Indirect Measurement of Variables in a Heterogeneous Reaction for Biodiesel Production

This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical m...

Full description

Saved in:
Bibliographic Details
Published inMethods and protocols Vol. 7; no. 2; p. 27
Main Authors González-García, Ana Paloma, Díaz-Jiménez, Lourdes, Padmadas, Padmasree K., Carlos-Hernández, Salvador
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides’ conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.
AbstractList This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides’ conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.
This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector (x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.
This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.
Audience Academic
Author González-García, Ana Paloma
Carlos-Hernández, Salvador
Padmadas, Padmasree K.
Díaz-Jiménez, Lourdes
Author_xml – sequence: 1
  givenname: Ana Paloma
  surname: González-García
  fullname: González-García, Ana Paloma
– sequence: 2
  givenname: Lourdes
  orcidid: 0000-0001-5942-4658
  surname: Díaz-Jiménez
  fullname: Díaz-Jiménez, Lourdes
– sequence: 3
  givenname: Padmasree K.
  surname: Padmadas
  fullname: Padmadas, Padmasree K.
– sequence: 4
  givenname: Salvador
  surname: Carlos-Hernández
  fullname: Carlos-Hernández, Salvador
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38668135$$D View this record in MEDLINE/PubMed
BookMark eNptklFrFDEQgINUbK198QdIwBcRriY72WTz2Ba1BxVFtK8hm0yOHLubmuw--O_N3dVWRfKQMPPlG4aZ5-RoShMS8pKzcwDN3o13RbGGsUY9ISeNYHqlG6WP_ngfk7NStqwiXDAl2mfkGDopOw7tCbldTz5mdDP9hLYsGUecZpoCvbU52n7AQuNELb3GGXPa4IRpKfQrWjfHNNGQMr2MyUcsONAvOflln3hBngY7FDy7v0_J9w_vv11dr24-f1xfXdysnBAwrwA77gKg6Jn03HklRK-UlFZC33Dtner6TrrWcQ-MB6d9zxCU7npoGAoOp2R98Ppkt-Yux9HmnybZaPaBlDfG5jm6AQ0Kx1vpXdciCtszy2RQAcG6wDopXHW9ObjucvqxYJnNGIvDYbD7pg0woTRozlRFX_-DbtOSp9rpjpK6AdY0j9TG1vpxCmnO1u2k5qKa2hY62LnO_0PV43GMrg47xBr_68Or--JLP6J_6Pr3UCvw9gC4nErJGB4Qzsxuaczj0sAvA66w8A
Cites_doi 10.1016/j.apt.2022.103646
10.1177/10775463221146211
10.1016/j.pecs.2019.06.001
10.1016/j.jprocont.2016.04.001
10.1016/j.jprocont.2015.06.006
10.1109/SCC53769.2021.9768357
10.1080/01614940.2020.1770402
10.1016/j.fuel.2019.116877
10.1016/B978-0-12-803581-8.10578-8
10.1038/s41929-022-00744-z
10.1016/j.jclepro.2020.120982
10.1016/j.rser.2018.04.048
10.1016/j.biortech.2013.03.089
10.1016/j.fuproc.2014.09.008
10.1007/s10562-019-02905-5
10.1039/D1CP01349A
10.1007/s11144-022-02264-0
10.1016/j.enconman.2018.10.032
10.1016/j.jclepro.2022.135631
10.1080/01614940.2015.1103594
10.3390/su9030455
10.1016/j.isatra.2019.03.016
10.1016/S0009-2509(00)00088-9
10.1016/j.rser.2017.01.001
10.1016/j.ces.2014.07.006
10.1016/j.cherd.2018.01.048
10.1016/j.biombioe.2022.106356
10.3923/jas.2010.1019.1027
10.1016/S0959-1524(03)00026-X
10.1016/j.mtsust.2022.100157
10.1016/j.matpr.2022.10.175
10.1002/btpr.2030
10.1016/j.renene.2020.12.055
10.1016/j.compchemeng.2015.01.019
10.1002/asjc.1959
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/mps7020027
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2409-9279
ExternalDocumentID oai_doaj_org_article_e4c156dc85ee4ab0a06f7fe3acf0864c
A793553837
38668135
10_3390_mps7020027
Genre Journal Article
GrantInformation_xml – fundername: Consejo Nacional de Humanidades, Ciencias y Tecnologías
  grantid: 22185
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IGS
ITC
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
NPM
PQGLB
PMFND
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c443t-3e81cf3e4b06d1cd744b7766a63b219dc78b86c5c1d301fc9db0e3798b320e413
IEDL.DBID DOA
ISSN 2409-9279
IngestDate Wed Aug 27 01:31:14 EDT 2025
Thu Jul 10 19:00:48 EDT 2025
Fri Jul 25 11:50:51 EDT 2025
Tue Jun 17 22:10:43 EDT 2025
Tue Jun 10 21:10:08 EDT 2025
Mon Jul 21 06:04:27 EDT 2025
Tue Jul 01 01:20:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords heterogeneous catalyst
nonlinear model
soft sensor
state estimation
batch reactor
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-3e81cf3e4b06d1cd744b7766a63b219dc78b86c5c1d301fc9db0e3798b320e413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5942-4658
OpenAccessLink https://doaj.org/article/e4c156dc85ee4ab0a06f7fe3acf0864c
PMID 38668135
PQID 3046923022
PQPubID 5046877
ParticipantIDs doaj_primary_oai_doaj_org_article_e4c156dc85ee4ab0a06f7fe3acf0864c
proquest_miscellaneous_3047939107
proquest_journals_3046923022
gale_infotracmisc_A793553837
gale_infotracacademiconefile_A793553837
pubmed_primary_38668135
crossref_primary_10_3390_mps7020027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Methods and protocols
PublicationTitleAlternate Methods Protoc
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Messaoud (ref_22) 2019; 93
Montacer (ref_8) 2019; 21
Padmadas (ref_32) 2022; 135
Ho (ref_2) 2010; 10
Montacer (ref_23) 2024; 30
ref_36
ref_35
ref_34
ref_10
Esterhuizen (ref_14) 2022; 5
Alismaeel (ref_12) 2022; 33
Gupta (ref_29) 2023; 78
ref_31
ref_30
Escalante (ref_1) 2014; 117
Reyero (ref_24) 2015; 129
Tabatabaei (ref_27) 2019; 74
Shan (ref_26) 2018; 178
Ferreira (ref_4) 2020; 264
Avhad (ref_28) 2016; 58
Mahmudul (ref_25) 2017; 72
Dochain (ref_19) 2016; 42
Maleki (ref_11) 2022; 18
Suresh (ref_3) 2018; 92
Hussain (ref_17) 2015; 76
Dhawane (ref_33) 2019; 149
Okonkwo (ref_15) 2023; 385
(ref_20) 2018; 132
Kern (ref_21) 2015; 33
Xu (ref_16) 2021; 23
Price (ref_38) 2015; 31
Oisiovici (ref_6) 2000; 55
ref_9
(ref_13) 2021; 63
Clark (ref_37) 2013; 136
Ezzati (ref_7) 2021; 168
Dochain (ref_18) 2003; 13
ref_5
References_xml – volume: 33
  start-page: 103646
  year: 2022
  ident: ref_12
  article-title: Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2022.103646
– volume: 30
  start-page: 314
  year: 2024
  ident: ref_23
  article-title: Fault detection using sliding mode multiobserver for nonlinear systems: Validation on a real chemical process
  publication-title: JVC J. Vib. Control
  doi: 10.1177/10775463221146211
– volume: 74
  start-page: 239
  year: 2019
  ident: ref_27
  article-title: Reactor technologies for biodiesel production and processing: A review
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.06.001
– volume: 42
  start-page: 104
  year: 2016
  ident: ref_19
  article-title: Monitoring of a biodiesel production process via reset observer
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.04.001
– volume: 33
  start-page: 127
  year: 2015
  ident: ref_21
  article-title: Advanced control with parameter estimation of batch transesterification reactor
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.06.006
– ident: ref_34
– ident: ref_9
  doi: 10.1109/SCC53769.2021.9768357
– volume: 63
  start-page: 120
  year: 2021
  ident: ref_13
  article-title: Recent advances in knowledge discovery for heterogeneous catalysis using machine learning
  publication-title: Catal. Rev. Sci. Eng.
  doi: 10.1080/01614940.2020.1770402
– volume: 264
  start-page: 116877
  year: 2020
  ident: ref_4
  article-title: Monitoring of the transesterification reaction by continuous off-line density measurements
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116877
– ident: ref_31
  doi: 10.1016/B978-0-12-803581-8.10578-8
– volume: 5
  start-page: 175
  year: 2022
  ident: ref_14
  article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00744-z
– ident: ref_36
  doi: 10.1016/j.jclepro.2020.120982
– volume: 92
  start-page: 38
  year: 2018
  ident: ref_3
  article-title: A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.048
– volume: 136
  start-page: 771
  year: 2013
  ident: ref_37
  article-title: Biodiesel transesterification kinetics monitored by pH measurement
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.089
– volume: 129
  start-page: 147
  year: 2015
  ident: ref_24
  article-title: Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.09.008
– volume: 149
  start-page: 3508
  year: 2019
  ident: ref_33
  article-title: Kinetic Modelling of Heterogeneous Methanolysis Catalysed by Iron Induced on Microporous Carbon Supported Catalyst
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-019-02905-5
– ident: ref_35
– volume: 23
  start-page: 11155
  year: 2021
  ident: ref_16
  article-title: Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP01349A
– volume: 135
  start-page: 2643
  year: 2022
  ident: ref_32
  article-title: Guishe biochar as heterogeneous catalyst for biodiesel production: Synthesis and transesterification modeling
  publication-title: React. Kinet. Mech. Catal.
  doi: 10.1007/s11144-022-02264-0
– volume: 178
  start-page: 277
  year: 2018
  ident: ref_26
  article-title: Catalysts from renewable resources for biodiesel production
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.032
– volume: 385
  start-page: 135631
  year: 2023
  ident: ref_15
  article-title: Production of biodiesel from the novel non-edible seed of Chrysobalanus icaco using natural heterogeneous catalyst: Modeling and prediction using Artificial Neural Network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135631
– volume: 58
  start-page: 157
  year: 2016
  ident: ref_28
  article-title: Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review
  publication-title: Catal. Rev. Sci. Eng.
  doi: 10.1080/01614940.2015.1103594
– ident: ref_5
  doi: 10.3390/su9030455
– ident: ref_10
– volume: 93
  start-page: 302
  year: 2019
  ident: ref_22
  article-title: An unknown input multiobserver based on a discrete uncoupled multimodel for uncertain nonlinear systems: Experimental validation on a transesterification reactor
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.03.016
– volume: 55
  start-page: 4667
  year: 2000
  ident: ref_6
  article-title: State estimation of batch distillation columns using an extended Kalman filter
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00088-9
– volume: 72
  start-page: 497
  year: 2017
  ident: ref_25
  article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.001
– volume: 117
  start-page: 396
  year: 2014
  ident: ref_1
  article-title: Dynamical modeling for biodiesel production from grease trap wastes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.07.006
– volume: 132
  start-page: 536
  year: 2018
  ident: ref_20
  article-title: Different approaches for the dynamic model for the production of biodiesel
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.01.048
– ident: ref_30
  doi: 10.1016/j.biombioe.2022.106356
– volume: 10
  start-page: 1019
  year: 2010
  ident: ref_2
  article-title: Multivariable adaptative predictive model based control of a biodiesel transesterification reactor
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2010.1019.1027
– volume: 13
  start-page: 801
  year: 2003
  ident: ref_18
  article-title: State and parameter estimation in chemical and biochemical processes: A tutorial
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(03)00026-X
– volume: 18
  start-page: 100157
  year: 2022
  ident: ref_11
  article-title: Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study
  publication-title: Mater. Today Sustain.
  doi: 10.1016/j.mtsust.2022.100157
– volume: 78
  start-page: 364
  year: 2023
  ident: ref_29
  article-title: The impact of heterogeneous catalyst on biodiesel production; a review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.10.175
– volume: 31
  start-page: 585
  year: 2015
  ident: ref_38
  article-title: Real-time model based process monitoring of enzymatic biodiesel production
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2030
– volume: 168
  start-page: 280
  year: 2021
  ident: ref_7
  article-title: Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.12.055
– volume: 76
  start-page: 27
  year: 2015
  ident: ref_17
  article-title: Review and classification of recent observers applied in chemical process systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.01.019
– volume: 21
  start-page: 456
  year: 2019
  ident: ref_8
  article-title: A Sliding Mode Multiobserver Based on an Uncoupled Multimodel: An Application on a Transesterification Reaction
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1959
SSID ssj0002140745
Score 2.2521932
Snippet This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 27
SubjectTerms Algorithms
Analysis
Artificial intelligence
batch reactor
Biodiesel fuels
Biofuels
Catalysis
Catalysts
Chromatography
Costs
Differential equations
Esters
Glycerol
heterogeneous catalyst
Machine learning
Mathematical models
Measurement
Neural networks
nonlinear model
Sensors
soft sensor
state estimation
Triglycerides
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA-tvvSlKFbd-kFKC31azF2ySfZJPFHOgiJSxbeQTxHs7nl3_v_O7ObuuBb6usmG3Uxm5vebTCaE_ACI7KVjVVlzxkrBnSu1q-tSW_Q4IQjVhQaub-T4Xvx6rB5zwG2W0yoXNrEz1KH1GCM_wR08ACPgck4nryXeGoW7q_kKjY9kE0ywBvK1Obq4ub1bRlmGwB-UqPq6pBz4_cmfyUwxzExQa56oK9j_r1n-C2x2Tudyi3zOaJGe9eLdJh9is0MerpreEdHrVYCPtok-AO_Fk1Az-txQS8eY6dLCAonA7uld7I8wUECpdPTcYvZgfKG3fcVXaPhC7i8vfp-Py3w9QumF4POSRz3wiUfhmAwDH5QQTikpreQO7FDwSjstfeUHAbQ4-To4FrmqteNDFsF57ZKNpm3iPqE2AEriyWmVhKg59BAegIYDuuISkLKCfF9MlZn0VTAMsAecULOa0IKMcBaXPbBydfegnT6ZrAgm4sgyeF3FKKxjlsmkUuTWJ2BXwhfkJ8rAoH7Np9bbfEwAPhQrVZkzhRXhkVcX5HCtJ-iFX29eSNFkvZyZ1SoqyLdlM76JuWadPLAPDAIwCobY66W__CWupdQDXn39_-AH5NMQwE-f4XNINubTt3gE4GXujvMKfQelhe2v
  priority: 102
  providerName: ProQuest
Title Indirect Measurement of Variables in a Heterogeneous Reaction for Biodiesel Production
URI https://www.ncbi.nlm.nih.gov/pubmed/38668135
https://www.proquest.com/docview/3046923022
https://www.proquest.com/docview/3047939107
https://doaj.org/article/e4c156dc85ee4ab0a06f7fe3acf0864c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFy-i-KovIgqeitlNmqRHV5RVUERUvIU8QdCuuOv_d6apq6sHL16bNKQzmZnvSycTQg4BInvpWFXWnLFScOdK7eq61BYjTghCtVsDV9dyeC8uH6vHb1d9YU5YLg-cBXcchQeKEbyuYhTWMctkUily6xOgceHR-0LM-0am0Af3gTcoUeV6pBx4_fHL61gxzEhQMxGoLdT_2x3_AJltsDlfJksdSqQneXYrZC42q-ThoskBiF59bezRUaIPwHfxBNSYPjXU0iFmuIxgYURg9fQ25qMLFNApHTyNMGswPtObXOkVGtbI_fnZ3emw7K5FKL0QfFLyqHs-8Sgck6HngxLCKSWlldyB_wleaaelr3wvgPUmXwfHIle1drzPIgStdTLfjJq4SagNgI54clolIWoOPVDalQOa4hKQsYIcfIrKvObqFwZYAwrUfAm0IAOU4rQHVqxuH4AeTadH85ceC3KEOjBoV5M36213PAAmihWqzInCSvDIpwuyM9MT7MHPNn9q0XT2ODb4_xegLACWguxPm_FNzDFr9YF9YBCATzDERtb-9JO4llL3eLX1H5-6TRb7AI1y_s8OmZ-8vcddgDYTt0cWBmfXN7d77Wr-ABur-Ao
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALAvFaWsAIEKdVnbXX9h4QaqBVQpuoqtqqN7N-LKpEd0M2FeJP8RuZ2UeigMSt19g72szD833e8ZiQtwCRnbQsjTPOWCy4tbG2WRbrHDOO90I1WwPTmRyfiy-X6eUW-d2fhcGyyn5NbBZqXzncI9_DL3gARiDlfJz_iPHWKPy62l-h0brFUfj1Eyhb_WHyGez7LkkOD84-jePuVoHYCcGXMQ966AoehGXSD51XQlilpMwltxC-3ilttXSpG3pw_sJl3rLAVaYtT1iANR_k3iHbggOVGZDt0cHs5HS1q5MAX1Eibfugcp6xvet5rRhWQqiNzNdcEPBvGvgL3DZJ7vABud-hU7rfutNDshXKR-RiUraJj07XG4q0KugF8Gw8eVXTq5LmdIyVNRU4ZKhuanoa2iMTFFAxHV1VWK0YvtOTtsMsDDwm57eiuCdkUFZleEZo7gGV8cJqVQiRcZghHAAbC_TIFkACI_KmV5WZt103DLAVVKhZKzQiI9TiagZ2ym5-qBbfTBd4JqBk6Z1OQxC5ZTmThSoCz10BbE64iLxHGxiM5-Uid3l3LAFeFDtjmX2FHeiRx0dkd2MmxKHbHO6taLp1oDZrr43I69UwPom1bY09cA4IAdgGIp621l_9Ja6l1EOePv-_8Ffk7vhsemyOJ7OjHXIvAeDVVhftksFycRNeAHBa2pedt1Ly9bYD5A9KtSpV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEIhb2AAjQDxFdWPHdh4QWtmqlrGqmti0txDfpkmQdE0nxF_j13FOkrYqSLzttXaO0nPx-T7n-JiQtwCRrTQsjTPOWCy4MbE2WRbrAjOOc0I1WwMnUzk-E58v0osd8nt1FgbLKldrYrNQu8riHnkfv-ABGIGU0w9dWcTscPRxfh3jDVL4pXV1nUbrIsf-10-gb_WHySHY-l2SjI6-fhrH3Q0DsRWCL2Pu9cAG7oVh0g2sU0IYpaQsJDcQys4qbbS0qR04CIRgM2eY5yrThifMw_oPcu-QXQWsiPXI7vBoOjtd7_AkwF2USNueqJxnrP9jXiuGVRFqKws2lwX8mxL-ArpNwhs9IPc7pEoPWtd6SHZ8-YicT8o2CdKTzeYirQI9B86Np7BqelXSgo6xyqYC5_TVTU1PfXt8ggJCpsOrCisX_Xc6a7vNwsBjcnYrintCemVV-meEFg4QGg9GqyBExmGGsAByDFAlE4AQRuTNSlX5vO3AkQNzQYXmG4VGZIhaXM_ArtnND9XiMu-CMPcoWTqrU-9FYVjBZFDB88IGYHbCRuQ92iDH2F4uClt0RxTgRbFLVn6gsBs9cvqI7G_NhJi028MrK-bdmlDnGw-OyOv1MD6JdW6NPXAOCAEIByKettZf_yWupdQDnj7_v_BX5C4ERv5lMj3eI_cSwGBtodE-6S0XN_4FYKiledk5KyXfbjs-_gAPBy6K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Measurement+of+Variables+in+a+Heterogeneous+Reaction+for+Biodiesel+Production&rft.jtitle=Methods+and+protocols&rft.au=Gonz%C3%A1lez-Garc%C3%ADa%2C+Ana+Paloma&rft.au=D%C3%ADaz-Jim%C3%A9nez%2C+Lourdes&rft.au=Padmadas%2C+Padmasree+K&rft.au=Carlos-Hern%C3%A1ndez%2C+Salvador&rft.date=2024-04-01&rft.eissn=2409-9279&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fmps7020027&rft_id=info%3Apmid%2F38668135&rft.externalDocID=38668135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2409-9279&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2409-9279&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2409-9279&client=summon