97657_CR71) 2007; 9
C Wagner-Riddle (97657_CR100) 2017; 10
Z Chen (97657_CR31) 2021; 154
B Wang (97657_CR37) 2020; 274
Z Han (97657_CR9) 2024; 349
97657_CR74
B Duan (97657_CR92) 2022; 838
Z Chen (97657_CR34) 2012; 63
X Yang (97657_CR38) 2019; 285
Y Dong (97657_CR94) 2024; 954
H Daims (97657_CR25) 2015; 528
R Chen (97657_CR24) 2015; 160
P Duan (97657_CR98) 2019; 278
Z Wang (97657_CR27) 2019; 135
L Van Zwieten (97657_CR76) 2014; 191
R Tao (97657_CR35) 2018; 612
CC Mu (97657_CR48) 2017; 44
Y Cheng (97657_CR89) 2015; 178
EG Hiis (97657_CR21) 2024; 630
Y Yang (97657_CR85) 2022; 12
R Huang (97657_CR33) 2020; 192
X Zhu-Barker (97657_CR50) 2015; 83
H Chen (97657_CR66) 2013; 19
X Li (97657_CR77) 2016; 92
P Duan (97657_CR99) 2018; 120
KS Lourenço (97657_CR5) 2022; 166
M Cameira (97657_CR61) 2019; 187
Q Yi (97657_CR19) 2023; 440
C Deveautour (97657_CR82) 2022; 168
P Cui (97657_CR15) 2016; 93
97657_CR3
N Gao (97657_CR87) 2019; 8
Y Yang (97657_CR73) 2023; 13
97657_CR59
HJ Xu (97657_CR56) 2014; 48
X Liu (97657_CR57) 2019; 135
J Zhang (97657_CR11) 2015; 84
Y Lin (97657_CR16) 2017; 113
R Sun (97657_CR67) 2015; 95
DS Reay (97657_CR1) 2012; 2
M Yoshida (97657_CR83) 2009; 41
G Tan (97657_CR84) 2018; 25
X Zheng (97657_CR65) 2023; 23
Y Shi (97657_CR86) 2019; 686
X Xu (97657_CR32) 2020; 150
W Chen (97657_CR13) 2013; 192
PT Mørkved (97657_CR88) 2007; 39
J Guo (97657_CR75) 2017; 115
C Ji (97657_CR18) 2020; 145
L Philippot (97657_CR28) 2011; 17
G Wu (97657_CR12) 2024; 244
N Morley (97657_CR44) 2010; 42
CY Hung (97657_CR102) 2021; 321
JE Maul (97657_CR30) 2019; 273
E Ciarlo (97657_CR58) 2008; 44
H Zhang (97657_CR46) 2018; 625
DE Pelster (97657_CR103) 2022
SE Fawcett (97657_CR23) 2011; 4
F Albanito (97657_CR17) 2017; 7
D Chen (97657_CR90) 2022; 324
A Badr (97657_CR40) 2000; 17
CE Dandie (97657_CR54) 2008; 74
X Cao (97657_CR64) 2021; 321
Y Zhou (97657_CR14) 2017; 584–585
M Yu (97657_CR36) 2021; 763
R Feng (97657_CR20) 2023; 338
HJ Di (97657_CR68) 2009; 2
N Wang (97657_CR22) 2022; 357
A Taghizadeh-Toosi (97657_CR62) 2022; 828
X Wang (97657_CR70) 2018; 66
CY Hung (97657_CR101) 2021; 158
Y Li (97657_CR52) 2021; 326
MD Wallenstein (97657_CR53) 2006; 16
M Stieglmeier (97657_CR95) 2014; 8
L Zhang (97657_CR49) 2022; 13
JA Kozlowski (97657_CR96) 2016; 10
Y Ouyang (97657_CR55) 2016; 96
References_xml – volume: 349
  start-page: 119390
  year: 2024
  ident: 97657_CR9
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.119390
– volume: 158
  start-page: 103786
  year: 2021
  ident: 97657_CR101
  publication-title: Appl. Soil. Ecol.
  doi: 10.1016/j.apsoil.2020.103786
– ident: 97657_CR74
  doi: 10.1016/B978-0-12-800137-0.00006-6
– volume: 326
  start-page: 116794
  year: 2023
  ident: 97657_CR8
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116794
– volume: 954
  start-page: 176283
  year: 2024
  ident: 97657_CR94
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.176283
– volume: 115
  start-page: 403
  year: 2017
  ident: 97657_CR75
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.09.007
– volume: 25
  start-page: 8817
  year: 2018
  ident: 97657_CR84
  publication-title: Environ. Sci. Pollut Res.
  doi: 10.1007/s11356-017-1116-6
– volume: 10
  start-page: 1836
  year: 2016
  ident: 97657_CR96
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.2
– volume: 828
  start-page: 154316
  year: 2022
  ident: 97657_CR62
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154316
– volume: 8
  start-page: 1135
  year: 2014
  ident: 97657_CR95
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.220
– volume: 9
  start-page: 5433
  year: 2018
  ident: 97657_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07920-5
– volume: 113
  start-page: 89
  year: 2017
  ident: 97657_CR16
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.06.001
– volume: 16
  start-page: 2143
  year: 2006
  ident: 97657_CR53
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
– volume: 191
  start-page: 105049
  year: 2023
  ident: 97657_CR47
  publication-title: Appl. Soil. Ecol.
  doi: 10.1016/j.apsoil.2023.105049
– ident: 97657_CR59
  doi: 10.3389/fmicb.2013.00237
– volume: 96
  start-page: 4
  year: 2016
  ident: 97657_CR55
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.01.012
– volume: 326
  start-page: 123
  year: 2009
  ident: 97657_CR4
  publication-title: Science
  doi: 10.1126/science.1176985
– volume: 11
  start-page: 111341
  year: 2023
  ident: 97657_CR42
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.111341
– volume: 2
  start-page: 621
  year: 2009
  ident: 97657_CR68
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo613
– volume: 686
  start-page: 199
  year: 2019
  ident: 97657_CR86
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.394
– volume: 93
  start-page: 131
  year: 2016
  ident: 97657_CR15
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.11.005
– volume: 367
  start-page: 1157
  year: 2012
  ident: 97657_CR29
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2011.0415
– volume: 48
  start-page: 9391
  year: 2014
  ident: 97657_CR56
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5021058
– ident: 97657_CR3
– volume: 612
  start-page: 739
  year: 2018
  ident: 97657_CR35
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.258
– volume: 763
  start-page: 143048
  year: 2021
  ident: 97657_CR36
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143048
– volume: 160
  start-page: 121
  year: 2015
  ident: 97657_CR24
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.06.021
– volume: 13
  start-page: 18862
  year: 2023
  ident: 97657_CR79
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-46019-w
– volume: 326
  start-page: 129442
  year: 2021
  ident: 97657_CR52
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129442
– volume: 6
  start-page: 2024
  year: 2012
  ident: 97657_CR69
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.51
– volume: 120
  start-page: 37
  year: 2018
  ident: 97657_CR99
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.01.027
– volume: 7
  start-page: 44235
  year: 2017
  ident: 97657_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/srep44235
– volume: 240
  start-page: 108007
  year: 2024
  ident: 97657_CR39
  publication-title: CATENA
  doi: 10.1016/j.catena.2024.108007
– volume: 19
  start-page: 2956
  year: 2013
  ident: 97657_CR66
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12274
– volume: 66
  start-page: 199
  year: 2018
  ident: 97657_CR70
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.05.016
– volume: 11
  start-page: 45
  year: 2023
  ident: 97657_CR78
  publication-title: Microbiome
  doi: 10.1186/s40168-023-01466-5
– volume: 340
  start-page: 108188
  year: 2022
  ident: 97657_CR93
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2022.108188
– volume: 244
  start-page: 106274
  year: 2024
  ident: 97657_CR12
  publication-title: Soil Tillage. Res.
  doi: 10.1016/j.still.2024.106274
– volume: 353
  start-page: 131686
  year: 2022
  ident: 97657_CR91
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131686
– volume: 27
  start-page: 5564
  year: 2021
  ident: 97657_CR2
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15863
– volume: 44
  start-page: 991
  year: 2008
  ident: 97657_CR58
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0302-6
– volume: 192
  start-page: 110291
  year: 2020
  ident: 97657_CR33
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110291
– volume: 54
  start-page: 71
  year: 2018
  ident: 97657_CR63
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-017-1239-4
– volume: 5
  start-page: 378
  year: 2024
  ident: 97657_CR43
  publication-title: Nat. Food
  doi: 10.1038/s43016-024-00953-8
– volume: 41
  start-page: 2044
  year: 2009
  ident: 97657_CR83
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.07.012
– volume: 42
  start-page: 1864
  year: 2010
  ident: 97657_CR44
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.07.008
– volume: 12
  start-page: 1
  year: 2022
  ident: 97657_CR85
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99269-x
– year: 2022
  ident: 97657_CR103
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2022-0101
– volume: 95
  start-page: 171
  year: 2015
  ident: 97657_CR67
  publication-title: Appl. Soil. Ecol.
  doi: 10.1016/j.apsoil.2015.06.010
– volume: 191
  start-page: 53
  year: 2014
  ident: 97657_CR76
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.030
– volume: 74
  start-page: 5997
  year: 2008
  ident: 97657_CR54
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00441-08
– volume: 838
  start-page: 155983
  year: 2022
  ident: 97657_CR92
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155983
– volume: 5
  start-page: 1067
  year: 2011
  ident: 97657_CR81
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.191
– volume: 168
  start-page: 108637
  year: 2022
  ident: 97657_CR82
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2022.108637
– volume: 357
  start-page: 127359
  year: 2022
  ident: 97657_CR22
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127359
– volume: 13
  start-page: 950
  year: 2022
  ident: 97657_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28651-8
– volume: 440
  start-page: 116716
  year: 2023
  ident: 97657_CR19
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116716
– volume: 188
  start-page: 109818
  year: 2020
  ident: 97657_CR60
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109818
– volume: 178
  start-page: 370
  year: 2015
  ident: 97657_CR89
  publication-title: J. Plant. Nutr. Soil. Sci.
  doi: 10.1002/jpln.201400577
– volume: 83
  start-page: 57
  year: 2015
  ident: 97657_CR50
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.01.008
– volume: 10
  start-page: 279
  year: 2017
  ident: 97657_CR100
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2907
– volume: 32
  start-page: 27
  year: 2009
  ident: 97657_CR72
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2008.09.007
– volume: 17
  start-page: 499
  year: 2000
  ident: 97657_CR40
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026330
– volume: 324
  start-page: 116335
  year: 2022
  ident: 97657_CR90
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116335
– volume: 63
  start-page: 446
  year: 2012
  ident: 97657_CR34
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-011-9909-5
– volume: 17
  start-page: 1497
  year: 2011
  ident: 97657_CR28
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02334.x
– volume: 5
  start-page: 273
  year: 2022
  ident: 97657_CR6
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-022-03211-4
– volume: 528
  start-page: 555
  year: 2015
  ident: 97657_CR26
  publication-title: Nature
  doi: 10.1038/nature16459
– volume: 145
  start-page: 103348
  year: 2020
  ident: 97657_CR18
  publication-title: Appl. Soil. Ecol.
  doi: 10.1016/j.apsoil.2019.08.010
– volume: 135
  start-page: 392
  year: 2019
  ident: 97657_CR27
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.06.004
– volume: 273
  start-page: 95
  year: 2019
  ident: 97657_CR30
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.11.022
– volume: 9
  start-page: 2364
  year: 2007
  ident: 97657_CR71
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2007.01358.x
– volume: 92
  start-page: 153
  year: 2016
  ident: 97657_CR77
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.008
– volume: 44
  start-page: 8945
  year: 2017
  ident: 97657_CR48
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074338
– volume: 192
  start-page: 335
  year: 2013
  ident: 97657_CR13
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.018
– volume: 321
  start-page: 128984
  year: 2021
  ident: 97657_CR64
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128984
– volume: 84
  start-page: 199
  year: 2015
  ident: 97657_CR11
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.028
– volume: 39
  start-page: 2048
  year: 2007
  ident: 97657_CR88
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.03.006
– volume: 13
  start-page: 20722
  year: 2023
  ident: 97657_CR73
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-44147-x
– volume: 127
  start-page: 107722
  year: 2021
  ident: 97657_CR80
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2021.107722
– volume: 2
  start-page: 659
  year: 2009
  ident: 97657_CR97
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo608
– volume: 75
  start-page: 427
  year: 2016
  ident: 97657_CR51
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-5126-8
– volume: 4
  start-page: 717
  year: 2011
  ident: 97657_CR23
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1265
– volume: 274
  start-page: 123174
  year: 2020
  ident: 97657_CR37
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123174
– volume: 321
  start-page: 107620
  year: 2021
  ident: 97657_CR102
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2021.107620
– volume: 625
  start-page: 885
  year: 2018
  ident: 97657_CR46
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.216
– volume: 189
  start-page: 109254
  year: 2024
  ident: 97657_CR7
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2023.109254
– volume: 23
  start-page: 422
  year: 2023
  ident: 97657_CR65
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-022-03324-7
– volume: 528
  start-page: 504
  year: 2015
  ident: 97657_CR25
  publication-title: Nature
  doi: 10.1038/nature16461
– volume: 338
  start-page: 122664
  year: 2023
  ident: 97657_CR20
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2023.122664
– volume: 9
  start-page: 983
  year: 2021
  ident: 97657_CR10
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9050983
– volume: 630
  start-page: 421
  year: 2024
  ident: 97657_CR21
  publication-title: Nature
  doi: 10.1038/s41586-024-07464-3
– volume: 265
  start-page: 45
  year: 2018
  ident: 97657_CR45
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.05.031
– volume: 187
  start-page: 172
  year: 2019
  ident: 97657_CR61
  publication-title: Soil Tillage. Res.
  doi: 10.1016/j.still.2018.12.001
– volume: 154
  start-page: 108123
  year: 2021
  ident: 97657_CR31
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108123
– volume: 285
  start-page: 106628
  year: 2019
  ident: 97657_CR38
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2019.106628
– volume: 278
  start-page: 107672
  year: 2019
  ident: 97657_CR98
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107672
– volume: 135
  start-page: 44
  year: 2019
  ident: 97657_CR57
  publication-title: Appl. Soil. Ecol.
  doi: 10.1016/j.apsoil.2018.11.006
– volume: 2
  start-page: 410
  year: 2012
  ident: 97657_CR1
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1458
– volume: 166
  start-page: 108563
  year: 2022
  ident: 97657_CR5
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2022.108563
– volume: 584–585
  start-page: 935
  year: 2017
  ident: 97657_CR14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.141
– volume: 8
  start-page: e00459
  year: 2019
  ident: 97657_CR87
  publication-title: Microbiol. Resour. Announc
  doi: 10.1128/MRA.00459-19
– volume: 150
  start-page: 107974
  year: 2020
  ident: 97657_CR32
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107974
SSID ssj0000529419
Score 2.4514637
Snippet The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while...
Abstract The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14503
SubjectTerms 631/158/2456
704/158
704/158/2456
Denitrification
Humanities and Social Sciences
Microbial gene abundance
multidisciplinary
N2O emissions
Nitrification
Partial organic substitution
Science
Science (multidisciplinary)
Soil incubation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP_H5xQjetGzTJG1zVHFZBJ8edmFvIZkm-GDtW9r3Dvp_-P86k_bJdg968dg2pc1MOvNLZ-Y3QrxminHtdSha3XGYsWsLj3QYpQmdVWXAXJX2eV2fnutPF-biWqsvzgmb6IEnwR0nTRZTpYSq9DpiIECj-W9Fm6Ip41RcRT7v2mZqYvWurJZ2rpIpVXs8kqfiarLKFOSBTVPIhSfKhP0LlHkzR_JGoDT7n5N74u4MHOHd9ML3xa3YPxC3p1aSPx6KX195KjRgatOEMJJFyGkAJHggZAo4UwNA4lTqy83POMDAxK1xhHX1BbjxG_86GyHsd7DpGU6OdI0QInACOmwTrOGSpgJzcx8gczBwqlHWLt0CZ5sQCW1C8sN3Tpl8JM5PPp59OC3mlgsFaq12hW5UnSq0LaIM5NRabGSSSdvY2ToQOlBRewy-UdIzsqxtbJADNEhq6dCrx-Ko3_bxiYDopem4dLZDMhSV9watwRSVJRQUUK7Em4P43dXErOFyRFy1blKWI2W5rCxHo9-zhv6MZFbsfIKk6ua14v61Vlbi1UG_jmTKoRHfx-1-dGSIaOOlbE0PaheKXzxxeaXffMt83DJ3oTfVSrw9rBE3W4LxL1N6-j-m9EzcqXhNl7qozHNxtBv28QXBpF14mb-I35X_EfM
  priority: 102
  providerName: Directory of Open Access Journals
Title Partial organic substitution for chemical fertilizer reduces N2O emissions but increases the risk of N loss through nitrification in Tibetan farmland
URI https://link.springer.com/article/10.1038/s41598-025-97657-1
https://www.proquest.com/docview/3195763961
https://pubmed.ncbi.nlm.nih.gov/PMC12032052
https://doaj.org/article/f44293ffc30a4ecb999478358fe50e10
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4ieuH8sIvmmxbZK2edxb7jgWXA-9g30LSZrgwtmVdvdB_w__X2fS9qCHCD6VtiltMunML5mZ3zD2jijGhRE2qURNbsa6SozDU59JWyueWhez0j6ti4trsdrIzRHLx1yYGLQfKS2jmh6jwz52aGgoGSyXCRpQWSa44jkhqnac2yeLxerr6nZnhXxXIlNDhkzKq788PLFCkax_gjDvxkfecZJG23P-iD0cQCMs-s98zI5884Td78tI_nzKfl9SB7BBX6LJQYfaIIYA4KADolJwAy0ABAqjvtn-8i20RNrqO1jnn4GKvtG2WQf2sIdtQ1Cyw3uIDoGCz2EXYA032BUYCvsAqoKWwoyiZPERuNpaj0gTgmm_U7jkM3Z9fna1vEiGcguJE4LvE1HyIuROVc5lFg1a5cosZEEoX6vCIjLgXhhnTckzQ6iyUL505JxxSonaGf6cHTe7xr9g4E0ma0qbrR0qidwY6ZR0wXOFCMi6bMbej8Ovf_SsGjp6w3mle2FpFJaOwtLY-pQkdNuSGLHjBRxVPcwQHQRaVh6C46kR3lkEvoJ2targZeqzdMbejvLVOKbkFjGN3x06jUoIF11cFfiiaiL4yRund5rtt8jFncUK9DKfsQ_jHNGDFuj-0aWX_9f8FXuQ0-xNRZLL1-x43x78GwRDeztn98pNOR_-ATyenq0vv-DVZbGcxw2GPzqNDTk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qluy8NIcIKIOLaT-MABFqotbRcOW6k3Yzu2WKlkUbIrVP4Hf4BfyoyTVEqFkDj0uImzSeazZ754XoQ8xxLjwgiblKJCN2NVJsbBT8-krRRPrYtZacfzfHYiPp7K0y3ye8iFiUH7saRlVNNDdNjrFgwNJoNlMgEDKouE9YGUh_78B3ymtW8O3gOmL7Js_8NiOkv6TgKJE4KvE1HwPGROlc4xC7q6dAULLAjlK5VbMHrcC-OsKTgzSJhy5QuHfgenlKic4fC_18h14PY5rpxpPr3Yx0FPmWCqz8dJefmXRx3ZvNgaYMRnL0djXnLJRku3f4fc7ikqfdsJ5S7Z8vU9cqNrWnl-n_z6jOKCAV1DKEdb0D0x4AAgpsCBqeuLENCAQdtny5--oQ2WiPUtnWefKLaYw026ltrNmi5rJK4tnAMuSjHUna4CndMzeBXatxGioHgaDGqK8wguoYul9cBraTDNNwzOfEBOrgSSh2S7XtV-h1BvmKwwSbdyoJIyY6RT0gXPFfAt69iEvBzEr793NTx09L3zUndgaQBLR7A0jH6HCF2MxPrb8QBIVffzUQcBdpyH4HhqhHcWaLbAPbQyeJl6lk7IswFfDTJFJ4yp_WrTalB58InHVQ43KkfAj-44PlMvv8bK3yz2u5fZhLwa5ojudU77j1fa_b_hT8nN2eL4SB8dzA_3yK0MZ3Iqkkw-ItvrZuMfAw1b2ydxHVDy5aoX3h8XrEP-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKfY8jISnCAiju0kPnBYKKt2C0slWqk3Yzu2WKlkq2RXqPwP_gK_kxknqbQVQuLQYxLnNZ8z88XzIuQFlhgXRtikFBW6GasyMQ42PZO2Ujy1LmalfZrne8didiJPtsjvIRcmBu3HkpZRTQ_RYW9aMDSYDJbJBAyoLBLQMFXogykP_PkP-FVr3-7vAq4vs2z64ej9XtJ3E0icEHyViILnIXOqdI5Z0NelK1hgQShfqdyC4eNeGGdNwZlB0pQrXzj0PTilROUMh-teI9vA75kYke3JZPZldrGag_4ywVSflZPy8i8PvGH5YoOADVZ7OSbzkmM22rvpbXKrJ6p00onmDtny9V1yvWtdeX6P_DpEocGAri2Uoy1ooBh2AEBTYMLU9aUIaMDQ7dPFT9_QBgvF-pbOs88UG83hUl1L7XpFFzXS1xaOASOlGPBOl4HO6Sm8Cu2bCVFQPw2GNsXZBKfQo4X1wG5pMM13DNG8T46vBJQHZFQva_-QUG-YrDBVt3KgmDJjpFPSBc8VsC7r2Ji8GsSvz7pKHjp64HmpO7A0gKUjWBpGv0OELkZiFe64A6Sq-1mpgwBrzkNwPDXCOwtkW-BKWhm8TD1Lx-T5gK8GmaIrxtR-uW41KD740eMqhxuVG8Bv3HHzSL34Fut_s9j1XmZj8nqYI7rXPO0_Xmnn_4Y_IzcOd6f64_784BG5meFETkWSycdktGrW_glwsZV92n8IlHy96m_vDxtTRmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+organic+substitution+for+chemical+fertilizer+reduces+N2O+emissions+but+increases+the+risk+of+N+loss+through+nitrification+in+Tibetan+farmland&rft.jtitle=Scientific+reports&rft.au=Huang%2C+Xiaofang&rft.au=Yu%2C+Chengqun&rft.au=Sun%2C+Wei&rft.au=Shi%2C+Peili&rft.date=2025-04-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-97657-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_97657_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon