Experimental study on bubble dynamics subject to buoyancy

This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried o...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 776; pp. 137 - 160
Main Authors Zhang, A. M., Cui, P., Cui, J., Wang, Q. X.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479–497; J. Fluid Mech., vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results.
AbstractList This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter [formula omitted: see PDF] , where [formula omitted: see PDF] , [formula omitted: see PDF] , [formula omitted: see PDF] , [formula omitted: see PDF] and [formula omitted: see PDF] are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of [formula omitted: see PDF] from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of [formula omitted: see PDF] . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small [formula omitted: see PDF] , or involutes from both top and bottom for large [formula omitted: see PDF] . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479-497; J. Fluid Mech., vol. 181, 1987, pp. 197-212) but agree better with the experimental and computational results.
This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479–497; J. Fluid Mech., vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results.
This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al.  ( J. Fluid Mech. , vol. 170, 1986, pp. 479–497; J. Fluid Mech. , vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results.
Author Cui, J.
Wang, Q. X.
Zhang, A. M.
Cui, P.
Author_xml – sequence: 1
  givenname: A. M.
  surname: Zhang
  fullname: Zhang, A. M.
  email: zhangaman@hrbeu.edu.cn
  organization: College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China
– sequence: 2
  givenname: P.
  surname: Cui
  fullname: Cui, P.
  organization: College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China
– sequence: 3
  givenname: J.
  surname: Cui
  fullname: Cui, J.
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 2 Mengxi Street, Zhenjiang 212003, China
– sequence: 4
  givenname: Q. X.
  surname: Wang
  fullname: Wang, Q. X.
  organization: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
BookMark eNp1kE1LxDAQhoMouLt68wcUvNp18tGkPcqyfsCCFz2HJE2lpU3WJAX77-2yexDR0xzmed8ZniU6d95ZhG4wrDFgcd81w5oALtaU0DO0wIxXueCsOEcLAEJyjAlcomWMHQCmUIkFqrZfexvawbqk-iymsZ4y7zI9at3brJ6cGloTszjqzpqUJT-v_KScma7QRaP6aK9Pc4XeH7dvm-d89_r0snnY5YYxmnJqdck046oGo7EWRBAKhpWiIaVWpuJNoTUmtTAVLYEVWDNd84pwbEqFOaMrdHvs3Qf_OdqYZOfH4OaTEgtKoOAUxEyRI2WCjzHYRpo2qdR6l4Jqe4lBHhTJWZE8KJKzojl09yu0n1WoMP2Hr0-4GnRo6w_745W_At8GBHhi
CitedBy_id crossref_primary_10_1063_5_0247017
crossref_primary_10_1007_s13344_020_0007_7
crossref_primary_10_1016_j_chemosphere_2018_03_157
crossref_primary_10_1007_s00348_019_2679_4
crossref_primary_10_1016_j_oceaneng_2024_116954
crossref_primary_10_1063_1_5113801
crossref_primary_10_1016_j_jfluidstructs_2019_102833
crossref_primary_10_1103_PhysRevFluids_8_023602
crossref_primary_10_1063_5_0006372
crossref_primary_10_1007_s42241_018_0112_8
crossref_primary_10_1016_j_taml_2020_01_003
crossref_primary_10_1155_2015_165252
crossref_primary_10_1155_2018_8456925
crossref_primary_10_1103_PhysRevFluids_3_103604
crossref_primary_10_1016_j_ultsonch_2017_07_004
crossref_primary_10_1017_jfm_2016_463
crossref_primary_10_1017_jfm_2022_698
crossref_primary_10_1063_1_4939007
crossref_primary_10_1016_S1001_6058_16_60763_1
crossref_primary_10_1016_j_ultsonch_2023_106693
crossref_primary_10_1017_jfm_2018_82
crossref_primary_10_1063_1_5112049
crossref_primary_10_1016_j_rinp_2018_12_001
crossref_primary_10_7498_aps_64_174701
crossref_primary_10_1016_j_rser_2017_05_058
crossref_primary_10_1080_17445302_2018_1534773
crossref_primary_10_1016_j_ultsonch_2022_106209
crossref_primary_10_1016_j_apor_2019_102013
crossref_primary_10_1063_5_0188463
crossref_primary_10_1016_j_jcp_2020_109937
crossref_primary_10_1016_S1001_6058_16_60635_2
crossref_primary_10_1016_j_ultsonch_2024_106846
crossref_primary_10_1016_j_ultsonch_2019_104706
crossref_primary_10_1063_5_0196787
crossref_primary_10_1063_5_0174222
crossref_primary_10_3390_jmse12122211
crossref_primary_10_1063_5_0213651
crossref_primary_10_1007_s42241_020_0078_1
crossref_primary_10_1016_j_coldregions_2021_103281
crossref_primary_10_1177_1687814016631708
crossref_primary_10_3390_mi12121518
crossref_primary_10_1016_j_oceaneng_2022_111484
crossref_primary_10_1063_5_0204629
crossref_primary_10_1007_s11804_024_00511_5
crossref_primary_10_1002_ppsc_202300145
crossref_primary_10_1007_s42241_023_0071_6
crossref_primary_10_1016_j_ultsonch_2020_105147
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103143
crossref_primary_10_1016_j_oceaneng_2019_106714
crossref_primary_10_1016_j_oceaneng_2022_111401
crossref_primary_10_1063_5_0218632
crossref_primary_10_1007_s11804_024_00478_3
crossref_primary_10_1007_s11771_018_3971_9
crossref_primary_10_1017_jfm_2017_658
crossref_primary_10_1016_j_ultsonch_2017_08_030
crossref_primary_10_1155_2016_7368624
crossref_primary_10_1016_j_oceaneng_2024_118162
crossref_primary_10_1016_j_oceaneng_2019_06_001
crossref_primary_10_1007_s42241_018_0141_3
crossref_primary_10_1016_j_apor_2016_06_003
crossref_primary_10_1063_5_0096986
crossref_primary_10_1017_jfm_2016_281
crossref_primary_10_1088_0256_307X_34_6_064701
crossref_primary_10_1063_5_0064164
crossref_primary_10_1016_j_compchemeng_2019_106718
crossref_primary_10_1016_j_oceaneng_2020_108311
crossref_primary_10_1007_s42241_023_0088_x
crossref_primary_10_1017_jfm_2018_63
crossref_primary_10_1063_1_5044237
crossref_primary_10_1016_j_ultsonch_2016_06_013
crossref_primary_10_1016_j_expthermflusci_2019_04_005
crossref_primary_10_1016_j_apor_2024_104259
crossref_primary_10_1007_s13344_018_0003_3
crossref_primary_10_1016_j_apor_2021_102946
crossref_primary_10_1016_j_oceaneng_2017_08_057
crossref_primary_10_1103_PhysRevFluids_8_083601
crossref_primary_10_1063_1_5088528
crossref_primary_10_1017_jfm_2022_202
crossref_primary_10_1016_j_ultsonch_2025_107298
crossref_primary_10_1007_s11802_021_4527_4
crossref_primary_10_1016_j_oceaneng_2015_09_045
crossref_primary_10_1016_j_oceaneng_2016_03_016
crossref_primary_10_1016_j_taml_2024_100529
crossref_primary_10_1108_HFF_08_2022_0502
crossref_primary_10_1016_j_marpolbul_2023_115371
crossref_primary_10_1063_5_0163793
crossref_primary_10_1063_5_0218482
crossref_primary_10_2112_JCOASTRES_D_16_00094_1
crossref_primary_10_1016_j_engfailanal_2024_109188
crossref_primary_10_1063_5_0220136
crossref_primary_10_1016_j_ultsonch_2020_105440
crossref_primary_10_1063_1_4993800
crossref_primary_10_1063_5_0147605
crossref_primary_10_1063_1_5047570
crossref_primary_10_1016_j_cej_2024_157450
crossref_primary_10_1063_5_0077091
crossref_primary_10_1063_5_0224177
crossref_primary_10_1063_5_0172524
crossref_primary_10_1016_j_oceaneng_2022_111183
crossref_primary_10_1016_j_jfluidstructs_2019_02_022
crossref_primary_10_1007_s12206_016_0511_0
crossref_primary_10_1016_j_taml_2021_100311
crossref_primary_10_1016_j_ultsonch_2024_107063
crossref_primary_10_1063_5_0156558
crossref_primary_10_1007_s11804_024_00422_5
crossref_primary_10_1063_5_0107436
crossref_primary_10_1016_j_ultsonch_2022_106131
crossref_primary_10_1093_imamat_hxz009
crossref_primary_10_1016_j_enganabound_2016_04_002
crossref_primary_10_1007_s42241_021_0061_5
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103096
crossref_primary_10_1016_j_ces_2020_115804
crossref_primary_10_1016_j_enganabound_2019_04_002
crossref_primary_10_1016_j_oceaneng_2021_109393
crossref_primary_10_1016_j_oceaneng_2016_07_052
crossref_primary_10_1007_s11431_018_9420_2
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104584
crossref_primary_10_1063_1_4984080
crossref_primary_10_1016_j_engstruct_2024_118796
crossref_primary_10_1063_5_0200471
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104884
crossref_primary_10_1007_s11012_017_0634_0
crossref_primary_10_1063_1_4944349
crossref_primary_10_1063_5_0157661
crossref_primary_10_1140_epje_i2019_11833_8
crossref_primary_10_2139_ssrn_4179026
crossref_primary_10_1063_5_0177017
crossref_primary_10_1103_PhysRevE_110_015103
crossref_primary_10_1016_j_enganabound_2015_09_009
crossref_primary_10_1016_j_oceaneng_2017_03_054
crossref_primary_10_1016_j_oceaneng_2016_12_017
crossref_primary_10_1063_1_5144975
crossref_primary_10_1063_1_4986821
crossref_primary_10_1063_5_0146491
crossref_primary_10_1016_j_expthermflusci_2024_111225
crossref_primary_10_32604_cmes_2021_015259
crossref_primary_10_1063_5_0220138
crossref_primary_10_1007_s00366_024_02032_9
crossref_primary_10_3390_en15239000
crossref_primary_10_1016_j_apor_2017_05_007
crossref_primary_10_1016_j_ultsonch_2018_01_005
crossref_primary_10_1063_5_0177085
crossref_primary_10_1016_j_enganabound_2019_09_010
crossref_primary_10_1017_jfm_2021_676
crossref_primary_10_1063_5_0155177
crossref_primary_10_1016_j_oceaneng_2024_117101
crossref_primary_10_1063_5_0003960
crossref_primary_10_1016_j_oceaneng_2021_110270
crossref_primary_10_1007_s11804_024_00401_w
crossref_primary_10_1016_j_applthermaleng_2024_123088
crossref_primary_10_1016_j_ultsonch_2024_106791
crossref_primary_10_1063_1_4953010
crossref_primary_10_1016_j_ultsonch_2019_104951
crossref_primary_10_1615_InterfacPhenomHeatTransfer_2023049906
crossref_primary_10_1007_s13344_017_0046_x
crossref_primary_10_1007_s42241_023_0028_9
crossref_primary_10_1016_j_oceaneng_2017_06_009
crossref_primary_10_1360_SSPMA_2024_0171
crossref_primary_10_1063_5_0107299
crossref_primary_10_1063_5_0180485
crossref_primary_10_1063_5_0184967
crossref_primary_10_1016_j_oceaneng_2015_09_017
crossref_primary_10_3788_CJL221237
crossref_primary_10_1016_j_oceaneng_2016_03_065
crossref_primary_10_1016_j_apor_2018_02_024
crossref_primary_10_1016_j_oceaneng_2019_106523
crossref_primary_10_1063_1_5121380
crossref_primary_10_1017_jfm_2023_292
crossref_primary_10_1016_j_oceaneng_2024_116800
crossref_primary_10_1063_1_5024946
crossref_primary_10_1063_5_0145415
crossref_primary_10_1007_s42241_019_0025_1
crossref_primary_10_1016_j_ultsonch_2018_08_006
crossref_primary_10_1063_1_4967700
crossref_primary_10_1007_s42405_023_00581_9
crossref_primary_10_1016_j_apor_2018_04_013
crossref_primary_10_3390_pr8121643
crossref_primary_10_1016_j_egypro_2017_07_270
crossref_primary_10_1016_j_ultsonch_2025_107255
crossref_primary_10_1111_ijfs_15240
crossref_primary_10_1016_j_ultsonch_2017_07_035
crossref_primary_10_1016_S1001_6058_16_60795_3
crossref_primary_10_1063_1_5142739
crossref_primary_10_1016_j_compfluid_2019_104262
crossref_primary_10_1002_prep_202000099
crossref_primary_10_1016_j_oceaneng_2021_109175
Cites_doi 10.1115/1.3448889
10.1016/j.ijimpeng.2007.01.007
10.1121/1.414857
10.1016/j.jcp.2015.03.049
10.1115/1.2817502
10.1121/1.2047147
10.1063/1.1401810
10.1007/s001620050097
10.1017/S0022112089002314
10.1146/annurev.fl.19.010187.000531
10.1063/1.868953
10.1017/jfm.2011.212
10.1098/rsta.1966.0046
10.1115/1.4005688
10.1007/BF00312403
10.1016/0041-624X(85)90048-4
10.1017/S0022112075003448
10.1002/andp.19955070104
10.1017/S0022112002003695
10.21236/AD0414350
10.1017/S0022112009993776
10.1103/PhysRevLett.107.204501
10.1063/1.870036
10.1017/S0022112087002052
10.1017/S0022112086000988
10.1017/S0022112093002216
10.1016/j.euromechflu.2013.06.008
10.1017/S0022112081002322
10.1146/annurev.fl.16.010184.001255
10.1063/1.1421102
10.1016/0045-7930(96)00007-2
10.1007/978-94-011-0938-3_40
10.1063/1.2338125
10.1017/S0022112086000745
10.1017/S0022112092000387
10.1063/1.1704645
10.1016/j.ultsonch.2013.01.010
10.1017/S0022112077001712
10.5962/bhl.title.48411
10.1017/S0022112089001436
10.1121/1.1476919
10.1007/978-3-642-51070-0_3
10.1063/1.1368163
10.1007/BF00385946
10.1115/1.3425395
10.1016/S0955-7997(03)00079-1
10.1063/1.1594277
10.1017/S0022112005005306
10.1155/2005/395706
10.1007/s00348-008-0568-3
10.21236/AD0296424
10.2514/3.8027
10.1017/S0022112000003347
10.1103/PhysRevLett.97.094502
10.1063/1.4812659
10.1016/j.ijmultiphaseflow.2004.11.006
10.1016/S0734-743X(00)00023-3
10.1017/S0022112098003589
10.1007/BF00385951
10.1017/S0022112098008738
ContentType Journal Article
Copyright 2015 Cambridge University Press
Copyright_xml – notice: 2015 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2015.323
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Experimental study on bubble dynamics subject to buoyancy
A. M. Zhang, P. Cui, J. Cui and Q. X. Wang
EISSN 1469-7645
EndPage 160
ExternalDocumentID 3861346811
10_1017_jfm_2015_323
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AATMM
AAYXX
ABVKB
ABXAU
ABXHF
ACDLN
AEUYN
AFZFC
AKMAY
BQFHP
CITATION
PHGZM
PHGZT
7TB
7U5
7UA
7XB
8FD
8FK
ADMLS
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c443t-3eb84b46ad0cb1b727230c487f28bac96f5bb12d7c9380451b4bd69261c8a1643
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 04:21:18 EDT 2025
Tue Jul 01 03:01:03 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Mar 13 05:52:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords drops and bubbles
bubble dynamics
cavitation
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-3eb84b46ad0cb1b727230c487f28bac96f5bb12d7c9380451b4bd69261c8a1643
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3CA7300075C42FC0161E5D9754C1DD35/S0022112015003237a.pdf/div-class-title-experimental-study-on-bubble-dynamics-subject-to-buoyancy-div.pdf
PQID 1732056307
PQPubID 34769
PageCount 24
ParticipantIDs proquest_journals_1732056307
crossref_citationtrail_10_1017_jfm_2015_323
crossref_primary_10_1017_jfm_2015_323
cambridge_journals_10_1017_jfm_2015_323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150810
PublicationDateYYYYMMDD 2015-08-10
PublicationDate_xml – month: 08
  year: 2015
  text: 20150810
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2015
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2002; 14
2009; 46
2013; 25
2003; 479
2004; 28
1992; 245
2002; 111
2013; 20
2005; 537
2008; 35
1996a; 25
1985; 23
2001; 89
2003; 94
2015; 294
2012; 134
1984; 16
1999; 380
1981; 111
1972; 94
1983; 21
2005; 31
1999; 11
2001; 13
1996; 8
1998; 12
2011; 682
1993; 254
1998; 361
1982; 38
2006; 97
2000; 24
2013; 42
2005; 118
1987; 19
1995; 4
1975; 72
1977; 80
1966; 260
1996; 99
1986; 169
2011; 107
1989; 206
2004; 16
1989; 203
2010; 651
1996b; 8
1986; 170
1977; 99
1987; 181
1996; 118
2001; 433
2005; 12
2006; 100
Wang (S0022112015003237_r58) 2004; 16
S0022112015003237_r49
Harvey (S0022112015003237_r25) 1996
S0022112015003237_r46
S0022112015003237_r45
S0022112015003237_r48
S0022112015003237_r47
S0022112015003237_r42
S0022112015003237_r41
S0022112015003237_r44
S0022112015003237_r43
S0022112015003237_r40
S0022112015003237_r17
S0022112015003237_r16
S0022112015003237_r19
S0022112015003237_r18
S0022112015003237_r57
S0022112015003237_r13
S0022112015003237_r56
S0022112015003237_r12
S0022112015003237_r15
S0022112015003237_r59
S0022112015003237_r14
S0022112015003237_r53
S0022112015003237_r52
S0022112015003237_r55
S0022112015003237_r11
S0022112015003237_r10
S0022112015003237_r54
S0022112015003237_r51
S0022112015003237_r50
S0022112015003237_r28
S0022112015003237_r27
S0022112015003237_r29
S0022112015003237_r24
S0022112015003237_r23
S0022112015003237_r26
S0022112015003237_r20
S0022112015003237_r64
S0022112015003237_r63
S0022112015003237_r22
S0022112015003237_r21
S0022112015003237_r60
S0022112015003237_r62
S0022112015003237_r61
S0022112015003237_r5
S0022112015003237_r6
S0022112015003237_r3
S0022112015003237_r4
S0022112015003237_r9
S0022112015003237_r7
S0022112015003237_r8
S0022112015003237_r1
S0022112015003237_r39
S0022112015003237_r38
S0022112015003237_r2
S0022112015003237_r35
S0022112015003237_r34
S0022112015003237_r37
S0022112015003237_r36
S0022112015003237_r31
S0022112015003237_r30
S0022112015003237_r33
S0022112015003237_r32
References_xml – volume: 38
  start-page: 215
  year: 1982
  end-page: 224
  article-title: The growth and collapse of bubbles near deformable surfaces
  publication-title: Appl. Sci. Res.
– volume: 203
  start-page: 199
  year: 1989
  end-page: 214
  article-title: The growth and collapse of cavitation bubbles near composite surfaces
  publication-title: J. Fluid Mech.
– volume: 97
  year: 2006
  article-title: Cavitation bubble dynamics inside liquid drops in microgravity
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 391
  year: 1975
  end-page: 399
  article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 260
  year: 1985
  end-page: 268
  article-title: Cavitation bubble dynamics studied by high speed photography and holography: part one
  publication-title: Ultrasonics
– volume: 118
  start-page: 2961
  year: 2005
  end-page: 2974
  article-title: Acoustic signals of underwater explosions near surfaces
  publication-title: J. Acoust. Soc. Am.
– volume: 94
  start-page: 2809
  year: 2003
  end-page: 2816
  article-title: Interaction of laser-induced cavitation bubbles with composite surfaces
  publication-title: J. Appl. Phys.
– volume: 294
  start-page: 208
  year: 2015
  end-page: 223
  article-title: Improved three-dimensional bubble dynamics model based on boundary element method
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 73
  year: 1996b
  end-page: 88
  article-title: Strong interaction between a buoyancy bubble and a free surface
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 170
  start-page: 479
  year: 1986
  end-page: 497
  article-title: Transient cavities near boundaries. Part 1. Rigid boundary
  publication-title: J. Fluid Mech.
– volume: 16
  start-page: 223
  year: 1984
  end-page: 244
  article-title: Modern optical techniques in fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 118
  start-page: 195
  year: 1996
  end-page: 198
  article-title: An experimental investigation of buoyant transient cavity collapse near rigid cylindrical boundaries
  publication-title: Trans. ASME J. Fluids Engng
– volume: 245
  start-page: 137
  year: 1992
  end-page: 154
  article-title: A numerical investigation of non-spherical rebounding bubbles
  publication-title: J. Fluid Mech.
– volume: 16
  start-page: 1610
  year: 2004
  end-page: 1619
  article-title: Numerical simulation of violent bubble motion
  publication-title: Phys. Fluids
– volume: 13
  start-page: 2805
  year: 2001
  end-page: 2819
  article-title: Collapse and rebound of a laser-induced cavitation bubble
  publication-title: Phys. Fluids
– volume: 134
  year: 2012
  article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall
  publication-title: Trans. ASME J. Fluids Engng
– volume: 24
  start-page: 875
  year: 2000
  end-page: 890
  article-title: Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion
  publication-title: Intl J. Impact Engng
– volume: 21
  start-page: 55
  year: 1983
  end-page: 59
  article-title: Mechanism of impact pressure generation from spark-generated bubble collapse near a wall
  publication-title: AAIA J.
– volume: 111
  start-page: 2594
  year: 2002
  end-page: 2600
  article-title: Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model
  publication-title: J. Acoust. Soc. Am.
– volume: 14
  start-page: 85
  year: 2002
  end-page: 92
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. Fluids
– volume: 111
  start-page: 123
  year: 1981
  end-page: 140
  article-title: Growth and collapse of a vapour cavity near a free surface
  publication-title: J. Fluid Mech.
– volume: 38
  start-page: 165
  year: 1982
  end-page: 178
  article-title: Cavitation bubble dynamics – new tools for an intricate problem
  publication-title: Appl. Sci. Res.
– volume: 380
  start-page: 339
  year: 1999
  end-page: 361
  article-title: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary
  publication-title: J. Fluid Mech.
– volume: 94
  start-page: 89
  year: 1972
  end-page: 95
  article-title: The kinetic and thermal expansion of vapor bubbles
  publication-title: Trans. ASME J. Fluids Engng
– volume: 12
  start-page: 217
  year: 2005
  end-page: 225
  article-title: Simulation of the collapse of an underwater explosion bubble under a circular plate
  publication-title: Shock Vib.
– volume: 651
  start-page: 55
  year: 2010
  end-page: 80
  article-title: Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries
  publication-title: J. Fluid Mech.
– volume: 206
  start-page: 299
  year: 1989
  end-page: 338
  article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
  publication-title: J. Fluid Mech.
– volume: 107
  year: 2011
  article-title: Universal scaling law for jets of collapsing bubbles
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 1098
  year: 2013
  end-page: 1103
  article-title: Dynamic features of a laser-induced cavitation bubble near a solid boundary
  publication-title: Ultrason. Sonochem.
– volume: 42
  start-page: 69
  year: 2013
  end-page: 91
  article-title: Influences of initial and boundary conditions on underwater explosion bubble dynamics
  publication-title: Eur. J. Mech. (B/Fluids)
– volume: 100
  year: 2006
  article-title: Experimental and numerical study of transient bubble–elastic membrane interaction
  publication-title: J. Appl. Phys.
– volume: 361
  start-page: 75
  year: 1998
  end-page: 116
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 607
  year: 1996a
  end-page: 628
  article-title: Nonlinear interaction between gas bubble and free surface
  publication-title: Comput. Fluids
– volume: 4
  start-page: 26
  year: 1995
  end-page: 34
  article-title: Cavitation bubble collapse studied at 20 million frames per second
  publication-title: Ann. Phys.
– volume: 11
  start-page: 2437
  year: 1999
  end-page: 2439
  article-title: Experimental observations of the interaction of a laser generated cavitation bubble with a flexible membrane
  publication-title: Phys. Fluids
– volume: 99
  start-page: 2811
  year: 1996
  end-page: 2824
  article-title: The interaction of a laser-generated cavity in water with a solid surface
  publication-title: J. Acoust. Soc. Am.
– volume: 80
  start-page: 369
  year: 1977
  end-page: 391
  article-title: Collapse of a non-hemispherical bubble attached to a solid wall
  publication-title: J. Fluid Mech.
– volume: 169
  start-page: 535
  year: 1986
  end-page: 564
  article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 302
  year: 2005
  end-page: 317
  article-title: Pulsating, buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state
  publication-title: Intl J. Multiphase Flow
– volume: 28
  start-page: 295
  year: 2004
  end-page: 313
  article-title: Bubble interactions near a free surface
  publication-title: Engng Anal. Bound. Elem.
– volume: 19
  start-page: 99
  year: 1987
  end-page: 123
  article-title: Cavitation bubbles near boundaries
  publication-title: Annu. Rev. Fluid Mech.
– volume: 35
  start-page: 206
  year: 2008
  end-page: 225
  article-title: A study of explosive effects in close proximity to a submerged cylinder
  publication-title: Intl J. Impact Engng
– volume: 181
  start-page: 197
  year: 1987
  end-page: 212
  article-title: Transient cavities near boundaries. Part 2. Free surface
  publication-title: J. Fluid Mech.
– volume: 25
  year: 2013
  article-title: Underwater explosion bubble dynamics in a compressible liquid
  publication-title: Phys. Fluids
– volume: 254
  start-page: 437
  year: 1993
  end-page: 466
  article-title: Gas bubbles bursting at a free surface
  publication-title: J. Fluid Mech.
– volume: 682
  start-page: 241
  year: 2011
  end-page: 260
  article-title: Cavitation bubble dynamics in a liquid gap of variable height
  publication-title: J. Fluid Mech.
– volume: 12
  start-page: 29
  year: 1998
  end-page: 51
  article-title: The evolution of a gas bubble near an inclined wall
  publication-title: J. Theor. Comput. Fluid Dyn.
– volume: 89
  start-page: 8225
  year: 2001
  end-page: 8237
  article-title: Interaction of cavitation bubbles with a free surface
  publication-title: J. Appl. Phys.
– volume: 433
  start-page: 251
  year: 2001
  end-page: 281
  article-title: Dynamics of laser-induced cavitation bubbles near an elastic boundary
  publication-title: J. Fluid Mech.
– volume: 8
  start-page: 1699
  year: 1996
  end-page: 1701
  article-title: Observations of a cavitation bubble interacting with a solid boundary as seen from below
  publication-title: Phys. Fluids
– volume: 479
  start-page: 327
  year: 2003
  end-page: 348
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
– volume: 46
  start-page: 419
  year: 2009
  end-page: 434
  article-title: A collapsing bubble-induced microinjector: an experimental study
  publication-title: Exp. Fluids
– volume: 537
  start-page: 387
  year: 2005
  end-page: 413
  article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
  publication-title: J. Fluid Mech.
– volume: 260
  start-page: 221
  year: 1966
  end-page: 240
  article-title: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 99
  start-page: 709
  year: 1977
  end-page: 716
  article-title: Interaction between an oscillating bubble and a free surface
  publication-title: Trans. ASME J. Fluids Engng
– ident: S0022112015003237_r16
  doi: 10.1115/1.3448889
– ident: S0022112015003237_r10
  doi: 10.1016/j.ijimpeng.2007.01.007
– ident: S0022112015003237_r46
  doi: 10.1121/1.414857
– ident: S0022112015003237_r63
  doi: 10.1016/j.jcp.2015.03.049
– ident: S0022112015003237_r4
  doi: 10.1115/1.2817502
– ident: S0022112015003237_r33
  doi: 10.1121/1.2047147
– ident: S0022112015003237_r1
  doi: 10.1063/1.1401810
– ident: S0022112015003237_r57
  doi: 10.1007/s001620050097
– ident: S0022112015003237_r56
  doi: 10.1017/S0022112089002314
– ident: S0022112015003237_r19
– ident: S0022112015003237_r6
  doi: 10.1146/annurev.fl.19.010187.000531
– ident: S0022112015003237_r29
  doi: 10.1063/1.868953
– ident: S0022112015003237_r24
  doi: 10.1017/jfm.2011.212
– ident: S0022112015003237_r2
  doi: 10.1098/rsta.1966.0046
– ident: S0022112015003237_r28
  doi: 10.1115/1.4005688
– ident: S0022112015003237_r61
  doi: 10.1007/BF00312403
– ident: S0022112015003237_r36
  doi: 10.1016/0041-624X(85)90048-4
– ident: S0022112015003237_r35
  doi: 10.1017/S0022112075003448
– ident: S0022112015003237_r41
  doi: 10.1002/andp.19955070104
– ident: S0022112015003237_r38
  doi: 10.1017/S0022112002003695
– ident: S0022112015003237_r51
  doi: 10.21236/AD0414350
– ident: S0022112015003237_r27
  doi: 10.1017/S0022112009993776
– ident: S0022112015003237_r40
  doi: 10.1103/PhysRevLett.107.204501
– ident: S0022112015003237_r45
  doi: 10.1063/1.870036
– ident: S0022112015003237_r8
  doi: 10.1017/S0022112087002052
– ident: S0022112015003237_r7
  doi: 10.1017/S0022112086000988
– ident: S0022112015003237_r9
  doi: 10.1017/S0022112093002216
– ident: S0022112015003237_r64
  doi: 10.1016/j.euromechflu.2013.06.008
– ident: S0022112015003237_r5
  doi: 10.1017/S0022112081002322
– ident: S0022112015003237_r37
  doi: 10.1146/annurev.fl.16.010184.001255
– ident: S0022112015003237_r12
  doi: 10.1063/1.1421102
– ident: S0022112015003237_r60
  doi: 10.1016/0045-7930(96)00007-2
– ident: S0022112015003237_r26
  doi: 10.1007/978-94-011-0938-3_40
– ident: S0022112015003237_r55
  doi: 10.1063/1.2338125
– ident: S0022112015003237_r53
  doi: 10.1017/S0022112086000745
– ident: S0022112015003237_r3
  doi: 10.1017/S0022112092000387
– volume: 16
  start-page: 1610
  year: 2004
  ident: S0022112015003237_r58
  article-title: Numerical simulation of violent bubble motion
  publication-title: Phys. Fluids
  doi: 10.1063/1.1704645
– ident: S0022112015003237_r62
  doi: 10.1016/j.ultsonch.2013.01.010
– ident: S0022112015003237_r47
  doi: 10.1017/S0022112077001712
– ident: S0022112015003237_r32
– ident: S0022112015003237_r17
– ident: S0022112015003237_r20
  doi: 10.5962/bhl.title.48411
– ident: S0022112015003237_r49
  doi: 10.1017/S0022112089001436
– ident: S0022112015003237_r15
  doi: 10.1121/1.1476919
– ident: S0022112015003237_r18
  doi: 10.1007/978-3-642-51070-0_3
– ident: S0022112015003237_r44
  doi: 10.1063/1.1368163
– ident: S0022112015003237_r34
  doi: 10.1007/BF00385946
– ident: S0022112015003237_r22
  doi: 10.1115/1.3425395
– ident: S0022112015003237_r42
  doi: 10.1016/S0955-7997(03)00079-1
– ident: S0022112015003237_r52
  doi: 10.1063/1.1594277
– ident: S0022112015003237_r31
  doi: 10.1017/S0022112005005306
– ident: S0022112015003237_r30
  doi: 10.1155/2005/395706
– ident: S0022112015003237_r21
  doi: 10.1007/s00348-008-0568-3
– ident: S0022112015003237_r50
  doi: 10.21236/AD0296424
– ident: S0022112015003237_r48
  doi: 10.2514/3.8027
– ident: S0022112015003237_r13
  doi: 10.1017/S0022112000003347
– volume-title: Vapour Bubble Measurement Using Image Analysis
  year: 1996
  ident: S0022112015003237_r25
– ident: S0022112015003237_r39
  doi: 10.1103/PhysRevLett.97.094502
– ident: S0022112015003237_r59
  doi: 10.1063/1.4812659
– ident: S0022112015003237_r14
  doi: 10.1016/j.ijmultiphaseflow.2004.11.006
– ident: S0022112015003237_r11
  doi: 10.1016/S0734-743X(00)00023-3
– ident: S0022112015003237_r54
  doi: 10.1017/S0022112098003589
– ident: S0022112015003237_r23
  doi: 10.1007/BF00385951
– ident: S0022112015003237_r43
  doi: 10.1017/S0022112098008738
SSID ssj0013097
Score 2.5707552
Snippet This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Boundary layer
Bubbles
Buoyancy
Fluid mechanics
Free surfaces
Vapor pressure
Title Experimental study on bubble dynamics subject to buoyancy
URI https://www.cambridge.org/core/product/identifier/S0022112015003237/type/journal_article
https://www.proquest.com/docview/1732056307
Volume 776
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT8IwFMBfFGKiBz9QI4qkB40HU91o2bqTQQWJUWJUEm7LXrceDGHoxsH_3naUrwOe-7Ilr-37aF9_D-BCItOOlbnUS4RHuYoFFTLh1FUK9QbxPScqaJ89r9vnz4PmwB64ZbascmYTC0Mdp9Kckd-6Pms4Bmbl342_qekaZW5XbQuNTShrEyx08lW-b_fe3hf3CE7gz3jhOrJwbOm7gUZ_KfMQ3W3eMNOqaAFWWHVQq_a5cDqdfdi10SJpTaf3ADaSUQX2bORI7L7MKrCzhBWswFZR1imzQwjaSwB_UqBkSToiOEEcJiSedqPPSDZBcxxD8lQPpb_G4B5Bv9P-fOhS2yyBSs5ZTlmCgiP3otiR6KK5X2WO1OmIagiMZOCpJqLbiH0ZMGGgMsgx9gKdQEkR6ZyJHUNplI6SEyAqMBw2J5IJBjxgMtJeTDnoGXSMK2JVhau5tkK75LNwWi7mh1qvodFrqPVaheuZLkNpmeOm9cVwjfTlXHo8ZW2skavNpmXp9_P1cfr_8Blsmw_RAmtbg1L-M0nOdWCRYx02ReepDuXW4-vLR92upT9TcczG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT9wwEIBHFITaHngsVOVVfABxQIYk9ib2oaoQsF2eJ5C4hYxjHyqa0GZX1f6p_kY82WRZDnDj7FEijcczY3v8DcCOQeEDqwh5bFXMpcsVV8ZKHjqHfoEkcZDVtM_ruH8rz--6dzPwv30LQ2WVrU-sHXVeGjojPwwTEQUEs0p-PP7h1DWKblfbFhpjs7iwo39-y1Z9Pzvx87sbRb3Tm-M-b7oKcCOlGHBhUUmUcZYHBkOki0gRGJ-3u0hhZnTsuohhlCdGC0X0FZSYx9rvNIzK_OZC-O9-gDkphKYVpXo_n28tAp20dHKfxwRNoT0hqn85evYedg8ENUZ6xji8DIcvo0Ed4npLsNDkpuxobEzLMGOLDiw2eSprvEDVgc9TEMMOzNdFpKZaAX061S6A1eBaVhYMh4gPluWjIvvt5Vg1RDr8YYPSD5Ujcu-rcPsuSvwCs0VZ2K_AnCbqW5AZi1pqYTIfM12AMYFqQpW7NdibaCttFliVjovTktTrNSW9pl6va7Df6jI1DeGcGm08vCK9O5F-HJM9XpHbbKdl6vcTa1x_e3gbPvZvri7Ty7Priw34RB_lNVB3E2YHf4d2y6c0A_xW2xGD-_c23CdLrQUl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+bubble+dynamics+subject+to+buoyancy&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Zhang%2C+A+M&rft.au=Cui%2C+P&rft.au=Cui%2C+J&rft.au=Wang%2C+Q+X&rft.date=2015-08-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=776&rft.spage=137&rft_id=info:doi/10.1017%2Fjfm.2015.323&rft.externalDocID=3861346811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon