Indirect Measurement of Variables in a Heterogeneous Reaction for Biodiesel Production
This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical m...
Saved in:
Published in | Methods and protocols Vol. 7; no. 2; p. 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides’ conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked. |
---|---|
AbstractList | This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides’ conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked. This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector (x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked. This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked. |
Audience | Academic |
Author | González-García, Ana Paloma Carlos-Hernández, Salvador Padmadas, Padmasree K. Díaz-Jiménez, Lourdes |
Author_xml | – sequence: 1 givenname: Ana Paloma surname: González-García fullname: González-García, Ana Paloma – sequence: 2 givenname: Lourdes orcidid: 0000-0001-5942-4658 surname: Díaz-Jiménez fullname: Díaz-Jiménez, Lourdes – sequence: 3 givenname: Padmasree K. surname: Padmadas fullname: Padmadas, Padmasree K. – sequence: 4 givenname: Salvador surname: Carlos-Hernández fullname: Carlos-Hernández, Salvador |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38668135$$D View this record in MEDLINE/PubMed |
BookMark | eNptklFrFDEQgINUbK198QdIwBcRriY72WTz2Ba1BxVFtK8hm0yOHLubmuw--O_N3dVWRfKQMPPlG4aZ5-RoShMS8pKzcwDN3o13RbGGsUY9ISeNYHqlG6WP_ngfk7NStqwiXDAl2mfkGDopOw7tCbldTz5mdDP9hLYsGUecZpoCvbU52n7AQuNELb3GGXPa4IRpKfQrWjfHNNGQMr2MyUcsONAvOflln3hBngY7FDy7v0_J9w_vv11dr24-f1xfXdysnBAwrwA77gKg6Jn03HklRK-UlFZC33Dtner6TrrWcQ-MB6d9zxCU7npoGAoOp2R98Ppkt-Yux9HmnybZaPaBlDfG5jm6AQ0Kx1vpXdciCtszy2RQAcG6wDopXHW9ObjucvqxYJnNGIvDYbD7pg0woTRozlRFX_-DbtOSp9rpjpK6AdY0j9TG1vpxCmnO1u2k5qKa2hY62LnO_0PV43GMrg47xBr_68Or--JLP6J_6Pr3UCvw9gC4nErJGB4Qzsxuaczj0sAvA66w8A |
Cites_doi | 10.1016/j.apt.2022.103646 10.1177/10775463221146211 10.1016/j.pecs.2019.06.001 10.1016/j.jprocont.2016.04.001 10.1016/j.jprocont.2015.06.006 10.1109/SCC53769.2021.9768357 10.1080/01614940.2020.1770402 10.1016/j.fuel.2019.116877 10.1016/B978-0-12-803581-8.10578-8 10.1038/s41929-022-00744-z 10.1016/j.jclepro.2020.120982 10.1016/j.rser.2018.04.048 10.1016/j.biortech.2013.03.089 10.1016/j.fuproc.2014.09.008 10.1007/s10562-019-02905-5 10.1039/D1CP01349A 10.1007/s11144-022-02264-0 10.1016/j.enconman.2018.10.032 10.1016/j.jclepro.2022.135631 10.1080/01614940.2015.1103594 10.3390/su9030455 10.1016/j.isatra.2019.03.016 10.1016/S0009-2509(00)00088-9 10.1016/j.rser.2017.01.001 10.1016/j.ces.2014.07.006 10.1016/j.cherd.2018.01.048 10.1016/j.biombioe.2022.106356 10.3923/jas.2010.1019.1027 10.1016/S0959-1524(03)00026-X 10.1016/j.mtsust.2022.100157 10.1016/j.matpr.2022.10.175 10.1002/btpr.2030 10.1016/j.renene.2020.12.055 10.1016/j.compchemeng.2015.01.019 10.1002/asjc.1959 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/mps7020027 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2409-9279 |
ExternalDocumentID | oai_doaj_org_article_e4c156dc85ee4ab0a06f7fe3acf0864c A793553837 38668135 10_3390_mps7020027 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Consejo Nacional de Humanidades, Ciencias y Tecnologías grantid: 22185 |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IGS ITC M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM NPM PQGLB PMFND 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c443t-3e81cf3e4b06d1cd744b7766a63b219dc78b86c5c1d301fc9db0e3798b320e413 |
IEDL.DBID | DOA |
ISSN | 2409-9279 |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Thu Jul 10 19:00:48 EDT 2025 Fri Jul 25 11:50:51 EDT 2025 Tue Jun 17 22:10:43 EDT 2025 Tue Jun 10 21:10:08 EDT 2025 Mon Jul 21 06:04:27 EDT 2025 Tue Jul 01 01:20:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | heterogeneous catalyst nonlinear model soft sensor state estimation batch reactor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-3e81cf3e4b06d1cd744b7766a63b219dc78b86c5c1d301fc9db0e3798b320e413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5942-4658 |
OpenAccessLink | https://doaj.org/article/e4c156dc85ee4ab0a06f7fe3acf0864c |
PMID | 38668135 |
PQID | 3046923022 |
PQPubID | 5046877 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4c156dc85ee4ab0a06f7fe3acf0864c proquest_miscellaneous_3047939107 proquest_journals_3046923022 gale_infotracmisc_A793553837 gale_infotracacademiconefile_A793553837 pubmed_primary_38668135 crossref_primary_10_3390_mps7020027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Methods and protocols |
PublicationTitleAlternate | Methods Protoc |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Messaoud (ref_22) 2019; 93 Montacer (ref_8) 2019; 21 Padmadas (ref_32) 2022; 135 Ho (ref_2) 2010; 10 Montacer (ref_23) 2024; 30 ref_36 ref_35 ref_34 ref_10 Esterhuizen (ref_14) 2022; 5 Alismaeel (ref_12) 2022; 33 Gupta (ref_29) 2023; 78 ref_31 ref_30 Escalante (ref_1) 2014; 117 Reyero (ref_24) 2015; 129 Tabatabaei (ref_27) 2019; 74 Shan (ref_26) 2018; 178 Ferreira (ref_4) 2020; 264 Avhad (ref_28) 2016; 58 Mahmudul (ref_25) 2017; 72 Dochain (ref_19) 2016; 42 Maleki (ref_11) 2022; 18 Suresh (ref_3) 2018; 92 Hussain (ref_17) 2015; 76 Dhawane (ref_33) 2019; 149 Okonkwo (ref_15) 2023; 385 (ref_20) 2018; 132 Kern (ref_21) 2015; 33 Xu (ref_16) 2021; 23 Price (ref_38) 2015; 31 Oisiovici (ref_6) 2000; 55 ref_9 (ref_13) 2021; 63 Clark (ref_37) 2013; 136 Ezzati (ref_7) 2021; 168 Dochain (ref_18) 2003; 13 ref_5 |
References_xml | – volume: 33 start-page: 103646 year: 2022 ident: ref_12 article-title: Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103646 – volume: 30 start-page: 314 year: 2024 ident: ref_23 article-title: Fault detection using sliding mode multiobserver for nonlinear systems: Validation on a real chemical process publication-title: JVC J. Vib. Control doi: 10.1177/10775463221146211 – volume: 74 start-page: 239 year: 2019 ident: ref_27 article-title: Reactor technologies for biodiesel production and processing: A review publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.06.001 – volume: 42 start-page: 104 year: 2016 ident: ref_19 article-title: Monitoring of a biodiesel production process via reset observer publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.04.001 – volume: 33 start-page: 127 year: 2015 ident: ref_21 article-title: Advanced control with parameter estimation of batch transesterification reactor publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.06.006 – ident: ref_34 – ident: ref_9 doi: 10.1109/SCC53769.2021.9768357 – volume: 63 start-page: 120 year: 2021 ident: ref_13 article-title: Recent advances in knowledge discovery for heterogeneous catalysis using machine learning publication-title: Catal. Rev. Sci. Eng. doi: 10.1080/01614940.2020.1770402 – volume: 264 start-page: 116877 year: 2020 ident: ref_4 article-title: Monitoring of the transesterification reaction by continuous off-line density measurements publication-title: Fuel doi: 10.1016/j.fuel.2019.116877 – ident: ref_31 doi: 10.1016/B978-0-12-803581-8.10578-8 – volume: 5 start-page: 175 year: 2022 ident: ref_14 article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-022-00744-z – ident: ref_36 doi: 10.1016/j.jclepro.2020.120982 – volume: 92 start-page: 38 year: 2018 ident: ref_3 article-title: A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.048 – volume: 136 start-page: 771 year: 2013 ident: ref_37 article-title: Biodiesel transesterification kinetics monitored by pH measurement publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.089 – volume: 129 start-page: 147 year: 2015 ident: ref_24 article-title: Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.09.008 – volume: 149 start-page: 3508 year: 2019 ident: ref_33 article-title: Kinetic Modelling of Heterogeneous Methanolysis Catalysed by Iron Induced on Microporous Carbon Supported Catalyst publication-title: Catal. Lett. doi: 10.1007/s10562-019-02905-5 – ident: ref_35 – volume: 23 start-page: 11155 year: 2021 ident: ref_16 article-title: Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP01349A – volume: 135 start-page: 2643 year: 2022 ident: ref_32 article-title: Guishe biochar as heterogeneous catalyst for biodiesel production: Synthesis and transesterification modeling publication-title: React. Kinet. Mech. Catal. doi: 10.1007/s11144-022-02264-0 – volume: 178 start-page: 277 year: 2018 ident: ref_26 article-title: Catalysts from renewable resources for biodiesel production publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.10.032 – volume: 385 start-page: 135631 year: 2023 ident: ref_15 article-title: Production of biodiesel from the novel non-edible seed of Chrysobalanus icaco using natural heterogeneous catalyst: Modeling and prediction using Artificial Neural Network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135631 – volume: 58 start-page: 157 year: 2016 ident: ref_28 article-title: Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review publication-title: Catal. Rev. Sci. Eng. doi: 10.1080/01614940.2015.1103594 – ident: ref_5 doi: 10.3390/su9030455 – ident: ref_10 – volume: 93 start-page: 302 year: 2019 ident: ref_22 article-title: An unknown input multiobserver based on a discrete uncoupled multimodel for uncertain nonlinear systems: Experimental validation on a transesterification reactor publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.03.016 – volume: 55 start-page: 4667 year: 2000 ident: ref_6 article-title: State estimation of batch distillation columns using an extended Kalman filter publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(00)00088-9 – volume: 72 start-page: 497 year: 2017 ident: ref_25 article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.001 – volume: 117 start-page: 396 year: 2014 ident: ref_1 article-title: Dynamical modeling for biodiesel production from grease trap wastes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.07.006 – volume: 132 start-page: 536 year: 2018 ident: ref_20 article-title: Different approaches for the dynamic model for the production of biodiesel publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.01.048 – ident: ref_30 doi: 10.1016/j.biombioe.2022.106356 – volume: 10 start-page: 1019 year: 2010 ident: ref_2 article-title: Multivariable adaptative predictive model based control of a biodiesel transesterification reactor publication-title: J. Appl. Sci. doi: 10.3923/jas.2010.1019.1027 – volume: 13 start-page: 801 year: 2003 ident: ref_18 article-title: State and parameter estimation in chemical and biochemical processes: A tutorial publication-title: J. Process Control doi: 10.1016/S0959-1524(03)00026-X – volume: 18 start-page: 100157 year: 2022 ident: ref_11 article-title: Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study publication-title: Mater. Today Sustain. doi: 10.1016/j.mtsust.2022.100157 – volume: 78 start-page: 364 year: 2023 ident: ref_29 article-title: The impact of heterogeneous catalyst on biodiesel production; a review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.10.175 – volume: 31 start-page: 585 year: 2015 ident: ref_38 article-title: Real-time model based process monitoring of enzymatic biodiesel production publication-title: Biotechnol. Prog. doi: 10.1002/btpr.2030 – volume: 168 start-page: 280 year: 2021 ident: ref_7 article-title: Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis publication-title: Renew. Energy doi: 10.1016/j.renene.2020.12.055 – volume: 76 start-page: 27 year: 2015 ident: ref_17 article-title: Review and classification of recent observers applied in chemical process systems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.01.019 – volume: 21 start-page: 456 year: 2019 ident: ref_8 article-title: A Sliding Mode Multiobserver Based on an Uncoupled Multimodel: An Application on a Transesterification Reaction publication-title: Asian J. Control doi: 10.1002/asjc.1959 |
SSID | ssj0002140745 |
Score | 2.2521932 |
Snippet | This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 27 |
SubjectTerms | Algorithms Analysis Artificial intelligence batch reactor Biodiesel fuels Biofuels Catalysis Catalysts Chromatography Costs Differential equations Esters Glycerol heterogeneous catalyst Machine learning Mathematical models Measurement Neural networks nonlinear model Sensors soft sensor state estimation Triglycerides Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA-tvvSlKFbd-kFKC31azF2ySfZJPFHOgiJSxbeQTxHs7nl3_v_O7ObuuBb6usmG3Uxm5vebTCaE_ACI7KVjVVlzxkrBnSu1q-tSW_Q4IQjVhQaub-T4Xvx6rB5zwG2W0yoXNrEz1KH1GCM_wR08ACPgck4nryXeGoW7q_kKjY9kE0ywBvK1Obq4ub1bRlmGwB-UqPq6pBz4_cmfyUwxzExQa56oK9j_r1n-C2x2Tudyi3zOaJGe9eLdJh9is0MerpreEdHrVYCPtok-AO_Fk1Az-txQS8eY6dLCAonA7uld7I8wUECpdPTcYvZgfKG3fcVXaPhC7i8vfp-Py3w9QumF4POSRz3wiUfhmAwDH5QQTikpreQO7FDwSjstfeUHAbQ4-To4FrmqteNDFsF57ZKNpm3iPqE2AEriyWmVhKg59BAegIYDuuISkLKCfF9MlZn0VTAMsAecULOa0IKMcBaXPbBydfegnT6ZrAgm4sgyeF3FKKxjlsmkUuTWJ2BXwhfkJ8rAoH7Np9bbfEwAPhQrVZkzhRXhkVcX5HCtJ-iFX29eSNFkvZyZ1SoqyLdlM76JuWadPLAPDAIwCobY66W__CWupdQDXn39_-AH5NMQwE-f4XNINubTt3gE4GXujvMKfQelhe2v priority: 102 providerName: ProQuest |
Title | Indirect Measurement of Variables in a Heterogeneous Reaction for Biodiesel Production |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38668135 https://www.proquest.com/docview/3046923022 https://www.proquest.com/docview/3047939107 https://doaj.org/article/e4c156dc85ee4ab0a06f7fe3acf0864c |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFy-i-KovIgqeitlNmqRHV5RVUERUvIU8QdCuuOv_d6apq6sHL16bNKQzmZnvSycTQg4BInvpWFXWnLFScOdK7eq61BYjTghCtVsDV9dyeC8uH6vHb1d9YU5YLg-cBXcchQeKEbyuYhTWMctkUily6xOgceHR-0LM-0am0Af3gTcoUeV6pBx4_fHL61gxzEhQMxGoLdT_2x3_AJltsDlfJksdSqQneXYrZC42q-ThoskBiF59bezRUaIPwHfxBNSYPjXU0iFmuIxgYURg9fQ25qMLFNApHTyNMGswPtObXOkVGtbI_fnZ3emw7K5FKL0QfFLyqHs-8Sgck6HngxLCKSWlldyB_wleaaelr3wvgPUmXwfHIle1drzPIgStdTLfjJq4SagNgI54clolIWoOPVDalQOa4hKQsYIcfIrKvObqFwZYAwrUfAm0IAOU4rQHVqxuH4AeTadH85ceC3KEOjBoV5M36213PAAmihWqzInCSvDIpwuyM9MT7MHPNn9q0XT2ODb4_xegLACWguxPm_FNzDFr9YF9YBCATzDERtb-9JO4llL3eLX1H5-6TRb7AI1y_s8OmZ-8vcddgDYTt0cWBmfXN7d77Wr-ABur-Ao |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALAvFaWsAIEKdVnbXX9h4QaqBVQpuoqtqqN7N-LKpEd0M2FeJP8RuZ2UeigMSt19g72szD833e8ZiQtwCRnbQsjTPOWCy4tbG2WRbrHDOO90I1WwPTmRyfiy-X6eUW-d2fhcGyyn5NbBZqXzncI9_DL3gARiDlfJz_iPHWKPy62l-h0brFUfj1Eyhb_WHyGez7LkkOD84-jePuVoHYCcGXMQ966AoehGXSD51XQlilpMwltxC-3ilttXSpG3pw_sJl3rLAVaYtT1iANR_k3iHbggOVGZDt0cHs5HS1q5MAX1Eibfugcp6xvet5rRhWQqiNzNdcEPBvGvgL3DZJ7vABud-hU7rfutNDshXKR-RiUraJj07XG4q0KugF8Gw8eVXTq5LmdIyVNRU4ZKhuanoa2iMTFFAxHV1VWK0YvtOTtsMsDDwm57eiuCdkUFZleEZo7gGV8cJqVQiRcZghHAAbC_TIFkACI_KmV5WZt103DLAVVKhZKzQiI9TiagZ2ym5-qBbfTBd4JqBk6Z1OQxC5ZTmThSoCz10BbE64iLxHGxiM5-Uid3l3LAFeFDtjmX2FHeiRx0dkd2MmxKHbHO6taLp1oDZrr43I69UwPom1bY09cA4IAdgGIp621l_9Ja6l1EOePv-_8Ffk7vhsemyOJ7OjHXIvAeDVVhftksFycRNeAHBa2pedt1Ly9bYD5A9KtSpV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEIhb2AAjQDxFdWPHdh4QWtmqlrGqmti0txDfpkmQdE0nxF_j13FOkrYqSLzttXaO0nPx-T7n-JiQtwCRrTQsjTPOWCy4MbE2WRbrAjOOc0I1WwMnUzk-E58v0osd8nt1FgbLKldrYrNQu8riHnkfv-ABGIGU0w9dWcTscPRxfh3jDVL4pXV1nUbrIsf-10-gb_WHySHY-l2SjI6-fhrH3Q0DsRWCL2Pu9cAG7oVh0g2sU0IYpaQsJDcQys4qbbS0qR04CIRgM2eY5yrThifMw_oPcu-QXQWsiPXI7vBoOjtd7_AkwF2USNueqJxnrP9jXiuGVRFqKws2lwX8mxL-ArpNwhs9IPc7pEoPWtd6SHZ8-YicT8o2CdKTzeYirQI9B86Np7BqelXSgo6xyqYC5_TVTU1PfXt8ggJCpsOrCisX_Xc6a7vNwsBjcnYrintCemVV-meEFg4QGg9GqyBExmGGsAByDFAlE4AQRuTNSlX5vO3AkQNzQYXmG4VGZIhaXM_ArtnND9XiMu-CMPcoWTqrU-9FYVjBZFDB88IGYHbCRuQ92iDH2F4uClt0RxTgRbFLVn6gsBs9cvqI7G_NhJi028MrK-bdmlDnGw-OyOv1MD6JdW6NPXAOCAEIByKettZf_yWupdQDnj7_v_BX5C4ERv5lMj3eI_cSwGBtodE-6S0XN_4FYKiledk5KyXfbjs-_gAPBy6K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Measurement+of+Variables+in+a+Heterogeneous+Reaction+for+Biodiesel+Production&rft.jtitle=Methods+and+protocols&rft.au=Gonz%C3%A1lez-Garc%C3%ADa%2C+Ana+Paloma&rft.au=D%C3%ADaz-Jim%C3%A9nez%2C+Lourdes&rft.au=Padmadas%2C+Padmasree+K&rft.au=Carlos-Hern%C3%A1ndez%2C+Salvador&rft.date=2024-04-01&rft.eissn=2409-9279&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fmps7020027&rft_id=info%3Apmid%2F38668135&rft.externalDocID=38668135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2409-9279&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2409-9279&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2409-9279&client=summon |