Partial organic substitution for chemical fertilizer reduces N2O emissions but increases the risk of N loss through nitrification in Tibetan farmland
The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N 2 O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends o...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 14503 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.04.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N
2
O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N
2
O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD),
Qingke
straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N
2
O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N
2
O emissions. Fertilization treatments primarily regulate potential N
2
O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA
amoA
) could be the main driver of nitrification, and
nirS
abundance explained most of the cumulative N
2
O emissions. In addition, NO
3
−
–N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N
2
O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N
2
O emissions. |
---|---|
AbstractList | The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N
2
O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N
2
O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD),
Qingke
straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N
2
O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N
2
O emissions. Fertilization treatments primarily regulate potential N
2
O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA
amoA
) could be the main driver of nitrification, and
nirS
abundance explained most of the cumulative N
2
O emissions. In addition, NO
3
−
–N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N
2
O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N
2
O emissions. The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions. Abstract The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3 −–N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions. |
ArticleNumber | 14503 |
Author | Sun, Wei Wu, Junxi Wang, Jiabao Huang, Xiaofang Yu, Jialuo Mu, Tao Yu, Chengqun Shi, Peili |
Author_xml | – sequence: 1 givenname: Xiaofang surname: Huang fullname: Huang, Xiaofang organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 2 givenname: Chengqun surname: Yu fullname: Yu, Chengqun organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 3 givenname: Wei surname: Sun fullname: Sun, Wei organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 4 givenname: Peili surname: Shi fullname: Shi, Peili email: shipl@igsnrr.ac.cn organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 5 givenname: Junxi surname: Wu fullname: Wu, Junxi email: wujx@igsnrr.ac.cn organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 6 givenname: Jialuo surname: Yu fullname: Yu, Jialuo organization: Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), College of Resources and Environment, University of Chinese Academy of Sciences – sequence: 7 givenname: Jiabao surname: Wang fullname: Wang, Jiabao organization: College of Plant Science and Technology, Huazhong Agricultural University – sequence: 8 givenname: Tao surname: Mu fullname: Mu, Tao organization: Institute of Plateau Biology, Lhasa Science and Technology Bureau |
BookMark | eNp9UstuFDEQtFAQCUt-gJOPXCb4NQ-fEIogRIoSDuFseTztXS-zdrA9keA_-F96dyNELvhiq7u6Sq6u1-QkpgiEvOXsgjM5vC-Kt3pomGgb3Xdt3_AX5Eww1TZCCnHyz_uUnJeyZXhaoRXXr8ipYmLgTHRn5PdXm2uwM015bWNwtCxjqaEuNaRIfcrUbWAXHCI8IHIOvyDTDNPioNBbcUexWwqCCx2XSkN0GWzBXt0AzaF8p8nTWzqnsi_ltKw3NIaag0fSg0iI9D6MUC3q2bybbZzekJfezgXOn-4V-fb50_3ll-bm7ur68uNN45SStVG97LxwenCOj1zIwfXcc680TLobecslKOtG20tuteZdp6F3Aj_vtFaTs3JFro-8U7Jb85DDzuafJtlgDgX0xOztcTMYr5TQ0nsnmVXgRo0U_SDbwUPLAFeyIh-OXA_LuIPJQazZzs9In3di2Jh1ejRcMClwN8jw7okhpx8LlGrQWgczOgJpKUZy3fad1B1HqDhCXUZjM_i_OpyZfT7MMR8G82EO-TD7IXkcKgiOa8hmm5Yc0eD_Tf0BZlvBZQ |
Cites_doi | 10.1016/j.jenvman.2023.119390 10.1016/j.apsoil.2020.103786 10.1016/B978-0-12-800137-0.00006-6 10.1016/j.jenvman.2022.116794 10.1016/j.scitotenv.2024.176283 10.1016/j.soilbio.2017.09.007 10.1007/s11356-017-1116-6 10.1038/ismej.2016.2 10.1016/j.scitotenv.2022.154316 10.1038/ismej.2013.220 10.1038/s41467-018-07920-5 10.1016/j.soilbio.2017.06.001 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 10.1016/j.apsoil.2023.105049 10.3389/fmicb.2013.00237 10.1016/j.soilbio.2016.01.012 10.1126/science.1176985 10.1016/j.jece.2023.111341 10.1038/ngeo613 10.1016/j.scitotenv.2019.05.394 10.1016/j.soilbio.2015.11.005 10.1098/rstb.2011.0415 10.1021/es5021058 10.1016/j.scitotenv.2017.08.258 10.1016/j.scitotenv.2020.143048 10.1016/j.jenvman.2015.06.021 10.1038/s41598-023-46019-w 10.1016/j.jclepro.2021.129442 10.1038/ismej.2012.51 10.1016/j.soilbio.2018.01.027 10.1038/srep44235 10.1016/j.catena.2024.108007 10.1111/gcb.12274 10.1016/j.jes.2017.05.016 10.1186/s40168-023-01466-5 10.1016/j.agee.2022.108188 10.1016/j.still.2024.106274 10.1016/j.jclepro.2022.131686 10.1111/gcb.15863 10.1007/s00374-008-0302-6 10.1016/j.ecoenv.2020.110291 10.1007/s00374-017-1239-4 10.1038/s43016-024-00953-8 10.1016/j.soilbio.2009.07.012 10.1016/j.soilbio.2010.07.008 10.1038/s41598-021-99269-x 10.1139/cjss-2022-0101 10.1016/j.apsoil.2015.06.010 10.1016/j.agee.2014.02.030 10.1128/AEM.00441-08 10.1016/j.scitotenv.2022.155983 10.1038/ismej.2010.191 10.1016/j.soilbio.2022.108637 10.1016/j.biortech.2022.127359 10.1038/s41467-022-28651-8 10.1016/j.geoderma.2023.116716 10.1016/j.envres.2020.109818 10.1002/jpln.201400577 10.1016/j.soilbio.2015.01.008 10.1038/ngeo2907 10.1016/j.syapm.2008.09.007 10.1093/oxfordjournals.molbev.a026330 10.1016/j.jenvman.2022.116335 10.1007/s00248-011-9909-5 10.1111/j.1365-2486.2010.02334.x 10.1038/s42003-022-03211-4 10.1038/nature16459 10.1016/j.apsoil.2019.08.010 10.1016/j.soilbio.2019.06.004 10.1016/j.agee.2018.11.022 10.1111/j.1462-2920.2007.01358.x 10.1016/j.soilbio.2015.10.008 10.1002/2017GL074338 10.1016/j.geoderma.2012.08.018 10.1016/j.jclepro.2021.128984 10.1016/j.soilbio.2015.02.028 10.1016/j.soilbio.2007.03.006 10.1038/s41598-023-44147-x 10.1016/j.ecolind.2021.107722 10.1038/ngeo608 10.1007/s12665-015-5126-8 10.1038/ngeo1265 10.1016/j.jclepro.2020.123174 10.1016/j.agee.2021.107620 10.1016/j.scitotenv.2017.12.216 10.1016/j.soilbio.2023.109254 10.1007/s11368-022-03324-7 10.1038/nature16461 10.1016/j.envpol.2023.122664 10.3390/microorganisms9050983 10.1038/s41586-024-07464-3 10.1016/j.agee.2018.05.031 10.1016/j.still.2018.12.001 10.1016/j.soilbio.2020.108123 10.1016/j.agee.2019.106628 10.1016/j.agrformet.2019.107672 10.1016/j.apsoil.2018.11.006 10.1038/nclimate1458 10.1016/j.soilbio.2022.108563 10.1016/j.scitotenv.2017.01.141 10.1128/MRA.00459-19 10.1016/j.soilbio.2020.107974 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1038/s41598-025-97657-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_f44293ffc30a4ecb999478358fe50e10 PMC12032052 10_1038_s41598_025_97657_1 |
GrantInformation_xml | – fundername: Key Science and Technology Projects in Lhasa City grantid: LSKJ202206 – fundername: Key Research and Development Program in Xizang Autonomous Region grantid: XZ202201ZY0003N; XZ202501ZY0056 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c443t-4736f2c98cc1b1238c71f1f49ed96b1513e4acba731a991669e7c2402c994dca3 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Thu Aug 21 18:26:57 EDT 2025 Fri Jul 11 18:30:36 EDT 2025 Tue Jul 01 05:08:44 EDT 2025 Sat Apr 26 01:28:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Partial organic substitution Microbial gene abundance Nitrification Denitrification O emissions Soil incubation N |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-4736f2c98cc1b1238c71f1f49ed96b1513e4acba731a991669e7c2402c994dca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-97657-1 |
PMID | 40281026 |
PQID | 3195763961 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f44293ffc30a4ecb999478358fe50e10 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12032052 proquest_miscellaneous_3195763961 crossref_primary_10_1038_s41598_025_97657_1 springer_journals_10_1038_s41598_025_97657_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-25 |
PublicationDateYYYYMMDD | 2025-04-25 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Y Yan (97657_CR45) 2018; 265 W Lin (97657_CR60) 2020; 188 AR Ravishankara (97657_CR4) 2009; 326 AE Taylor (97657_CR69) 2012; 6 S Wasai-Hara (97657_CR79) 2023; 13 R Cai (97657_CR42) 2023; 11 Z Zhang (97657_CR93) 2022; 340 J Wu (97657_CR47) 2023; 191 EJ Daly (97657_CR7) 2024; 189 M Chen (97657_CR80) 2021; 127 CM Jones (97657_CR6) 2022; 5 I Mukumbuta (97657_CR63) 2018; 54 C Lazcano (97657_CR10) 2021; 9 X Su (97657_CR2) 2021; 27 MAHJ van Kessel (97657_CR26) 2015; 528 X Zeng (97657_CR41) 2018; 9 X Li (97657_CR78) 2023; 11 Z Li (97657_CR91) 2022; 353 AJ Thomson (97657_CR29) 2012; 367 J Duan (97657_CR43) 2024; 5 H Gao (97657_CR8) 2023; 326 X Kou (97657_CR39) 2024; 240 Y Wang (97657_CR72) 2009; 32 EA Davidson (97657_CR97) 2009; 2 A Shah (97657_CR51) 2016; 75 DT Verhamme (97657_CR81) 2011; 5 J He (97657_CR71) 2007; 9 C Wagner-Riddle (97657_CR100) 2017; 10 Z Chen (97657_CR31) 2021; 154 B Wang (97657_CR37) 2020; 274 Z Han (97657_CR9) 2024; 349 97657_CR74 B Duan (97657_CR92) 2022; 838 Z Chen (97657_CR34) 2012; 63 X Yang (97657_CR38) 2019; 285 Y Dong (97657_CR94) 2024; 954 H Daims (97657_CR25) 2015; 528 R Chen (97657_CR24) 2015; 160 P Duan (97657_CR98) 2019; 278 Z Wang (97657_CR27) 2019; 135 L Van Zwieten (97657_CR76) 2014; 191 R Tao (97657_CR35) 2018; 612 CC Mu (97657_CR48) 2017; 44 Y Cheng (97657_CR89) 2015; 178 EG Hiis (97657_CR21) 2024; 630 Y Yang (97657_CR85) 2022; 12 R Huang (97657_CR33) 2020; 192 X Zhu-Barker (97657_CR50) 2015; 83 H Chen (97657_CR66) 2013; 19 X Li (97657_CR77) 2016; 92 P Duan (97657_CR99) 2018; 120 KS Lourenço (97657_CR5) 2022; 166 M Cameira (97657_CR61) 2019; 187 Q Yi (97657_CR19) 2023; 440 C Deveautour (97657_CR82) 2022; 168 P Cui (97657_CR15) 2016; 93 97657_CR3 N Gao (97657_CR87) 2019; 8 Y Yang (97657_CR73) 2023; 13 97657_CR59 HJ Xu (97657_CR56) 2014; 48 X Liu (97657_CR57) 2019; 135 J Zhang (97657_CR11) 2015; 84 Y Lin (97657_CR16) 2017; 113 R Sun (97657_CR67) 2015; 95 DS Reay (97657_CR1) 2012; 2 M Yoshida (97657_CR83) 2009; 41 G Tan (97657_CR84) 2018; 25 X Zheng (97657_CR65) 2023; 23 Y Shi (97657_CR86) 2019; 686 X Xu (97657_CR32) 2020; 150 W Chen (97657_CR13) 2013; 192 PT Mørkved (97657_CR88) 2007; 39 J Guo (97657_CR75) 2017; 115 C Ji (97657_CR18) 2020; 145 L Philippot (97657_CR28) 2011; 17 G Wu (97657_CR12) 2024; 244 N Morley (97657_CR44) 2010; 42 CY Hung (97657_CR102) 2021; 321 JE Maul (97657_CR30) 2019; 273 E Ciarlo (97657_CR58) 2008; 44 H Zhang (97657_CR46) 2018; 625 DE Pelster (97657_CR103) 2022 SE Fawcett (97657_CR23) 2011; 4 F Albanito (97657_CR17) 2017; 7 D Chen (97657_CR90) 2022; 324 A Badr (97657_CR40) 2000; 17 CE Dandie (97657_CR54) 2008; 74 X Cao (97657_CR64) 2021; 321 Y Zhou (97657_CR14) 2017; 584–585 M Yu (97657_CR36) 2021; 763 R Feng (97657_CR20) 2023; 338 HJ Di (97657_CR68) 2009; 2 N Wang (97657_CR22) 2022; 357 A Taghizadeh-Toosi (97657_CR62) 2022; 828 X Wang (97657_CR70) 2018; 66 CY Hung (97657_CR101) 2021; 158 Y Li (97657_CR52) 2021; 326 MD Wallenstein (97657_CR53) 2006; 16 M Stieglmeier (97657_CR95) 2014; 8 L Zhang (97657_CR49) 2022; 13 JA Kozlowski (97657_CR96) 2016; 10 Y Ouyang (97657_CR55) 2016; 96 |
References_xml | – volume: 349 start-page: 119390 year: 2024 ident: 97657_CR9 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.119390 – volume: 158 start-page: 103786 year: 2021 ident: 97657_CR101 publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2020.103786 – ident: 97657_CR74 doi: 10.1016/B978-0-12-800137-0.00006-6 – volume: 326 start-page: 116794 year: 2023 ident: 97657_CR8 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.116794 – volume: 954 start-page: 176283 year: 2024 ident: 97657_CR94 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.176283 – volume: 115 start-page: 403 year: 2017 ident: 97657_CR75 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.09.007 – volume: 25 start-page: 8817 year: 2018 ident: 97657_CR84 publication-title: Environ. Sci. Pollut Res. doi: 10.1007/s11356-017-1116-6 – volume: 10 start-page: 1836 year: 2016 ident: 97657_CR96 publication-title: ISME J. doi: 10.1038/ismej.2016.2 – volume: 828 start-page: 154316 year: 2022 ident: 97657_CR62 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154316 – volume: 8 start-page: 1135 year: 2014 ident: 97657_CR95 publication-title: ISME J. doi: 10.1038/ismej.2013.220 – volume: 9 start-page: 5433 year: 2018 ident: 97657_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07920-5 – volume: 113 start-page: 89 year: 2017 ident: 97657_CR16 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.06.001 – volume: 16 start-page: 2143 year: 2006 ident: 97657_CR53 publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 – volume: 191 start-page: 105049 year: 2023 ident: 97657_CR47 publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2023.105049 – ident: 97657_CR59 doi: 10.3389/fmicb.2013.00237 – volume: 96 start-page: 4 year: 2016 ident: 97657_CR55 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.012 – volume: 326 start-page: 123 year: 2009 ident: 97657_CR4 publication-title: Science doi: 10.1126/science.1176985 – volume: 11 start-page: 111341 year: 2023 ident: 97657_CR42 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.111341 – volume: 2 start-page: 621 year: 2009 ident: 97657_CR68 publication-title: Nat. Geosci. doi: 10.1038/ngeo613 – volume: 686 start-page: 199 year: 2019 ident: 97657_CR86 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.394 – volume: 93 start-page: 131 year: 2016 ident: 97657_CR15 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.11.005 – volume: 367 start-page: 1157 year: 2012 ident: 97657_CR29 publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2011.0415 – volume: 48 start-page: 9391 year: 2014 ident: 97657_CR56 publication-title: Environ. Sci. Technol. doi: 10.1021/es5021058 – ident: 97657_CR3 – volume: 612 start-page: 739 year: 2018 ident: 97657_CR35 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.258 – volume: 763 start-page: 143048 year: 2021 ident: 97657_CR36 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143048 – volume: 160 start-page: 121 year: 2015 ident: 97657_CR24 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.06.021 – volume: 13 start-page: 18862 year: 2023 ident: 97657_CR79 publication-title: Sci. Rep. doi: 10.1038/s41598-023-46019-w – volume: 326 start-page: 129442 year: 2021 ident: 97657_CR52 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129442 – volume: 6 start-page: 2024 year: 2012 ident: 97657_CR69 publication-title: ISME J. doi: 10.1038/ismej.2012.51 – volume: 120 start-page: 37 year: 2018 ident: 97657_CR99 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.01.027 – volume: 7 start-page: 44235 year: 2017 ident: 97657_CR17 publication-title: Sci. Rep. doi: 10.1038/srep44235 – volume: 240 start-page: 108007 year: 2024 ident: 97657_CR39 publication-title: CATENA doi: 10.1016/j.catena.2024.108007 – volume: 19 start-page: 2956 year: 2013 ident: 97657_CR66 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12274 – volume: 66 start-page: 199 year: 2018 ident: 97657_CR70 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.05.016 – volume: 11 start-page: 45 year: 2023 ident: 97657_CR78 publication-title: Microbiome doi: 10.1186/s40168-023-01466-5 – volume: 340 start-page: 108188 year: 2022 ident: 97657_CR93 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2022.108188 – volume: 244 start-page: 106274 year: 2024 ident: 97657_CR12 publication-title: Soil Tillage. Res. doi: 10.1016/j.still.2024.106274 – volume: 353 start-page: 131686 year: 2022 ident: 97657_CR91 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131686 – volume: 27 start-page: 5564 year: 2021 ident: 97657_CR2 publication-title: Glob. Change Biol. doi: 10.1111/gcb.15863 – volume: 44 start-page: 991 year: 2008 ident: 97657_CR58 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0302-6 – volume: 192 start-page: 110291 year: 2020 ident: 97657_CR33 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110291 – volume: 54 start-page: 71 year: 2018 ident: 97657_CR63 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-017-1239-4 – volume: 5 start-page: 378 year: 2024 ident: 97657_CR43 publication-title: Nat. Food doi: 10.1038/s43016-024-00953-8 – volume: 41 start-page: 2044 year: 2009 ident: 97657_CR83 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.07.012 – volume: 42 start-page: 1864 year: 2010 ident: 97657_CR44 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.07.008 – volume: 12 start-page: 1 year: 2022 ident: 97657_CR85 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99269-x – year: 2022 ident: 97657_CR103 publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2022-0101 – volume: 95 start-page: 171 year: 2015 ident: 97657_CR67 publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2015.06.010 – volume: 191 start-page: 53 year: 2014 ident: 97657_CR76 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.02.030 – volume: 74 start-page: 5997 year: 2008 ident: 97657_CR54 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00441-08 – volume: 838 start-page: 155983 year: 2022 ident: 97657_CR92 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155983 – volume: 5 start-page: 1067 year: 2011 ident: 97657_CR81 publication-title: ISME J. doi: 10.1038/ismej.2010.191 – volume: 168 start-page: 108637 year: 2022 ident: 97657_CR82 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108637 – volume: 357 start-page: 127359 year: 2022 ident: 97657_CR22 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127359 – volume: 13 start-page: 950 year: 2022 ident: 97657_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28651-8 – volume: 440 start-page: 116716 year: 2023 ident: 97657_CR19 publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116716 – volume: 188 start-page: 109818 year: 2020 ident: 97657_CR60 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109818 – volume: 178 start-page: 370 year: 2015 ident: 97657_CR89 publication-title: J. Plant. Nutr. Soil. Sci. doi: 10.1002/jpln.201400577 – volume: 83 start-page: 57 year: 2015 ident: 97657_CR50 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.008 – volume: 10 start-page: 279 year: 2017 ident: 97657_CR100 publication-title: Nat. Geosci. doi: 10.1038/ngeo2907 – volume: 32 start-page: 27 year: 2009 ident: 97657_CR72 publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2008.09.007 – volume: 17 start-page: 499 year: 2000 ident: 97657_CR40 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026330 – volume: 324 start-page: 116335 year: 2022 ident: 97657_CR90 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.116335 – volume: 63 start-page: 446 year: 2012 ident: 97657_CR34 publication-title: Microb. Ecol. doi: 10.1007/s00248-011-9909-5 – volume: 17 start-page: 1497 year: 2011 ident: 97657_CR28 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02334.x – volume: 5 start-page: 273 year: 2022 ident: 97657_CR6 publication-title: Commun. Biol. doi: 10.1038/s42003-022-03211-4 – volume: 528 start-page: 555 year: 2015 ident: 97657_CR26 publication-title: Nature doi: 10.1038/nature16459 – volume: 145 start-page: 103348 year: 2020 ident: 97657_CR18 publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2019.08.010 – volume: 135 start-page: 392 year: 2019 ident: 97657_CR27 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.06.004 – volume: 273 start-page: 95 year: 2019 ident: 97657_CR30 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.11.022 – volume: 9 start-page: 2364 year: 2007 ident: 97657_CR71 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01358.x – volume: 92 start-page: 153 year: 2016 ident: 97657_CR77 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.10.008 – volume: 44 start-page: 8945 year: 2017 ident: 97657_CR48 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074338 – volume: 192 start-page: 335 year: 2013 ident: 97657_CR13 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.018 – volume: 321 start-page: 128984 year: 2021 ident: 97657_CR64 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128984 – volume: 84 start-page: 199 year: 2015 ident: 97657_CR11 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.028 – volume: 39 start-page: 2048 year: 2007 ident: 97657_CR88 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.03.006 – volume: 13 start-page: 20722 year: 2023 ident: 97657_CR73 publication-title: Sci. Rep. doi: 10.1038/s41598-023-44147-x – volume: 127 start-page: 107722 year: 2021 ident: 97657_CR80 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.107722 – volume: 2 start-page: 659 year: 2009 ident: 97657_CR97 publication-title: Nat. Geosci. doi: 10.1038/ngeo608 – volume: 75 start-page: 427 year: 2016 ident: 97657_CR51 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-5126-8 – volume: 4 start-page: 717 year: 2011 ident: 97657_CR23 publication-title: Nat. Geosci. doi: 10.1038/ngeo1265 – volume: 274 start-page: 123174 year: 2020 ident: 97657_CR37 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123174 – volume: 321 start-page: 107620 year: 2021 ident: 97657_CR102 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2021.107620 – volume: 625 start-page: 885 year: 2018 ident: 97657_CR46 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.216 – volume: 189 start-page: 109254 year: 2024 ident: 97657_CR7 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2023.109254 – volume: 23 start-page: 422 year: 2023 ident: 97657_CR65 publication-title: J. Soils Sediments doi: 10.1007/s11368-022-03324-7 – volume: 528 start-page: 504 year: 2015 ident: 97657_CR25 publication-title: Nature doi: 10.1038/nature16461 – volume: 338 start-page: 122664 year: 2023 ident: 97657_CR20 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2023.122664 – volume: 9 start-page: 983 year: 2021 ident: 97657_CR10 publication-title: Microorganisms doi: 10.3390/microorganisms9050983 – volume: 630 start-page: 421 year: 2024 ident: 97657_CR21 publication-title: Nature doi: 10.1038/s41586-024-07464-3 – volume: 265 start-page: 45 year: 2018 ident: 97657_CR45 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.05.031 – volume: 187 start-page: 172 year: 2019 ident: 97657_CR61 publication-title: Soil Tillage. Res. doi: 10.1016/j.still.2018.12.001 – volume: 154 start-page: 108123 year: 2021 ident: 97657_CR31 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108123 – volume: 285 start-page: 106628 year: 2019 ident: 97657_CR38 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.106628 – volume: 278 start-page: 107672 year: 2019 ident: 97657_CR98 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107672 – volume: 135 start-page: 44 year: 2019 ident: 97657_CR57 publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2018.11.006 – volume: 2 start-page: 410 year: 2012 ident: 97657_CR1 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1458 – volume: 166 start-page: 108563 year: 2022 ident: 97657_CR5 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108563 – volume: 584–585 start-page: 935 year: 2017 ident: 97657_CR14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.141 – volume: 8 start-page: e00459 year: 2019 ident: 97657_CR87 publication-title: Microbiol. Resour. Announc doi: 10.1128/MRA.00459-19 – volume: 150 start-page: 107974 year: 2020 ident: 97657_CR32 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107974 |
SSID | ssj0000529419 |
Score | 2.4514637 |
Snippet | The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while... Abstract The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 14503 |
SubjectTerms | 631/158/2456 704/158 704/158/2456 Denitrification Humanities and Social Sciences Microbial gene abundance multidisciplinary N2O emissions Nitrification Partial organic substitution Science Science (multidisciplinary) Soil incubation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP_H5xQjetGzTJG1zVHFZBJ8edmFvIZkm-GDtW9r3Dvp_-P86k_bJdg968dg2pc1MOvNLZ-Y3QrxminHtdSha3XGYsWsLj3QYpQmdVWXAXJX2eV2fnutPF-biWqsvzgmb6IEnwR0nTRZTpYSq9DpiIECj-W9Fm6Ip41RcRT7v2mZqYvWurJZ2rpIpVXs8kqfiarLKFOSBTVPIhSfKhP0LlHkzR_JGoDT7n5N74u4MHOHd9ML3xa3YPxC3p1aSPx6KX195KjRgatOEMJJFyGkAJHggZAo4UwNA4lTqy83POMDAxK1xhHX1BbjxG_86GyHsd7DpGU6OdI0QInACOmwTrOGSpgJzcx8gczBwqlHWLt0CZ5sQCW1C8sN3Tpl8JM5PPp59OC3mlgsFaq12hW5UnSq0LaIM5NRabGSSSdvY2ToQOlBRewy-UdIzsqxtbJADNEhq6dCrx-Ko3_bxiYDopem4dLZDMhSV9watwRSVJRQUUK7Em4P43dXErOFyRFy1blKWI2W5rCxHo9-zhv6MZFbsfIKk6ua14v61Vlbi1UG_jmTKoRHfx-1-dGSIaOOlbE0PaheKXzxxeaXffMt83DJ3oTfVSrw9rBE3W4LxL1N6-j-m9EzcqXhNl7qozHNxtBv28QXBpF14mb-I35X_EfM priority: 102 providerName: Directory of Open Access Journals |
Title | Partial organic substitution for chemical fertilizer reduces N2O emissions but increases the risk of N loss through nitrification in Tibetan farmland |
URI | https://link.springer.com/article/10.1038/s41598-025-97657-1 https://www.proquest.com/docview/3195763961 https://pubmed.ncbi.nlm.nih.gov/PMC12032052 https://doaj.org/article/f44293ffc30a4ecb999478358fe50e10 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4ieuH8sIvmmxbZK2edxb7jgWXA-9g30LSZrgwtmVdvdB_w__X2fS9qCHCD6VtiltMunML5mZ3zD2jijGhRE2qURNbsa6SozDU59JWyueWhez0j6ti4trsdrIzRHLx1yYGLQfKS2jmh6jwz52aGgoGSyXCRpQWSa44jkhqnac2yeLxerr6nZnhXxXIlNDhkzKq788PLFCkax_gjDvxkfecZJG23P-iD0cQCMs-s98zI5884Td78tI_nzKfl9SB7BBX6LJQYfaIIYA4KADolJwAy0ABAqjvtn-8i20RNrqO1jnn4GKvtG2WQf2sIdtQ1Cyw3uIDoGCz2EXYA032BUYCvsAqoKWwoyiZPERuNpaj0gTgmm_U7jkM3Z9fna1vEiGcguJE4LvE1HyIuROVc5lFg1a5cosZEEoX6vCIjLgXhhnTckzQ6iyUL505JxxSonaGf6cHTe7xr9g4E0ma0qbrR0qidwY6ZR0wXOFCMi6bMbej8Ovf_SsGjp6w3mle2FpFJaOwtLY-pQkdNuSGLHjBRxVPcwQHQRaVh6C46kR3lkEvoJ2targZeqzdMbejvLVOKbkFjGN3x06jUoIF11cFfiiaiL4yRund5rtt8jFncUK9DKfsQ_jHNGDFuj-0aWX_9f8FXuQ0-xNRZLL1-x43x78GwRDeztn98pNOR_-ATyenq0vv-DVZbGcxw2GPzqNDTk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qluy8NIcIKIOLaT-MABFqotbRcOW6k3Yzu2WKlkUbIrVP4Hf4BfyoyTVEqFkDj0uImzSeazZ754XoQ8xxLjwgiblKJCN2NVJsbBT8-krRRPrYtZacfzfHYiPp7K0y3ye8iFiUH7saRlVNNDdNjrFgwNJoNlMgEDKouE9YGUh_78B3ymtW8O3gOmL7Js_8NiOkv6TgKJE4KvE1HwPGROlc4xC7q6dAULLAjlK5VbMHrcC-OsKTgzSJhy5QuHfgenlKic4fC_18h14PY5rpxpPr3Yx0FPmWCqz8dJefmXRx3ZvNgaYMRnL0djXnLJRku3f4fc7ikqfdsJ5S7Z8vU9cqNrWnl-n_z6jOKCAV1DKEdb0D0x4AAgpsCBqeuLENCAQdtny5--oQ2WiPUtnWefKLaYw026ltrNmi5rJK4tnAMuSjHUna4CndMzeBXatxGioHgaDGqK8wguoYul9cBraTDNNwzOfEBOrgSSh2S7XtV-h1BvmKwwSbdyoJIyY6RT0gXPFfAt69iEvBzEr793NTx09L3zUndgaQBLR7A0jH6HCF2MxPrb8QBIVffzUQcBdpyH4HhqhHcWaLbAPbQyeJl6lk7IswFfDTJFJ4yp_WrTalB58InHVQ43KkfAj-44PlMvv8bK3yz2u5fZhLwa5ojudU77j1fa_b_hT8nN2eL4SB8dzA_3yK0MZ3Iqkkw-ItvrZuMfAw1b2ydxHVDy5aoX3h8XrEP- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKfY8jISnCAiju0kPnBYKKt2C0slWqk3Yzu2WKlkq2RXqPwP_gK_kxknqbQVQuLQYxLnNZ8z88XzIuQFlhgXRtikFBW6GasyMQ42PZO2Ujy1LmalfZrne8didiJPtsjvIRcmBu3HkpZRTQ_RYW9aMDSYDJbJBAyoLBLQMFXogykP_PkP-FVr3-7vAq4vs2z64ej9XtJ3E0icEHyViILnIXOqdI5Z0NelK1hgQShfqdyC4eNeGGdNwZlB0pQrXzj0PTilROUMh-teI9vA75kYke3JZPZldrGag_4ywVSflZPy8i8PvGH5YoOADVZ7OSbzkmM22rvpbXKrJ6p00onmDtny9V1yvWtdeX6P_DpEocGAri2Uoy1ooBh2AEBTYMLU9aUIaMDQ7dPFT9_QBgvF-pbOs88UG83hUl1L7XpFFzXS1xaOASOlGPBOl4HO6Sm8Cu2bCVFQPw2GNsXZBKfQo4X1wG5pMM13DNG8T46vBJQHZFQva_-QUG-YrDBVt3KgmDJjpFPSBc8VsC7r2Ji8GsSvz7pKHjp64HmpO7A0gKUjWBpGv0OELkZiFe64A6Sq-1mpgwBrzkNwPDXCOwtkW-BKWhm8TD1Lx-T5gK8GmaIrxtR-uW41KD740eMqhxuVG8Bv3HHzSL34Fut_s9j1XmZj8nqYI7rXPO0_Xmnn_4Y_IzcOd6f64_784BG5meFETkWSycdktGrW_glwsZV92n8IlHy96m_vDxtTRmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+organic+substitution+for+chemical+fertilizer+reduces+N2O+emissions+but+increases+the+risk+of+N+loss+through+nitrification+in+Tibetan+farmland&rft.jtitle=Scientific+reports&rft.au=Huang%2C+Xiaofang&rft.au=Yu%2C+Chengqun&rft.au=Sun%2C+Wei&rft.au=Shi%2C+Peili&rft.date=2025-04-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-97657-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_97657_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |