Decoupling local mechanics from large-scale structure in modular metamaterials

A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 14; pp. 3590 - 3595
Main Authors Yang, Nan, Silverberg, Jesse L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of largescale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
AbstractList A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of largescale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Significance The forward-design approach to mechanical metamaterials determines a structure’s properties after it is designed. In contrast, the inverse-design approach specifies parameter domains then optimizes a cost function to achieve a desired property. The former approach guarantees a structure will exist but lacks the ability to prescribe function. The latter approach has prescribed function, but existence is not guaranteed. Here, we trivialize these design challenges for metamaterials by decoupling local mechanical properties from the bulk structure, allowing both to be specified independently. This work introduces a design strategy that substantially advances the capacity to engineer mechanical metamaterials by specifically using modular units with more free design parameters than constraints. The fundamental strategy is explicitly demonstrated with an origami- and kirigami-inspired structure. A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
The forward-design approach to mechanical metamaterials determines a structure’s properties after it is designed. In contrast, the inverse-design approach specifies parameter domains then optimizes a cost function to achieve a desired property. The former approach guarantees a structure will exist but lacks the ability to prescribe function. The latter approach has prescribed function, but existence is not guaranteed. Here, we trivialize these design challenges for metamaterials by decoupling local mechanical properties from the bulk structure, allowing both to be specified independently. This work introduces a design strategy that substantially advances the capacity to engineer mechanical metamaterials by specifically using modular units with more free design parameters than constraints. The fundamental strategy is explicitly demonstrated with an origami- and kirigami-inspired structure. A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Author Yang, Nan
Silverberg, Jesse L.
Author_xml – sequence: 1
  givenname: Nan
  surname: Yang
  fullname: Yang, Nan
  organization: Tianjin Key Laboratory of the Design and Intelligent Control of Advanced Mechatronical Systems, Tianjin University of Technology, Xiqing District, Tianjin 300384, China
– sequence: 2
  givenname: Jesse L.
  surname: Silverberg
  fullname: Silverberg, Jesse L.
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28320939$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtP3DAUha0KVAbadVegSGzYBK4f8WNTqQLaIiHYlLXl3HGGjBJ7aieV-PcYDc-uzuJ89-hcnX2yE2LwhHyjcEpB8bNNcPmUSgaKCkrFJ7KgYGgthYEdsgBgqtaCiT2yn_MaAEyj4TPZY5ozMNwsyM2Fxzhvhj6sqiGiG6rR470LPeaqS3GsBpdWvs7F8VWe0ozTnHzVh2qMy7mYhZ_c6CafejfkL2S3K-K_PusBuft5-ef8d319--vq_Md1jULwqRYNVa1BxaFBY1qBzLSsYZ1mWmPTaUS21EqiWzLeGmgplZq1tHACuDfID8j3be5mbke_RB-m5Aa7Sf3o0oONrrcfndDf21X8ZxuuDZOqBJw8B6T4d_Z5smOf0Q-DCz7O2VKtjJRcal3Q4__QdZxTKO8VSmujDAdRqLMthSnmnHz3WoaCfdrKPm1l37YqF0fvf3jlX8YpwOEWWOcppjdfCg2ylHsEmGicIQ
CitedBy_id crossref_primary_10_1063_5_0051088
crossref_primary_10_1073_pnas_1906435116
crossref_primary_10_1038_s41563_017_0011_3
crossref_primary_10_1038_s41598_019_55222_7
crossref_primary_10_1016_j_jmps_2024_105751
crossref_primary_10_1002_htj_22852
crossref_primary_10_1016_j_mechmachtheory_2024_105698
crossref_primary_10_1016_j_eml_2023_101985
crossref_primary_10_1088_1361_665X_ac25c9
crossref_primary_10_1016_j_ijmecsci_2021_106537
crossref_primary_10_1038_s41598_021_97609_5
crossref_primary_10_1115_1_4055031
crossref_primary_10_1002_adem_202300102
crossref_primary_10_1016_j_nanoen_2023_108697
crossref_primary_10_1016_j_matdes_2020_109143
crossref_primary_10_1002_admt_202100493
crossref_primary_10_1016_j_mtphys_2021_100511
crossref_primary_10_1016_j_eml_2023_102064
crossref_primary_10_1088_1748_3190_ab3b12
crossref_primary_10_1016_j_compstruct_2018_06_015
crossref_primary_10_1115_1_4049949
crossref_primary_10_1177_1729881420921327
crossref_primary_10_1002_adfm_202107401
crossref_primary_10_1002_adfm_202105641
crossref_primary_10_1038_s41467_022_35224_2
crossref_primary_10_1016_j_compstruct_2021_114446
crossref_primary_10_1039_C8SM01341A
crossref_primary_10_1073_pnas_1720171115
crossref_primary_10_1103_PhysRevLett_121_178001
crossref_primary_10_3389_fphy_2022_909536
crossref_primary_10_1038_s41598_018_30822_x
crossref_primary_10_1016_j_ijsolstr_2017_05_028
crossref_primary_10_1016_j_jsv_2022_117407
crossref_primary_10_1115_1_4038969
crossref_primary_10_1002_adma_201805282
crossref_primary_10_1016_j_hybadv_2023_100092
crossref_primary_10_1016_j_ijmecsci_2023_108104
crossref_primary_10_1038_s41567_018_0150_8
crossref_primary_10_1016_j_cma_2022_114977
Cites_doi 10.1002/adma.201200584
10.1557/mrc.2015.51
10.1088/0964-1726/23/9/094009
10.1038/nmat4232
10.1038/nmat4540
10.1109/TVCG.2009.67
10.1103/PhysRevE.92.013205
10.1088/0034-4885/77/4/046603
10.1038/nature07971
10.1103/PhysRevLett.116.135501
10.1126/science.aaa5372
10.1126/sciadv.1601019
10.1103/PhysRevLett.110.215501
10.1145/2601097.2601173
10.1038/nmat4544
10.1126/science.1252876
10.1126/sciadv.1500224
10.1126/science.1246545
10.1088/2040-8978/14/11/114009
10.1038/ncomms10929
10.1103/PhysRevLett.109.223903
10.1103/PhysRevLett.114.185502
10.1063/1.4709436
10.1103/PhysRevLett.114.055503
10.1126/science.1227268
10.1073/pnas.1217998110
10.1098/rsos.150067
10.1179/174328005X41168
10.1038/nature20824
10.1088/0953-8984/21/17/175704
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 4, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 4, 2017
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1620714114
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

Virology and AIDS Abstracts
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Decoupling mechanics in modular metamaterials
EISSN 1091-6490
EndPage 3595
ExternalDocumentID 4321779719
10_1073_pnas_1620714114
28320939
26480666
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11572222
– fundername: Tianjin Natural Sciences Foundation
  grantid: 14JCZDJC39500
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11402171
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 114332016
– fundername: Tianjin Natural Sciences Foundation
  grantid: 16JCYBJC28400
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c443t-4517b9c7305c99b4c29b252f8288c5f8cc2d876cad23b90b11682b14c2403e9c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:17:41 EDT 2024
Fri Aug 16 09:18:51 EDT 2024
Thu Oct 10 18:49:28 EDT 2024
Fri Aug 23 01:52:33 EDT 2024
Sat Sep 28 08:46:03 EDT 2024
Fri Feb 02 08:04:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords mechanical metamaterials
forward design
inverse design
modular origami
kirigami
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-4517b9c7305c99b4c29b252f8288c5f8cc2d876cad23b90b11682b14c2403e9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved February 21, 2017 (received for review December 16, 2016)
1N.Y. and J.L.S. contributed equally to this work.
Author contributions: N.Y. and J.L.S. designed research; N.Y. performed research; N.Y. and J.L.S. analyzed data; N.Y. and J.L.S. wrote the paper; and J.L.S. supervised the research.
ORCID 0000-0002-0075-9549
OpenAccessLink https://www.pnas.org/content/pnas/114/14/3590.full.pdf
PMID 28320939
PQID 1888979304
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389267
proquest_miscellaneous_1879663688
proquest_journals_1888979304
crossref_primary_10_1073_pnas_1620714114
pubmed_primary_28320939
jstor_primary_26480666
PublicationCentury 2000
PublicationDate 2017-04-04
PublicationDateYYYYMMDD 2017-04-04
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 25699454 - Phys Rev Lett. 2015 Feb 6;114(5):055503
24695087 - Rep Prog Phys. 2014 Apr;77(4):046603
26601253 - Sci Adv. 2015 Sep 18;1(8):e1500224
26274299 - Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):013205
26001009 - Phys Rev Lett. 2015 May 8;114(18):185502
26965475 - Nat Commun. 2016 Mar 11;7:10929
21825432 - J Phys Condens Matter. 2009 Apr 29;21(17):175704
28102254 - Nature. 2017 Jan 18;541(7637):347-352
27081987 - Phys Rev Lett. 2016 Apr 1;116(13):135501
26808461 - Nat Mater. 2016 Apr;15(4):413-8
19424153 - Nature. 2009 May 7;459(7243):73-6
26808459 - Nat Mater. 2016 May;15(5):583-8
23401549 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3276-81
23197527 - Science. 2012 Nov 30;338(6111):1177-83
23745895 - Phys Rev Lett. 2013 May 24;110(21):215501
26997894 - Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150607
23368121 - Phys Rev Lett. 2012 Nov 30;109(22):223903
20075489 - IEEE Trans Vis Comput Graph. 2010 Mar-Apr;16(2):298-311
26473037 - R Soc Open Sci. 2015 Sep 16;2(9):150067
28138527 - Sci Adv. 2016 Nov 23;2(11):e1601019
25104381 - Science. 2014 Aug 8;345(6197):647-50
22495906 - Adv Mater. 2012 May 22;24(20):2710-4
25814577 - Science. 2015 Mar 27;347(6229):1446-52
25751075 - Nat Mater. 2015 Apr;14(4):389-93
24264981 - Science. 2013 Nov 22;342(6161):939-40
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Filipov E (e_1_3_3_17_2) 2016; 472
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1002/adma.201200584
– ident: e_1_3_3_3_2
  doi: 10.1557/mrc.2015.51
– ident: e_1_3_3_12_2
  doi: 10.1088/0964-1726/23/9/094009
– ident: e_1_3_3_13_2
  doi: 10.1038/nmat4232
– ident: e_1_3_3_16_2
  doi: 10.1038/nmat4540
– ident: e_1_3_3_28_2
  doi: 10.1109/TVCG.2009.67
– ident: e_1_3_3_19_2
  doi: 10.1103/PhysRevE.92.013205
– ident: e_1_3_3_21_2
  doi: 10.1088/0034-4885/77/4/046603
– ident: e_1_3_3_25_2
  doi: 10.1038/nature07971
– ident: e_1_3_3_18_2
  doi: 10.1103/PhysRevLett.116.135501
– ident: e_1_3_3_26_2
  doi: 10.1126/science.aaa5372
– ident: e_1_3_3_30_2
  doi: 10.1126/sciadv.1601019
– ident: e_1_3_3_7_2
  doi: 10.1103/PhysRevLett.110.215501
– ident: e_1_3_3_29_2
  doi: 10.1145/2601097.2601173
– ident: e_1_3_3_24_2
  doi: 10.1038/nmat4544
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1252876
– ident: e_1_3_3_9_2
  doi: 10.1126/sciadv.1500224
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1246545
– ident: e_1_3_3_1_2
  doi: 10.1088/2040-8978/14/11/114009
– volume: 472
  start-page: 20150607
  year: 2016
  ident: e_1_3_3_17_2
  article-title: Origami tubes with reconfigurable polygonal cross-sections
  publication-title: Proc Math Phys Eng Sci
  contributor:
    fullname: Filipov E
– ident: e_1_3_3_20_2
  doi: 10.1038/ncomms10929
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevLett.109.223903
– ident: e_1_3_3_10_2
  doi: 10.1103/PhysRevLett.114.185502
– ident: e_1_3_3_4_2
  doi: 10.1063/1.4709436
– ident: e_1_3_3_14_2
  doi: 10.1103/PhysRevLett.114.055503
– ident: e_1_3_3_27_2
  doi: 10.1126/science.1227268
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1217998110
– ident: e_1_3_3_15_2
  doi: 10.1098/rsos.150067
– ident: e_1_3_3_23_2
  doi: 10.1179/174328005X41168
– ident: e_1_3_3_31_2
  doi: 10.1038/nature20824
– ident: e_1_3_3_5_2
  doi: 10.1088/0953-8984/21/17/175704
SSID ssj0009580
Score 2.4687815
Snippet A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication...
Significance The forward-design approach to mechanical metamaterials determines a structure’s properties after it is designed. In contrast, the inverse-design...
The forward-design approach to mechanical metamaterials determines a structure’s properties after it is designed. In contrast, the inverse-design approach...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3590
SubjectTerms Deformation
Engineering
Mechanical properties
Physical Sciences
Topology
Title Decoupling local mechanics from large-scale structure in modular metamaterials
URI https://www.jstor.org/stable/26480666
https://www.ncbi.nlm.nih.gov/pubmed/28320939
https://www.proquest.com/docview/1888979304
https://search.proquest.com/docview/1879663688
https://pubmed.ncbi.nlm.nih.gov/PMC5389267
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLaAExfEeJaXgsQBDt3WPNrmiHgIIYE4gMStSrIUJrFuYtv_x07bwRAnznGqyrFjf-rnrwBnRhstjMliJxGbSKlkrLHLjbG4pam1ZsCDTsHDY3r3Iu9f1esKqHYWJpD2nR12q49Rtxq-B27lZOR6LU-s9_RwhUmqeZr1VmE1E6KF6Aul3byeO-F4_UouWz2fTPQmlZl2k5TT0A7iABICxoBGTK-XqlJNTPyr5fzNnPxRim43YaPpIdll_a4dWPHVFnSaLJ2y80ZK-mIbHq8RXc5p6PaNharFRp5GfYduymiwhH0QETye4opntZTs_NOzYcVG4wERVNF-ZrCpreN0B15ub56v7uLmDwroeilmsVRJZrXDLFZOaysd15YrXiLMyp0qc-f4AK9Dh0cirO7bJElzbhO0k33htRO7sFaNK78PrJ-UoqR2JOXYYnlljPSlNQiwLE-tlhGctx4sJrVQRhE-cGeiIL8X336PYDd4eGFHLDvCUREctS4vmlTCfYjRNd4ifdx3uljGJKAvG6by4znZZJqiK88j2KtP6PvhzRFHkC2d3cKABLaXVzDugtB2E2cH_955COuc2oBA9jmCNTxHf4xNzMyeUAlRJyF0vwBhQPB_
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHODCvoTVSBzgkLRxnMVHxKKytOIAiFtkuw5UtGlF2wtfz9hJCkVc4FbJ40rR84znKW9eAI4FFzwQInYVQ27CWMhcjl2ui5dbFEkp2tT6FDRbUeOR3TyHzzMQVrMwVrSvZMfLuz0v77xabeWgp2qVTqx23zzHJOU0imuzMI8_aVyR9InXblJMnlAswIyyytEnDmqDXAw9P6JmbAeZgLECxiONrJ5P3UuFNPG3pvOndvLbZXS1DE_VYxQalDdvPJKe-vjh8Pjn51yBpbI9JWfF8irM6HwNVssCMCQnpUv16Tq0LpC4js087wuxFyLpaTNF3FFDYmZWSNdozN0hrmhSuNSO3zXp5KTXbxvtK8aPBPbLRQpswOPV5cN5wy0_zoCosmDkstCPJVdYIELFuWSKcklDmiGDS1SYJUrRNlZahWgHktel70cJlT7GsXqguQo2YS7v53obSN3Pgsx0OhHF7k2HQjCdSYHcTdJIcubASQVNOig8OFL77jwOUgNo-gWoA5sWukmcEfAZiubAXoVlWmYp7kP6z7FA1XHf0WQZ88u8NBG57o9NTMzNwU0SB7YK6L_-vDw7DsRTh2ISYLy7p1cQauvhXUK78--dh7DQeGjepXfXrdtdWKSm27Caoj2YQ0z1PvZKI3lgM-MTsOURqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkBAXnguEp1faA3tI0jhOYh8RUPGsOCwS2ktkuw5U0LSi7YVfz9hJCkWcOEYeR7I-z3hG_uYzwB8ppIilzHzNsDZhLGG-wCzXx8MtTZWSXep0Cm476cU9u3pIHj499eVI-1r1gvKlH5S9J8etHPZ12PDEwrvbU3RSQdMsHHaLcB4W8ZOKplCf6u3yqvuEYhBmlDWqPlkcDks5CqKU2tYdrAasHDBua6zsxczZVNETv0s8v_InPx1I7VX43yyl4qE8B5OxCvTbF5XHH611DVbqNJWcVCbrMGfKDVivA8GIHNdq1X83oXOGBezE9vU-Encwkr6x3cQ9PSK2d4W8WK65P8IRQyq12smrIb2S9Addy4FF-7HEvLlyhV9w3z7_d3rh1480ILosHvssiTIlNAaKRAuhmKZC0YQWWMlxnRRca9rFiKsR9ViJloqilFMVoR1rxUboeAsWykFpdoC0oiIubMaTUsziTCIlM4WSWMMpmirBPDhu4MmHlRZH7u7Qszi3oOYfoHqw5eCb2lkiny3VPNhv8Mxrb8V5nHOBgaqF835Ph9HP7OWJLM1gYm0yYTcw5x5sV_B__LzePx5kMxtjamA1vGdHEG6n5V3Du_vjmUewdHfWzm8uO9d7sExt0uGoRfuwgJCaA0yZxurQOcc7Tu0UKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupling+local+mechanics+from+large-scale+structure+in+modular+metamaterials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yang%2C+Nan&rft.au=Silverberg%2C+Jesse+L.&rft.date=2017-04-04&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=14&rft.spage=3590&rft.epage=3595&rft_id=info:doi/10.1073%2Fpnas.1620714114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1620714114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon