Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220

Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 617; no. 2; pp. 966 - 986
Main Author Torres, Diego F
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 20.12.2004
University of Chicago Press
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.1086/425415

Cover

Loading…
Abstract Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high-energy emission of the superstarburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission and absorption of the primary and secondary steady population of electrons and positrons. The latter is the output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with subarcsecond radio observations, which is what allows us to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give an account of losses in the gamma -ray escape. Bremsstrahlung emission and neutral pion decay are also computed, and the gamma -ray spectrum is finally predicted. Future possible observations with GLAST and the ground-based Cerenkov telescopes are discussed.
AbstractList Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high-energy emission of the superstarburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission and absorption of the primary and secondary steady population of electrons and positrons. The latter is the output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with subarcsecond radio observations, which is what allows us to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give an account of losses in the gamma -ray escape. Bremsstrahlung emission and neutral pion decay are also computed, and the gamma -ray spectrum is finally predicted. Future possible observations with GLAST and the ground-based Cerenkov telescopes are discussed.
Author Torres, Diego F
Author_xml – sequence: 1
  fullname: Torres, Diego F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16525396$$DView record in Pascal Francis
BookMark eNpl0VFrFDEQB_AgFbxW_QzxQR_E1cxmk931rZzXKlSUs4JvYZqbtJHdzZnkxH57s71yQn0KSX7MMPM_ZkdTmIix5yDeguj0u6ZWDahHbAFKdlUjVXvEFkKIptKy_fGEHaf0c77Wfb9gvy9vKETK3uLAP4cNDX665sHxfEP8g3dul4ivRp-SD9P8fo7jiHyNt4m7GEa--pMjjcTXdF1Emsm3jJGfhThiLk_veWnBl1jqlL_T9Vde1-Ipe-xwSPTs_jxh389Wl8uP1cWX80_L04vKNo3MlcQrQV3ftkKRqjsCKawjgF43WjpAZ5W20LdyIxCU6NBdCSWA6hZBWrLyhL3a193G8GtHKZsyiqVhwInCLhloJZQ96AJf3kNMZRUu4mR9MtvoR4y3BrSqlbxzb_bOxpBSJGesz3dz5oh-MCDMHILZh_Cv_4EfKj6Er_fQh-3BzCmZOTSjoTW16bU2240r-MX_-EHBv5X5nLw
CODEN ASJOAB
CitedBy_id crossref_primary_10_3847_1538_4357_ab44ba
crossref_primary_10_1051_0004_6361_200809525
crossref_primary_10_1086_428903
crossref_primary_10_1093_mnras_stv1525
crossref_primary_10_1086_427496
crossref_primary_10_1088_1475_7516_2015_12_029
crossref_primary_10_1093_mnras_sty2198
crossref_primary_10_1111_j_1365_2966_2010_17205_x
crossref_primary_10_1086_592562
crossref_primary_10_1088_0004_637X_807_1_33
crossref_primary_10_1103_PhysRevD_89_127304
crossref_primary_10_1103_PhysRevD_97_063010
crossref_primary_10_1088_0004_637X_698_2_1054
crossref_primary_10_1093_mnras_stz223
crossref_primary_10_1088_0004_637X_762_1_29
crossref_primary_10_1093_mnras_stt122
crossref_primary_10_3847_1538_4357_abee1a
crossref_primary_10_1088_1475_7516_2006_05_003
crossref_primary_10_1093_mnras_stab2118
crossref_primary_10_1017_S1743921312009490
crossref_primary_10_1088_0004_637X_755_2_106
crossref_primary_10_1093_mnras_stab3273
crossref_primary_10_1093_mnras_stae138
crossref_primary_10_1088_0004_637X_794_1_26
crossref_primary_10_1093_mnras_stac516
crossref_primary_10_1093_mnras_staa698
crossref_primary_10_3847_1538_4357_aba043
crossref_primary_10_1093_mnras_stx2917
crossref_primary_10_1051_epjconf_201713602008
crossref_primary_10_1088_0004_637X_728_1_11
crossref_primary_10_1093_mnrasl_slv195
crossref_primary_10_1111_j_1365_2966_2009_16218_x
crossref_primary_10_1103_PhysRevD_103_083017
crossref_primary_10_1093_mnras_stad1524
crossref_primary_10_1093_mnras_stt2336
crossref_primary_10_1016_j_jheap_2014_01_001
crossref_primary_10_1111_j_1365_2966_2012_20920_x
crossref_primary_10_1142_S0217732305018748
crossref_primary_10_3847_2041_8213_ac25ff
crossref_primary_10_1093_mnras_stt349
crossref_primary_10_1103_PhysRevD_102_023034
crossref_primary_10_3847_1538_4357_ab3e6f
crossref_primary_10_3847_2041_8205_821_2_L20
crossref_primary_10_1088_1742_6596_60_1_045
crossref_primary_10_1093_mnras_stz1161
crossref_primary_10_1093_mnras_stac1808
crossref_primary_10_1093_mnras_stab659
crossref_primary_10_1016_j_physrep_2019_01_002
crossref_primary_10_1088_0004_637X_717_1_1
crossref_primary_10_1016_j_ndteint_2015_08_003
crossref_primary_10_1086_511173
crossref_primary_10_1146_annurev_astro_041224_011924
crossref_primary_10_1088_0004_637X_780_2_137
crossref_primary_10_1093_mnras_stab1325
crossref_primary_10_1093_mnras_stab1324
crossref_primary_10_1051_0004_6361_201322664
crossref_primary_10_1093_mnras_stad2105
crossref_primary_10_1051_0004_6361_201628667
crossref_primary_10_1051_0004_6361_20053613
crossref_primary_10_1051_0004_6361_201323154
crossref_primary_10_1051_0004_6361_201628702
crossref_primary_10_1093_mnras_stab2535
crossref_primary_10_1086_509068
crossref_primary_10_1093_mnras_stac2133
crossref_primary_10_1111_j_1745_3933_2008_00485_x
crossref_primary_10_1088_2041_8205_729_1_L1
crossref_primary_10_1088_0004_637X_734_2_107
crossref_primary_10_1142_S0217732307024309
crossref_primary_10_3847_1538_4357_aa7464
crossref_primary_10_1088_0004_637X_765_2_108
crossref_primary_10_1007_s10509_007_9417_8
crossref_primary_10_1051_0004_6361_20054027
crossref_primary_10_1016_j_astropartphys_2007_02_004
crossref_primary_10_1086_504035
crossref_primary_10_1088_0004_637X_768_1_53
crossref_primary_10_1088_0004_637X_786_1_40
crossref_primary_10_3847_1538_4357_836_1_47
crossref_primary_10_1051_0004_6361_201834350
crossref_primary_10_1093_mnras_staa875
crossref_primary_10_3847_1538_4357_ab0ae2
crossref_primary_10_1088_1742_6596_355_1_012038
crossref_primary_10_1017_S1743921312009489
crossref_primary_10_1103_PhysRevD_104_083013
crossref_primary_10_1103_PhysRevD_98_123018
crossref_primary_10_3847_1538_4357_aaba74
crossref_primary_10_1007_s10509_007_9475_y
crossref_primary_10_1088_0004_637X_755_2_164
crossref_primary_10_1088_0004_637X_790_2_86
crossref_primary_10_1051_0004_6361_202141295
Cites_doi 10.1086/156061
10.1007/BF02710246
10.1086/166909
10.1007/BF00651256
10.1103/PhysRev.150.1088
10.1086/160167
10.1051/0004-6361:20034073
10.1086/307656
10.1086/167341
10.1086/176969
10.1103/PhysRevD.62.094030
10.1086/383003
10.1086/176526
10.1086/306951
10.1017/CBO9781139174404
10.1086/154386
10.1086/308008
10.1086/309068
10.1017/S0074180900221542
10.1086/175683
10.1046/j.1365-8711.2001.04255.x
10.1086/304368
10.1007/BF00653856
10.1103/PhysRevLett.92.071102
10.1086/175586
10.1201/9781420033335
10.1086/311121
10.1086/307483
10.1086/306470
10.1016/B978-0-08-013526-7.50011-6
10.1086/306855
10.1086/381803
10.1086/374333
10.1051/0004-6361:20030198
10.1088/0034-4885/67/9/R03
10.1086/133093
10.1086/305020
10.1007/978-94-011-0752-5_27
10.1086/152435
10.1086/300508
10.1029/JZ071i015p03687
10.1051/0004-6361:20021854
10.1007/978-3-662-04814-6
10.1093/mnras/251.1.112
10.1146/annurev.aa.05.090167.002405
10.1086/300879
10.1086/186984
10.1086/155088
10.1086/310165
10.1086/318925
10.1086/374654
10.1086/307155
10.1086/382999
10.1103/RevModPhys.42.237
10.1086/344439
10.1146/annurev.astro.34.1.749
10.1086/170407
10.1086/160470
10.1086/185374
10.1086/378041
10.1016/S0370-1573(03)00201-1
10.1088/0954-3899/28/6/316
10.1086/185437
10.1086/306339
10.1086/185897
10.1103/PhysRevD.52.3265
10.1046/j.1365-8711.2001.04478.x
10.1086/422868
10.1086/307274
10.1103/PhysRevD.15.820
10.1086/174515
10.1086/305152
10.1086/155019
10.1086/185224
10.1038/nature02407
10.1086/421871
10.1086/311122
10.1086/310783
10.1098/rspa.1938.0017
10.1093/mnras/182.3.443
10.1051/0004-6361:20000261
10.1086/378353
10.1086/322455
10.1051/0004-6361:20010239
10.1093/mnras/280.4.1143
10.1086/183868
10.1046/j.1365-8711.2003.06566.x
10.1086/303765
10.1007/978-94-010-1007-8_22
10.1086/344106
10.1093/mnras/278.4.1049
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright_xml – notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
DOI 10.1086/425415
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 986
ExternalDocumentID 16525396
10_1086_425415
GroupedDBID 123
1JI
23N
2WC
4.4
85S
8RP
AAGCD
AAJIO
AALHV
ABFLS
ABPTK
ACGFS
ACNCT
ADKFC
AEFHF
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CS3
DZ
EBS
EJD
F5P
G8K
IOP
KOT
MVM
N5L
O3W
O43
OHT
OK1
RIN
RNS
RPA
SJN
SY9
T37
TN5
VOH
WH7
X
ZY4
-DZ
-~X
2FS
6J9
6TJ
AAFWJ
AAYXX
ABDPE
ABHWH
ACBEA
ACHIP
ADACN
AFPKN
AKPSB
CITATION
CRLBU
FRP
GROUPED_DOAJ
IJHAN
M~E
PJBAE
TR2
WHG
XOL
XSW
41~
6TS
9M8
ADIYS
ADXHL
AETEA
AI.
FA8
IQODW
ROL
VH1
YYP
ZCG
ZKB
7TG
KL.
ID FETCH-LOGICAL-c443t-3ab0e897705e528e130cfe1196463f1afc56c1973d0a1508afb0501e27a13cec3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri Jul 11 08:55:25 EDT 2025
Mon Jul 21 09:16:02 EDT 2025
Tue Jul 01 04:24:03 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Mon May 13 14:50:54 EDT 2019
Tue Nov 10 14:26:35 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Merging galaxies
Gamma emission
galaxies: starburst
infrared: galaxies
Radio galaxies
Starburst galaxies
Stellar formation region
gamma rays: observations
Continuum
Radio emission
gamma rays: theory
Theoretical model
Gamma radiation
galaxies: individual (Arp 220)
Cosmic radio sources
Infrared galaxies
Modelling
Radio spectrum
radio continuum: galaxies
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-3ab0e897705e528e130cfe1196463f1afc56c1973d0a1508afb0501e27a13cec3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://digital.library.unt.edu/ark:/67531/metadc1406315/
PQID 17312996
PQPubID 23462
PageCount 21
ParticipantIDs proquest_miscellaneous_17312996
crossref_primary_10_1086_425415
crossref_citationtrail_10_1086_425415
pascalfrancis_primary_16525396
iop_primary_10_1086_425415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-12-20
PublicationDateYYYYMMDD 2004-12-20
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-20
  day: 20
PublicationDecade 2000
PublicationPlace Chicago, IL
PublicationPlace_xml – name: Chicago, IL
PublicationTitle The Astrophysical journal
PublicationYear 2004
Publisher IOP Publishing
University of Chicago Press
Publisher_xml – name: IOP Publishing
– name: University of Chicago Press
References rf46_1139
rf47_1140
rf30_1123
rf106_1199
rf67_1160
rf9_1102
rf65_1158
rf1_1094
rf28_1121
rf26_1119
rf31_1124
Bell A. R. (rf11_1104) 1978; 182
rf66_1159
rf29_1122
rf50_1143
Ramaty R. (rf75_1168) 1966; 71
rf8_1101
rf87_1180
Romero G. E. (rf79_1172) 1999; 348
rf85_1178
rf64_1157
rf90_1183
Aharonian F. A. (rf4_1097) 1994; 285
rf68_1161
rf12_1105
rf88_1181
rf44_1137
rf70_1163
rf52_1145
rf27_1120
rf84_1177
rf104_1197
rf2_1095
Drury L. (rf36_1129) 1994; 287
Hummel E. (rf48_1141) 1995; 303
rf72_1165
rf33_1126
Dermer C. D. (rf32_1125) 1986; 157
Fazio G. G. (rf41_1134) 1967; 5
rf103_1196
rf91_1184
rf23_1116
rf99_1192
Uchida K. I. (rf109_1202) 1995; 298
rf63_1156
rf114_1207
rf24_1117
Stecker F. W. (rf97_1190) 1969; 6
rf82_1175
rf14_1107
rf6_1099
rf54_1147
rf17_1110
rf7_1100
rf69_1162
rf42_1135
rf45_1138
rf40_1133
Sopp H. M. (rf96_1189) 1991; 251
rf108_1201
rf57_1150
rf18_1111
rf100_1193
rf20_1113
rf94_1187
Aharonian F. A. (rf3_1096) 1996; 309
rf76_1169
rf77_1170
rf38_1131
rf107_1200
rf21_1114
rf95_1188
Rigopoulou D. (rf78_1171) 1996; 278
rf19_1112
rf56_1149
rf39_1132
rf93_1186
Bhabha H. J. (rf15_1108) 1938; 164
Killeen N. (rf51_1144) 1996; 280
Maraschi L. (rf60_1153) 1968; 53
rf73_1166
rf101_1194
rf55_1148
rf81_1174
rf59_1152
rf5_1098
rf110_1203
rf113_1206
rf35_1128
rf61_1154
rf89_1182
rf43_1136
rf62_1155
rf34_1127
rf92_1185
rf53_1146
rf102_1195
rf112_1205
rf115_1208
rf22_1115
rf105_1198
rf25_1118
rf80_1173
rf83_1176
Schlickeiser R. (rf86_1179) 1982; 106
Beck R. (rf10_1103) 2001; 99
rf49_1142
rf98_1191
rf13_1106
rf16_1109
rf71_1164
rf74_1167
Volk H. J. (rf111_1204) 1989; 237
Mannheim K. (rf58_1151) 1994; 286
rf37_1130
References_xml – volume: 298
  start-page: 473
  year: 1995
  ident: rf109_1202
  publication-title: A&A
– ident: rf62_1155
  doi: 10.1086/156061
– volume: 53
  start-page: 1975
  year: 1968
  ident: rf60_1153
  publication-title: Nuovo Cimento B
  doi: 10.1007/BF02710246
– ident: rf64_1157
  doi: 10.1086/166909
– ident: rf101_1194
  doi: 10.1007/BF00651256
– ident: rf42_1135
– ident: rf1_1094
  doi: 10.1103/PhysRev.150.1088
– ident: rf24_1117
  doi: 10.1086/160167
– ident: rf39_1132
  doi: 10.1051/0004-6361:20034073
– ident: rf61_1154
  doi: 10.1086/307656
– ident: rf38_1131
  doi: 10.1086/167341
– ident: rf71_1164
  doi: 10.1086/176969
– ident: rf17_1110
  doi: 10.1103/PhysRevD.62.094030
– ident: rf43_1136
  doi: 10.1086/383003
– ident: rf7_1100
  doi: 10.1086/176526
– ident: rf84_1177
  doi: 10.1086/306951
– volume: 285
  start-page: 645
  year: 1994
  ident: rf4_1097
  publication-title: A&A
– ident: rf2_1095
– volume: 309
  start-page: 917
  year: 1996
  ident: rf3_1096
  publication-title: A&A
– ident: rf50_1143
  doi: 10.1017/CBO9781139174404
– ident: rf70_1163
  doi: 10.1086/154386
– ident: rf66_1159
  doi: 10.1086/308008
– ident: rf82_1175
– ident: rf20_1113
  doi: 10.1086/309068
– volume: 286
  start-page: 983
  year: 1994
  ident: rf58_1151
  publication-title: A&A
– ident: rf57_1150
  doi: 10.1017/S0074180900221542
– ident: rf37_1130
  doi: 10.1086/175683
– ident: rf63_1156
  doi: 10.1046/j.1365-8711.2001.04255.x
– ident: rf89_1182
  doi: 10.1086/304368
– ident: rf103_1196
– ident: rf29_1122
– volume: 6
  start-page: 377
  year: 1969
  ident: rf97_1190
  publication-title: Ap&SS
  doi: 10.1007/BF00653856
– ident: rf5_1098
  doi: 10.1103/PhysRevLett.92.071102
– ident: rf46_1139
  doi: 10.1086/175586
– ident: rf53_1146
  doi: 10.1201/9781420033335
– ident: rf56_1149
  doi: 10.1086/311121
– ident: rf30_1123
  doi: 10.1086/307483
– ident: rf102_1195
  doi: 10.1086/306470
– ident: rf45_1138
  doi: 10.1016/B978-0-08-013526-7.50011-6
– ident: rf94_1187
  doi: 10.1086/306855
– ident: rf105_1198
  doi: 10.1086/381803
– ident: rf25_1118
– ident: rf114_1207
  doi: 10.1086/374333
– ident: rf59_1152
  doi: 10.1051/0004-6361:20030198
– ident: rf104_1197
  doi: 10.1088/0034-4885/67/9/R03
– ident: rf23_1116
  doi: 10.1086/133093
– ident: rf92_1185
  doi: 10.1086/305020
– ident: rf74_1167
  doi: 10.1007/978-94-011-0752-5_27
– ident: rf99_1192
  doi: 10.1086/152435
– ident: rf52_1145
  doi: 10.1086/300508
– volume: 71
  start-page: 3687
  year: 1966
  ident: rf75_1168
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ071i015p03687
– ident: rf12_1105
  doi: 10.1051/0004-6361:20021854
– ident: rf87_1180
  doi: 10.1007/978-3-662-04814-6
– volume: 251
  start-page: 112
  year: 1991
  ident: rf96_1189
  publication-title: MNRAS
  doi: 10.1093/mnras/251.1.112
– volume: 5
  start-page: 481
  year: 1967
  ident: rf41_1134
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.05.090167.002405
– ident: rf22_1115
  doi: 10.1086/300879
– ident: rf35_1128
  doi: 10.1086/186984
– volume: 99
  start-page: 243
  year: 2001
  ident: rf10_1103
  publication-title: Rev.
– ident: rf21_1114
  doi: 10.1086/155088
– ident: rf115_1208
  doi: 10.1086/310165
– ident: rf90_1183
  doi: 10.1086/318925
– ident: rf80_1173
  doi: 10.1086/374654
– ident: rf18_1111
  doi: 10.1086/307155
– ident: rf44_1137
  doi: 10.1086/382999
– ident: rf19_1112
  doi: 10.1103/RevModPhys.42.237
– ident: rf26_1119
  doi: 10.1086/344439
– ident: rf85_1178
  doi: 10.1146/annurev.astro.34.1.749
– ident: rf27_1120
  doi: 10.1086/170407
– ident: rf67_1160
  doi: 10.1086/160470
– ident: rf113_1206
  doi: 10.1086/185374
– ident: rf40_1133
  doi: 10.1086/378041
– ident: rf108_1201
  doi: 10.1016/S0370-1573(03)00201-1
– ident: rf91_1184
  doi: 10.1088/0954-3899/28/6/316
– ident: rf65_1158
  doi: 10.1086/185437
– ident: rf34_1127
  doi: 10.1086/306339
– ident: rf88_1181
  doi: 10.1086/185897
– ident: rf6_1099
  doi: 10.1103/PhysRevD.52.3265
– ident: rf49_1142
  doi: 10.1046/j.1365-8711.2001.04478.x
– ident: rf47_1140
  doi: 10.1086/422868
– ident: rf31_1124
  doi: 10.1086/307274
– ident: rf9_1102
  doi: 10.1103/PhysRevD.15.820
– volume: 157
  start-page: 223
  year: 1986
  ident: rf32_1125
  publication-title: A&A
– ident: rf110_1203
  doi: 10.1086/174515
– volume: 287
  start-page: 959
  year: 1994
  ident: rf36_1129
  publication-title: A&A
– ident: rf55_1148
– ident: rf68_1161
  doi: 10.1086/305152
– ident: rf100_1193
  doi: 10.1086/155019
– volume: 303
  start-page: 691
  year: 1995
  ident: rf48_1141
  publication-title: A&A
– volume: 237
  start-page: 21
  year: 1989
  ident: rf111_1204
  publication-title: A&A
– ident: rf14_1107
– ident: rf77_1170
  doi: 10.1086/185224
– volume: 106
  start-page: L5
  year: 1982
  ident: rf86_1179
  publication-title: A&A
– ident: rf54_1147
  doi: 10.1038/nature02407
– ident: rf106_1199
  doi: 10.1086/421871
– ident: rf76_1169
– volume: 348
  start-page: 868
  year: 1999
  ident: rf79_1172
  publication-title: A&A
– ident: rf93_1186
  doi: 10.1086/311122
– ident: rf28_1121
– ident: rf33_1126
  doi: 10.1086/310783
– ident: rf83_1176
– volume: 164
  start-page: 258
  year: 1938
  ident: rf15_1108
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1938.0017
– ident: rf98_1191
– volume: 182
  start-page: 443
  year: 1978
  ident: rf11_1104
  publication-title: MNRAS
  doi: 10.1093/mnras/182.3.443
– ident: rf13_1106
  doi: 10.1051/0004-6361:20000261
– ident: rf69_1162
  doi: 10.1086/378353
– ident: rf72_1165
  doi: 10.1086/322455
– ident: rf107_1200
  doi: 10.1051/0004-6361:20010239
– volume: 280
  start-page: 1143
  year: 1996
  ident: rf51_1144
  publication-title: MNRAS
  doi: 10.1093/mnras/280.4.1143
– ident: rf8_1101
  doi: 10.1086/183868
– ident: rf81_1174
  doi: 10.1046/j.1365-8711.2003.06566.x
– ident: rf95_1188
  doi: 10.1086/303765
– ident: rf73_1166
  doi: 10.1007/978-94-010-1007-8_22
– ident: rf112_1205
  doi: 10.1086/344106
– ident: rf16_1109
– volume: 278
  start-page: 1049
  year: 1996
  ident: rf78_1171
  publication-title: MNRAS
  doi: 10.1093/mnras/278.4.1049
SSID ssj0004299
Score 2.2041624
Snippet Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks,...
SourceID proquest
pascalfrancis
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 966
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Quasars. Active or peculiar galaxies, objects, and systems
Starburst galaxies and infrared excess galaxies
Stellar systems. Galactic and extragalactic objects and systems. The universe
Title Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220
URI http://iopscience.iop.org/0004-637X/617/2/966
https://www.proquest.com/docview/17312996
Volume 617
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdbYbCXre02mq7rBPt4cyJLlmzvLbTJusHaEFqWNyHLEpQtcaid0u6v350_mmyBsRcj7EMW_p11P510d4S8586D2RFhYIyxQQSLjgC0BP4rlRuGk2Gc4ULx27k6u4q-zuRsHax-XSzbmb8PzXonH1lHoEQ8G4CxHfAB8HOYccHy41Lry8VkHQXJ05bsNvIblYRAMSMsfLtheh5D_3gQ0pTwLXxTxGJrPq6NzPg5Oe9CdZqzJT_6qyrr21_bmRv_b_y75FlLN-mw0Y898sgt9snBsEQHeDG_px9p3W78G-U-eTJpWi_I7eU6xJFixTSMW6eFp8AY6em196vS0RFoCbrb8P5nM58bOjX3JcWYFTq6q9D3SKcOjzyXKALM9oaOu3DJTxReQU_AjOKz4XRCOWcvydV4dHlyFrRFGgIbRaIKhMmYS4BFMukkTxzYROtdiHm-lPCh8VYqG6axyJnB3PPGZ0yy0PHYhMI6K16RnUWxcAeECpklMs5SD6wnSrk3YZJnTHEO1Fr5POmRDx1-2rYZzLGQxk9d76QnSjc498jbB7llk7NjS-IdwPPwECHSCJEGiDTXAJFe5r5HDjel_u7i-A_dWYspyaVIFYyiUyYNYOA-jFm4YlXqMBbAslJ1-K_-X5OnXU5Jzo7ITnWzcm-A_1TZca32cL0Q338DAIX73w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9tQyBeJhigdcBmiY-3MMeOnYS3amsZX6OqNtE3y0lsCYk21dJO7L_nrk7ajUm8WfHFsfxzfD-ffXcAb4XzqHZkHFlryyjBTUeEswT_K11ZTothWtBG8fu5PrtMvkzUZAvU2hemnrdL_wcshkDBYQiPu7RAOMtQ6xzPK78ND5RMBYXM_yF_btwhRd6y3iTSMp3cSikU3r2jg7bxO3Qj0jY4KD5ks7i3MK-0zfAJ7LY0kfVDp57ClpvtwX6_IcN1Pb1h79mqHOwSzR48HIXSM7i-2LgmMsp0Rv7mrPYMmR47_eX9snFsgOiSmYyef7LTqWVje9Mw8jVhgz8LshmysaOryg2JICO9YsPOzfEjw0-wE1R_VNcfj5gQ_DlcDgcXJ2dRm1whKpNELiJpC-4yZH9cOSUyh7qs9C6m-Fxa-tj6UukyzlNZcUsx460vuOKxE6mNZelK-QJ2ZvXM7QOTqshUWuQe2UqSC2_jrCq4FgIpsfZV1oN33XCbso08TgkwfpvVCXimTYClB0druXmItXFP4g2ita4khA0hbJCHGWFw62ZwWvTg4LbUv00c3oF6I6aVUDLX2IsOe4Ng0PmJnbl62Zg4lciOcn3wv_aP4NHodGi-fT7_-hIed2EhBX8FO4urpXuNFGZRHK4m7F95E-c5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+modeling+of+the+diffuse+emission+of+gamma+rays+from+extreme+regions+of+star+formation%3A+The+case+of+ARP+220&rft.jtitle=The+Astrophysical+journal&rft.au=TORRES%2C+Diego+F&rft.date=2004-12-20&rft.pub=University+of+Chicago+Press&rft.issn=0004-637X&rft.volume=617&rft.issue=2&rft.spage=966&rft.epage=986&rft_id=info:doi/10.1086%2F425415&rft.externalDBID=n%2Fa&rft.externalDocID=16525396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon