Experimental study on bubble dynamics subject to buoyancy
This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried o...
Saved in:
Published in | Journal of fluid mechanics Vol. 776; pp. 137 - 160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter
${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$
, where
$R_{m}$
,
$p_{amb}$
,
$p_{v}$
,
${\it\rho}$
and
$g$
are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of
${\it\delta}$
from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of
${\it\delta}$
. When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small
${\it\delta}$
, or involutes from both top and bottom for large
${\it\delta}$
. A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479–497; J. Fluid Mech., vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results. |
---|---|
AbstractList | This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter [formula omitted: see PDF] , where [formula omitted: see PDF] , [formula omitted: see PDF] , [formula omitted: see PDF] , [formula omitted: see PDF] and [formula omitted: see PDF] are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of [formula omitted: see PDF] from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of [formula omitted: see PDF] . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small [formula omitted: see PDF] , or involutes from both top and bottom for large [formula omitted: see PDF] . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479-497; J. Fluid Mech., vol. 181, 1987, pp. 197-212) but agree better with the experimental and computational results. This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479–497; J. Fluid Mech., vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results. This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. ( J. Fluid Mech. , vol. 170, 1986, pp. 479–497; J. Fluid Mech. , vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results. |
Author | Cui, J. Wang, Q. X. Zhang, A. M. Cui, P. |
Author_xml | – sequence: 1 givenname: A. M. surname: Zhang fullname: Zhang, A. M. email: zhangaman@hrbeu.edu.cn organization: College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China – sequence: 2 givenname: P. surname: Cui fullname: Cui, P. organization: College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China – sequence: 3 givenname: J. surname: Cui fullname: Cui, J. organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 2 Mengxi Street, Zhenjiang 212003, China – sequence: 4 givenname: Q. X. surname: Wang fullname: Wang, Q. X. organization: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK |
BookMark | eNp1kE1LxDAQhoMouLt68wcUvNp18tGkPcqyfsCCFz2HJE2lpU3WJAX77-2yexDR0xzmed8ZniU6d95ZhG4wrDFgcd81w5oALtaU0DO0wIxXueCsOEcLAEJyjAlcomWMHQCmUIkFqrZfexvawbqk-iymsZ4y7zI9at3brJ6cGloTszjqzpqUJT-v_KScma7QRaP6aK9Pc4XeH7dvm-d89_r0snnY5YYxmnJqdck046oGo7EWRBAKhpWiIaVWpuJNoTUmtTAVLYEVWDNd84pwbEqFOaMrdHvs3Qf_OdqYZOfH4OaTEgtKoOAUxEyRI2WCjzHYRpo2qdR6l4Jqe4lBHhTJWZE8KJKzojl09yu0n1WoMP2Hr0-4GnRo6w_745W_At8GBHhi |
CitedBy_id | crossref_primary_10_1063_5_0247017 crossref_primary_10_1007_s13344_020_0007_7 crossref_primary_10_1016_j_chemosphere_2018_03_157 crossref_primary_10_1007_s00348_019_2679_4 crossref_primary_10_1016_j_oceaneng_2024_116954 crossref_primary_10_1063_1_5113801 crossref_primary_10_1016_j_jfluidstructs_2019_102833 crossref_primary_10_1103_PhysRevFluids_8_023602 crossref_primary_10_1063_5_0006372 crossref_primary_10_1007_s42241_018_0112_8 crossref_primary_10_1016_j_taml_2020_01_003 crossref_primary_10_1155_2015_165252 crossref_primary_10_1155_2018_8456925 crossref_primary_10_1103_PhysRevFluids_3_103604 crossref_primary_10_1016_j_ultsonch_2017_07_004 crossref_primary_10_1017_jfm_2016_463 crossref_primary_10_1017_jfm_2022_698 crossref_primary_10_1063_1_4939007 crossref_primary_10_1016_S1001_6058_16_60763_1 crossref_primary_10_1016_j_ultsonch_2023_106693 crossref_primary_10_1017_jfm_2018_82 crossref_primary_10_1063_1_5112049 crossref_primary_10_1016_j_rinp_2018_12_001 crossref_primary_10_7498_aps_64_174701 crossref_primary_10_1016_j_rser_2017_05_058 crossref_primary_10_1080_17445302_2018_1534773 crossref_primary_10_1016_j_ultsonch_2022_106209 crossref_primary_10_1016_j_apor_2019_102013 crossref_primary_10_1063_5_0188463 crossref_primary_10_1016_j_jcp_2020_109937 crossref_primary_10_1016_S1001_6058_16_60635_2 crossref_primary_10_1016_j_ultsonch_2024_106846 crossref_primary_10_1016_j_ultsonch_2019_104706 crossref_primary_10_1063_5_0196787 crossref_primary_10_1063_5_0174222 crossref_primary_10_3390_jmse12122211 crossref_primary_10_1063_5_0213651 crossref_primary_10_1007_s42241_020_0078_1 crossref_primary_10_1016_j_coldregions_2021_103281 crossref_primary_10_1177_1687814016631708 crossref_primary_10_3390_mi12121518 crossref_primary_10_1016_j_oceaneng_2022_111484 crossref_primary_10_1063_5_0204629 crossref_primary_10_1007_s11804_024_00511_5 crossref_primary_10_1002_ppsc_202300145 crossref_primary_10_1007_s42241_023_0071_6 crossref_primary_10_1016_j_ultsonch_2020_105147 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103143 crossref_primary_10_1016_j_oceaneng_2019_106714 crossref_primary_10_1016_j_oceaneng_2022_111401 crossref_primary_10_1063_5_0218632 crossref_primary_10_1007_s11804_024_00478_3 crossref_primary_10_1007_s11771_018_3971_9 crossref_primary_10_1017_jfm_2017_658 crossref_primary_10_1016_j_ultsonch_2017_08_030 crossref_primary_10_1155_2016_7368624 crossref_primary_10_1016_j_oceaneng_2024_118162 crossref_primary_10_1016_j_oceaneng_2019_06_001 crossref_primary_10_1007_s42241_018_0141_3 crossref_primary_10_1016_j_apor_2016_06_003 crossref_primary_10_1063_5_0096986 crossref_primary_10_1017_jfm_2016_281 crossref_primary_10_1088_0256_307X_34_6_064701 crossref_primary_10_1063_5_0064164 crossref_primary_10_1016_j_compchemeng_2019_106718 crossref_primary_10_1016_j_oceaneng_2020_108311 crossref_primary_10_1007_s42241_023_0088_x crossref_primary_10_1017_jfm_2018_63 crossref_primary_10_1063_1_5044237 crossref_primary_10_1016_j_ultsonch_2016_06_013 crossref_primary_10_1016_j_expthermflusci_2019_04_005 crossref_primary_10_1016_j_apor_2024_104259 crossref_primary_10_1007_s13344_018_0003_3 crossref_primary_10_1016_j_apor_2021_102946 crossref_primary_10_1016_j_oceaneng_2017_08_057 crossref_primary_10_1103_PhysRevFluids_8_083601 crossref_primary_10_1063_1_5088528 crossref_primary_10_1017_jfm_2022_202 crossref_primary_10_1016_j_ultsonch_2025_107298 crossref_primary_10_1007_s11802_021_4527_4 crossref_primary_10_1016_j_oceaneng_2015_09_045 crossref_primary_10_1016_j_oceaneng_2016_03_016 crossref_primary_10_1016_j_taml_2024_100529 crossref_primary_10_1108_HFF_08_2022_0502 crossref_primary_10_1016_j_marpolbul_2023_115371 crossref_primary_10_1063_5_0163793 crossref_primary_10_1063_5_0218482 crossref_primary_10_2112_JCOASTRES_D_16_00094_1 crossref_primary_10_1016_j_engfailanal_2024_109188 crossref_primary_10_1063_5_0220136 crossref_primary_10_1016_j_ultsonch_2020_105440 crossref_primary_10_1063_1_4993800 crossref_primary_10_1063_5_0147605 crossref_primary_10_1063_1_5047570 crossref_primary_10_1016_j_cej_2024_157450 crossref_primary_10_1063_5_0077091 crossref_primary_10_1063_5_0224177 crossref_primary_10_1063_5_0172524 crossref_primary_10_1016_j_oceaneng_2022_111183 crossref_primary_10_1016_j_jfluidstructs_2019_02_022 crossref_primary_10_1007_s12206_016_0511_0 crossref_primary_10_1016_j_taml_2021_100311 crossref_primary_10_1016_j_ultsonch_2024_107063 crossref_primary_10_1063_5_0156558 crossref_primary_10_1007_s11804_024_00422_5 crossref_primary_10_1063_5_0107436 crossref_primary_10_1016_j_ultsonch_2022_106131 crossref_primary_10_1093_imamat_hxz009 crossref_primary_10_1016_j_enganabound_2016_04_002 crossref_primary_10_1007_s42241_021_0061_5 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103096 crossref_primary_10_1016_j_ces_2020_115804 crossref_primary_10_1016_j_enganabound_2019_04_002 crossref_primary_10_1016_j_oceaneng_2021_109393 crossref_primary_10_1016_j_oceaneng_2016_07_052 crossref_primary_10_1007_s11431_018_9420_2 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104584 crossref_primary_10_1063_1_4984080 crossref_primary_10_1016_j_engstruct_2024_118796 crossref_primary_10_1063_5_0200471 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104884 crossref_primary_10_1007_s11012_017_0634_0 crossref_primary_10_1063_1_4944349 crossref_primary_10_1063_5_0157661 crossref_primary_10_1140_epje_i2019_11833_8 crossref_primary_10_2139_ssrn_4179026 crossref_primary_10_1063_5_0177017 crossref_primary_10_1103_PhysRevE_110_015103 crossref_primary_10_1016_j_enganabound_2015_09_009 crossref_primary_10_1016_j_oceaneng_2017_03_054 crossref_primary_10_1016_j_oceaneng_2016_12_017 crossref_primary_10_1063_1_5144975 crossref_primary_10_1063_1_4986821 crossref_primary_10_1063_5_0146491 crossref_primary_10_1016_j_expthermflusci_2024_111225 crossref_primary_10_32604_cmes_2021_015259 crossref_primary_10_1063_5_0220138 crossref_primary_10_1007_s00366_024_02032_9 crossref_primary_10_3390_en15239000 crossref_primary_10_1016_j_apor_2017_05_007 crossref_primary_10_1016_j_ultsonch_2018_01_005 crossref_primary_10_1063_5_0177085 crossref_primary_10_1016_j_enganabound_2019_09_010 crossref_primary_10_1017_jfm_2021_676 crossref_primary_10_1063_5_0155177 crossref_primary_10_1016_j_oceaneng_2024_117101 crossref_primary_10_1063_5_0003960 crossref_primary_10_1016_j_oceaneng_2021_110270 crossref_primary_10_1007_s11804_024_00401_w crossref_primary_10_1016_j_applthermaleng_2024_123088 crossref_primary_10_1016_j_ultsonch_2024_106791 crossref_primary_10_1063_1_4953010 crossref_primary_10_1016_j_ultsonch_2019_104951 crossref_primary_10_1615_InterfacPhenomHeatTransfer_2023049906 crossref_primary_10_1007_s13344_017_0046_x crossref_primary_10_1007_s42241_023_0028_9 crossref_primary_10_1016_j_oceaneng_2017_06_009 crossref_primary_10_1360_SSPMA_2024_0171 crossref_primary_10_1063_5_0107299 crossref_primary_10_1063_5_0180485 crossref_primary_10_1063_5_0184967 crossref_primary_10_1016_j_oceaneng_2015_09_017 crossref_primary_10_3788_CJL221237 crossref_primary_10_1016_j_oceaneng_2016_03_065 crossref_primary_10_1016_j_apor_2018_02_024 crossref_primary_10_1016_j_oceaneng_2019_106523 crossref_primary_10_1063_1_5121380 crossref_primary_10_1017_jfm_2023_292 crossref_primary_10_1016_j_oceaneng_2024_116800 crossref_primary_10_1063_1_5024946 crossref_primary_10_1063_5_0145415 crossref_primary_10_1007_s42241_019_0025_1 crossref_primary_10_1016_j_ultsonch_2018_08_006 crossref_primary_10_1063_1_4967700 crossref_primary_10_1007_s42405_023_00581_9 crossref_primary_10_1016_j_apor_2018_04_013 crossref_primary_10_3390_pr8121643 crossref_primary_10_1016_j_egypro_2017_07_270 crossref_primary_10_1016_j_ultsonch_2025_107255 crossref_primary_10_1111_ijfs_15240 crossref_primary_10_1016_j_ultsonch_2017_07_035 crossref_primary_10_1016_S1001_6058_16_60795_3 crossref_primary_10_1063_1_5142739 crossref_primary_10_1016_j_compfluid_2019_104262 crossref_primary_10_1002_prep_202000099 crossref_primary_10_1016_j_oceaneng_2021_109175 |
Cites_doi | 10.1115/1.3448889 10.1016/j.ijimpeng.2007.01.007 10.1121/1.414857 10.1016/j.jcp.2015.03.049 10.1115/1.2817502 10.1121/1.2047147 10.1063/1.1401810 10.1007/s001620050097 10.1017/S0022112089002314 10.1146/annurev.fl.19.010187.000531 10.1063/1.868953 10.1017/jfm.2011.212 10.1098/rsta.1966.0046 10.1115/1.4005688 10.1007/BF00312403 10.1016/0041-624X(85)90048-4 10.1017/S0022112075003448 10.1002/andp.19955070104 10.1017/S0022112002003695 10.21236/AD0414350 10.1017/S0022112009993776 10.1103/PhysRevLett.107.204501 10.1063/1.870036 10.1017/S0022112087002052 10.1017/S0022112086000988 10.1017/S0022112093002216 10.1016/j.euromechflu.2013.06.008 10.1017/S0022112081002322 10.1146/annurev.fl.16.010184.001255 10.1063/1.1421102 10.1016/0045-7930(96)00007-2 10.1007/978-94-011-0938-3_40 10.1063/1.2338125 10.1017/S0022112086000745 10.1017/S0022112092000387 10.1063/1.1704645 10.1016/j.ultsonch.2013.01.010 10.1017/S0022112077001712 10.5962/bhl.title.48411 10.1017/S0022112089001436 10.1121/1.1476919 10.1007/978-3-642-51070-0_3 10.1063/1.1368163 10.1007/BF00385946 10.1115/1.3425395 10.1016/S0955-7997(03)00079-1 10.1063/1.1594277 10.1017/S0022112005005306 10.1155/2005/395706 10.1007/s00348-008-0568-3 10.21236/AD0296424 10.2514/3.8027 10.1017/S0022112000003347 10.1103/PhysRevLett.97.094502 10.1063/1.4812659 10.1016/j.ijmultiphaseflow.2004.11.006 10.1016/S0734-743X(00)00023-3 10.1017/S0022112098003589 10.1007/BF00385951 10.1017/S0022112098008738 |
ContentType | Journal Article |
Copyright | 2015 Cambridge University Press |
Copyright_xml | – notice: 2015 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2015.323 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | Experimental study on bubble dynamics subject to buoyancy A. M. Zhang, P. Cui, J. Cui and Q. X. Wang |
EISSN | 1469-7645 |
EndPage | 160 |
ExternalDocumentID | 3861346811 10_1017_jfm_2015_323 |
Genre | Feature |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AATMM AAYXX ABVKB ABXAU ABXHF ACDLN AEUYN AFZFC AKMAY BQFHP CITATION PHGZM PHGZT 7TB 7U5 7UA 7XB 8FD 8FK ADMLS C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c443t-3eb84b46ad0cb1b727230c487f28bac96f5bb12d7c9380451b4bd69261c8a1643 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 04:21:18 EDT 2025 Tue Jul 01 03:01:03 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Wed Mar 13 05:52:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | drops and bubbles bubble dynamics cavitation |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-3eb84b46ad0cb1b727230c487f28bac96f5bb12d7c9380451b4bd69261c8a1643 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3CA7300075C42FC0161E5D9754C1DD35/S0022112015003237a.pdf/div-class-title-experimental-study-on-bubble-dynamics-subject-to-buoyancy-div.pdf |
PQID | 1732056307 |
PQPubID | 34769 |
PageCount | 24 |
ParticipantIDs | proquest_journals_1732056307 crossref_citationtrail_10_1017_jfm_2015_323 crossref_primary_10_1017_jfm_2015_323 cambridge_journals_10_1017_jfm_2015_323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150810 |
PublicationDateYYYYMMDD | 2015-08-10 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150810 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2015 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2002; 14 2009; 46 2013; 25 2003; 479 2004; 28 1992; 245 2002; 111 2013; 20 2005; 537 2008; 35 1996a; 25 1985; 23 2001; 89 2003; 94 2015; 294 2012; 134 1984; 16 1999; 380 1981; 111 1972; 94 1983; 21 2005; 31 1999; 11 2001; 13 1996; 8 1998; 12 2011; 682 1993; 254 1998; 361 1982; 38 2006; 97 2000; 24 2013; 42 2005; 118 1987; 19 1995; 4 1975; 72 1977; 80 1966; 260 1996; 99 1986; 169 2011; 107 1989; 206 2004; 16 1989; 203 2010; 651 1996b; 8 1986; 170 1977; 99 1987; 181 1996; 118 2001; 433 2005; 12 2006; 100 Wang (S0022112015003237_r58) 2004; 16 S0022112015003237_r49 Harvey (S0022112015003237_r25) 1996 S0022112015003237_r46 S0022112015003237_r45 S0022112015003237_r48 S0022112015003237_r47 S0022112015003237_r42 S0022112015003237_r41 S0022112015003237_r44 S0022112015003237_r43 S0022112015003237_r40 S0022112015003237_r17 S0022112015003237_r16 S0022112015003237_r19 S0022112015003237_r18 S0022112015003237_r57 S0022112015003237_r13 S0022112015003237_r56 S0022112015003237_r12 S0022112015003237_r15 S0022112015003237_r59 S0022112015003237_r14 S0022112015003237_r53 S0022112015003237_r52 S0022112015003237_r55 S0022112015003237_r11 S0022112015003237_r10 S0022112015003237_r54 S0022112015003237_r51 S0022112015003237_r50 S0022112015003237_r28 S0022112015003237_r27 S0022112015003237_r29 S0022112015003237_r24 S0022112015003237_r23 S0022112015003237_r26 S0022112015003237_r20 S0022112015003237_r64 S0022112015003237_r63 S0022112015003237_r22 S0022112015003237_r21 S0022112015003237_r60 S0022112015003237_r62 S0022112015003237_r61 S0022112015003237_r5 S0022112015003237_r6 S0022112015003237_r3 S0022112015003237_r4 S0022112015003237_r9 S0022112015003237_r7 S0022112015003237_r8 S0022112015003237_r1 S0022112015003237_r39 S0022112015003237_r38 S0022112015003237_r2 S0022112015003237_r35 S0022112015003237_r34 S0022112015003237_r37 S0022112015003237_r36 S0022112015003237_r31 S0022112015003237_r30 S0022112015003237_r33 S0022112015003237_r32 |
References_xml | – volume: 38 start-page: 215 year: 1982 end-page: 224 article-title: The growth and collapse of bubbles near deformable surfaces publication-title: Appl. Sci. Res. – volume: 203 start-page: 199 year: 1989 end-page: 214 article-title: The growth and collapse of cavitation bubbles near composite surfaces publication-title: J. Fluid Mech. – volume: 97 year: 2006 article-title: Cavitation bubble dynamics inside liquid drops in microgravity publication-title: Phys. Rev. Lett. – volume: 72 start-page: 391 year: 1975 end-page: 399 article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary publication-title: J. Fluid Mech. – volume: 23 start-page: 260 year: 1985 end-page: 268 article-title: Cavitation bubble dynamics studied by high speed photography and holography: part one publication-title: Ultrasonics – volume: 118 start-page: 2961 year: 2005 end-page: 2974 article-title: Acoustic signals of underwater explosions near surfaces publication-title: J. Acoust. Soc. Am. – volume: 94 start-page: 2809 year: 2003 end-page: 2816 article-title: Interaction of laser-induced cavitation bubbles with composite surfaces publication-title: J. Appl. Phys. – volume: 294 start-page: 208 year: 2015 end-page: 223 article-title: Improved three-dimensional bubble dynamics model based on boundary element method publication-title: J. Comput. Phys. – volume: 8 start-page: 73 year: 1996b end-page: 88 article-title: Strong interaction between a buoyancy bubble and a free surface publication-title: Theor. Comput. Fluid Dyn. – volume: 170 start-page: 479 year: 1986 end-page: 497 article-title: Transient cavities near boundaries. Part 1. Rigid boundary publication-title: J. Fluid Mech. – volume: 16 start-page: 223 year: 1984 end-page: 244 article-title: Modern optical techniques in fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 118 start-page: 195 year: 1996 end-page: 198 article-title: An experimental investigation of buoyant transient cavity collapse near rigid cylindrical boundaries publication-title: Trans. ASME J. Fluids Engng – volume: 245 start-page: 137 year: 1992 end-page: 154 article-title: A numerical investigation of non-spherical rebounding bubbles publication-title: J. Fluid Mech. – volume: 16 start-page: 1610 year: 2004 end-page: 1619 article-title: Numerical simulation of violent bubble motion publication-title: Phys. Fluids – volume: 13 start-page: 2805 year: 2001 end-page: 2819 article-title: Collapse and rebound of a laser-induced cavitation bubble publication-title: Phys. Fluids – volume: 134 year: 2012 article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall publication-title: Trans. ASME J. Fluids Engng – volume: 24 start-page: 875 year: 2000 end-page: 890 article-title: Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion publication-title: Intl J. Impact Engng – volume: 21 start-page: 55 year: 1983 end-page: 59 article-title: Mechanism of impact pressure generation from spark-generated bubble collapse near a wall publication-title: AAIA J. – volume: 111 start-page: 2594 year: 2002 end-page: 2600 article-title: Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model publication-title: J. Acoust. Soc. Am. – volume: 14 start-page: 85 year: 2002 end-page: 92 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. Fluids – volume: 111 start-page: 123 year: 1981 end-page: 140 article-title: Growth and collapse of a vapour cavity near a free surface publication-title: J. Fluid Mech. – volume: 38 start-page: 165 year: 1982 end-page: 178 article-title: Cavitation bubble dynamics – new tools for an intricate problem publication-title: Appl. Sci. Res. – volume: 380 start-page: 339 year: 1999 end-page: 361 article-title: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary publication-title: J. Fluid Mech. – volume: 94 start-page: 89 year: 1972 end-page: 95 article-title: The kinetic and thermal expansion of vapor bubbles publication-title: Trans. ASME J. Fluids Engng – volume: 12 start-page: 217 year: 2005 end-page: 225 article-title: Simulation of the collapse of an underwater explosion bubble under a circular plate publication-title: Shock Vib. – volume: 651 start-page: 55 year: 2010 end-page: 80 article-title: Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries publication-title: J. Fluid Mech. – volume: 206 start-page: 299 year: 1989 end-page: 338 article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary publication-title: J. Fluid Mech. – volume: 107 year: 2011 article-title: Universal scaling law for jets of collapsing bubbles publication-title: Phys. Rev. Lett. – volume: 20 start-page: 1098 year: 2013 end-page: 1103 article-title: Dynamic features of a laser-induced cavitation bubble near a solid boundary publication-title: Ultrason. Sonochem. – volume: 42 start-page: 69 year: 2013 end-page: 91 article-title: Influences of initial and boundary conditions on underwater explosion bubble dynamics publication-title: Eur. J. Mech. (B/Fluids) – volume: 100 year: 2006 article-title: Experimental and numerical study of transient bubble–elastic membrane interaction publication-title: J. Appl. Phys. – volume: 361 start-page: 75 year: 1998 end-page: 116 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. – volume: 25 start-page: 607 year: 1996a end-page: 628 article-title: Nonlinear interaction between gas bubble and free surface publication-title: Comput. Fluids – volume: 4 start-page: 26 year: 1995 end-page: 34 article-title: Cavitation bubble collapse studied at 20 million frames per second publication-title: Ann. Phys. – volume: 11 start-page: 2437 year: 1999 end-page: 2439 article-title: Experimental observations of the interaction of a laser generated cavitation bubble with a flexible membrane publication-title: Phys. Fluids – volume: 99 start-page: 2811 year: 1996 end-page: 2824 article-title: The interaction of a laser-generated cavity in water with a solid surface publication-title: J. Acoust. Soc. Am. – volume: 80 start-page: 369 year: 1977 end-page: 391 article-title: Collapse of a non-hemispherical bubble attached to a solid wall publication-title: J. Fluid Mech. – volume: 169 start-page: 535 year: 1986 end-page: 564 article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse publication-title: J. Fluid Mech. – volume: 31 start-page: 302 year: 2005 end-page: 317 article-title: Pulsating, buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state publication-title: Intl J. Multiphase Flow – volume: 28 start-page: 295 year: 2004 end-page: 313 article-title: Bubble interactions near a free surface publication-title: Engng Anal. Bound. Elem. – volume: 19 start-page: 99 year: 1987 end-page: 123 article-title: Cavitation bubbles near boundaries publication-title: Annu. Rev. Fluid Mech. – volume: 35 start-page: 206 year: 2008 end-page: 225 article-title: A study of explosive effects in close proximity to a submerged cylinder publication-title: Intl J. Impact Engng – volume: 181 start-page: 197 year: 1987 end-page: 212 article-title: Transient cavities near boundaries. Part 2. Free surface publication-title: J. Fluid Mech. – volume: 25 year: 2013 article-title: Underwater explosion bubble dynamics in a compressible liquid publication-title: Phys. Fluids – volume: 254 start-page: 437 year: 1993 end-page: 466 article-title: Gas bubbles bursting at a free surface publication-title: J. Fluid Mech. – volume: 682 start-page: 241 year: 2011 end-page: 260 article-title: Cavitation bubble dynamics in a liquid gap of variable height publication-title: J. Fluid Mech. – volume: 12 start-page: 29 year: 1998 end-page: 51 article-title: The evolution of a gas bubble near an inclined wall publication-title: J. Theor. Comput. Fluid Dyn. – volume: 89 start-page: 8225 year: 2001 end-page: 8237 article-title: Interaction of cavitation bubbles with a free surface publication-title: J. Appl. Phys. – volume: 433 start-page: 251 year: 2001 end-page: 281 article-title: Dynamics of laser-induced cavitation bubbles near an elastic boundary publication-title: J. Fluid Mech. – volume: 8 start-page: 1699 year: 1996 end-page: 1701 article-title: Observations of a cavitation bubble interacting with a solid boundary as seen from below publication-title: Phys. Fluids – volume: 479 start-page: 327 year: 2003 end-page: 348 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. – volume: 46 start-page: 419 year: 2009 end-page: 434 article-title: A collapsing bubble-induced microinjector: an experimental study publication-title: Exp. Fluids – volume: 537 start-page: 387 year: 2005 end-page: 413 article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure publication-title: J. Fluid Mech. – volume: 260 start-page: 221 year: 1966 end-page: 240 article-title: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries publication-title: Phil. Trans. R. Soc. Lond. A – volume: 99 start-page: 709 year: 1977 end-page: 716 article-title: Interaction between an oscillating bubble and a free surface publication-title: Trans. ASME J. Fluids Engng – ident: S0022112015003237_r16 doi: 10.1115/1.3448889 – ident: S0022112015003237_r10 doi: 10.1016/j.ijimpeng.2007.01.007 – ident: S0022112015003237_r46 doi: 10.1121/1.414857 – ident: S0022112015003237_r63 doi: 10.1016/j.jcp.2015.03.049 – ident: S0022112015003237_r4 doi: 10.1115/1.2817502 – ident: S0022112015003237_r33 doi: 10.1121/1.2047147 – ident: S0022112015003237_r1 doi: 10.1063/1.1401810 – ident: S0022112015003237_r57 doi: 10.1007/s001620050097 – ident: S0022112015003237_r56 doi: 10.1017/S0022112089002314 – ident: S0022112015003237_r19 – ident: S0022112015003237_r6 doi: 10.1146/annurev.fl.19.010187.000531 – ident: S0022112015003237_r29 doi: 10.1063/1.868953 – ident: S0022112015003237_r24 doi: 10.1017/jfm.2011.212 – ident: S0022112015003237_r2 doi: 10.1098/rsta.1966.0046 – ident: S0022112015003237_r28 doi: 10.1115/1.4005688 – ident: S0022112015003237_r61 doi: 10.1007/BF00312403 – ident: S0022112015003237_r36 doi: 10.1016/0041-624X(85)90048-4 – ident: S0022112015003237_r35 doi: 10.1017/S0022112075003448 – ident: S0022112015003237_r41 doi: 10.1002/andp.19955070104 – ident: S0022112015003237_r38 doi: 10.1017/S0022112002003695 – ident: S0022112015003237_r51 doi: 10.21236/AD0414350 – ident: S0022112015003237_r27 doi: 10.1017/S0022112009993776 – ident: S0022112015003237_r40 doi: 10.1103/PhysRevLett.107.204501 – ident: S0022112015003237_r45 doi: 10.1063/1.870036 – ident: S0022112015003237_r8 doi: 10.1017/S0022112087002052 – ident: S0022112015003237_r7 doi: 10.1017/S0022112086000988 – ident: S0022112015003237_r9 doi: 10.1017/S0022112093002216 – ident: S0022112015003237_r64 doi: 10.1016/j.euromechflu.2013.06.008 – ident: S0022112015003237_r5 doi: 10.1017/S0022112081002322 – ident: S0022112015003237_r37 doi: 10.1146/annurev.fl.16.010184.001255 – ident: S0022112015003237_r12 doi: 10.1063/1.1421102 – ident: S0022112015003237_r60 doi: 10.1016/0045-7930(96)00007-2 – ident: S0022112015003237_r26 doi: 10.1007/978-94-011-0938-3_40 – ident: S0022112015003237_r55 doi: 10.1063/1.2338125 – ident: S0022112015003237_r53 doi: 10.1017/S0022112086000745 – ident: S0022112015003237_r3 doi: 10.1017/S0022112092000387 – volume: 16 start-page: 1610 year: 2004 ident: S0022112015003237_r58 article-title: Numerical simulation of violent bubble motion publication-title: Phys. Fluids doi: 10.1063/1.1704645 – ident: S0022112015003237_r62 doi: 10.1016/j.ultsonch.2013.01.010 – ident: S0022112015003237_r47 doi: 10.1017/S0022112077001712 – ident: S0022112015003237_r32 – ident: S0022112015003237_r17 – ident: S0022112015003237_r20 doi: 10.5962/bhl.title.48411 – ident: S0022112015003237_r49 doi: 10.1017/S0022112089001436 – ident: S0022112015003237_r15 doi: 10.1121/1.1476919 – ident: S0022112015003237_r18 doi: 10.1007/978-3-642-51070-0_3 – ident: S0022112015003237_r44 doi: 10.1063/1.1368163 – ident: S0022112015003237_r34 doi: 10.1007/BF00385946 – ident: S0022112015003237_r22 doi: 10.1115/1.3425395 – ident: S0022112015003237_r42 doi: 10.1016/S0955-7997(03)00079-1 – ident: S0022112015003237_r52 doi: 10.1063/1.1594277 – ident: S0022112015003237_r31 doi: 10.1017/S0022112005005306 – ident: S0022112015003237_r30 doi: 10.1155/2005/395706 – ident: S0022112015003237_r21 doi: 10.1007/s00348-008-0568-3 – ident: S0022112015003237_r50 doi: 10.21236/AD0296424 – ident: S0022112015003237_r48 doi: 10.2514/3.8027 – ident: S0022112015003237_r13 doi: 10.1017/S0022112000003347 – volume-title: Vapour Bubble Measurement Using Image Analysis year: 1996 ident: S0022112015003237_r25 – ident: S0022112015003237_r39 doi: 10.1103/PhysRevLett.97.094502 – ident: S0022112015003237_r59 doi: 10.1063/1.4812659 – ident: S0022112015003237_r14 doi: 10.1016/j.ijmultiphaseflow.2004.11.006 – ident: S0022112015003237_r11 doi: 10.1016/S0734-743X(00)00023-3 – ident: S0022112015003237_r54 doi: 10.1017/S0022112098003589 – ident: S0022112015003237_r23 doi: 10.1007/BF00385951 – ident: S0022112015003237_r43 doi: 10.1017/S0022112098008738 |
SSID | ssj0013097 |
Score | 2.5707552 |
Snippet | This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137 |
SubjectTerms | Boundary layer Bubbles Buoyancy Fluid mechanics Free surfaces Vapor pressure |
Title | Experimental study on bubble dynamics subject to buoyancy |
URI | https://www.cambridge.org/core/product/identifier/S0022112015003237/type/journal_article https://www.proquest.com/docview/1732056307 |
Volume | 776 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT8IwFMBfFGKiBz9QI4qkB40HU91o2bqTQQWJUWJUEm7LXrceDGHoxsH_3naUrwOe-7Ilr-37aF9_D-BCItOOlbnUS4RHuYoFFTLh1FUK9QbxPScqaJ89r9vnz4PmwB64ZbascmYTC0Mdp9Kckd-6Pms4Bmbl342_qekaZW5XbQuNTShrEyx08lW-b_fe3hf3CE7gz3jhOrJwbOm7gUZ_KfMQ3W3eMNOqaAFWWHVQq_a5cDqdfdi10SJpTaf3ADaSUQX2bORI7L7MKrCzhBWswFZR1imzQwjaSwB_UqBkSToiOEEcJiSedqPPSDZBcxxD8lQPpb_G4B5Bv9P-fOhS2yyBSs5ZTlmCgiP3otiR6KK5X2WO1OmIagiMZOCpJqLbiH0ZMGGgMsgx9gKdQEkR6ZyJHUNplI6SEyAqMBw2J5IJBjxgMtJeTDnoGXSMK2JVhau5tkK75LNwWi7mh1qvodFrqPVaheuZLkNpmeOm9cVwjfTlXHo8ZW2skavNpmXp9_P1cfr_8Blsmw_RAmtbg1L-M0nOdWCRYx02ReepDuXW4-vLR92upT9TcczG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT9wwEIBHFITaHngsVOVVfABxQIYk9ib2oaoQsF2eJ5C4hYxjHyqa0GZX1f6p_kY82WRZDnDj7FEijcczY3v8DcCOQeEDqwh5bFXMpcsVV8ZKHjqHfoEkcZDVtM_ruH8rz--6dzPwv30LQ2WVrU-sHXVeGjojPwwTEQUEs0p-PP7h1DWKblfbFhpjs7iwo39-y1Z9Pzvx87sbRb3Tm-M-b7oKcCOlGHBhUUmUcZYHBkOki0gRGJ-3u0hhZnTsuohhlCdGC0X0FZSYx9rvNIzK_OZC-O9-gDkphKYVpXo_n28tAp20dHKfxwRNoT0hqn85evYedg8ENUZ6xji8DIcvo0Ed4npLsNDkpuxobEzLMGOLDiw2eSprvEDVgc9TEMMOzNdFpKZaAX061S6A1eBaVhYMh4gPluWjIvvt5Vg1RDr8YYPSD5Ujcu-rcPsuSvwCs0VZ2K_AnCbqW5AZi1pqYTIfM12AMYFqQpW7NdibaCttFliVjovTktTrNSW9pl6va7Df6jI1DeGcGm08vCK9O5F-HJM9XpHbbKdl6vcTa1x_e3gbPvZvri7Ty7Priw34RB_lNVB3E2YHf4d2y6c0A_xW2xGD-_c23CdLrQUl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+bubble+dynamics+subject+to+buoyancy&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Zhang%2C+A+M&rft.au=Cui%2C+P&rft.au=Cui%2C+J&rft.au=Wang%2C+Q+X&rft.date=2015-08-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=776&rft.spage=137&rft_id=info:doi/10.1017%2Fjfm.2015.323&rft.externalDocID=3861346811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |