Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220
Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge...
Saved in:
Published in | The Astrophysical journal Vol. 617; no. 2; pp. 966 - 986 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chicago, IL
IOP Publishing
20.12.2004
University of Chicago Press |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.1086/425415 |
Cover
Loading…
Abstract | Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high-energy emission of the superstarburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission and absorption of the primary and secondary steady population of electrons and positrons. The latter is the output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with subarcsecond radio observations, which is what allows us to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give an account of losses in the gamma -ray escape. Bremsstrahlung emission and neutral pion decay are also computed, and the gamma -ray spectrum is finally predicted. Future possible observations with GLAST and the ground-based Cerenkov telescopes are discussed. |
---|---|
AbstractList | Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the premerger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high-energy emission of the superstarburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission and absorption of the primary and secondary steady population of electrons and positrons. The latter is the output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with subarcsecond radio observations, which is what allows us to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give an account of losses in the gamma -ray escape. Bremsstrahlung emission and neutral pion decay are also computed, and the gamma -ray spectrum is finally predicted. Future possible observations with GLAST and the ground-based Cerenkov telescopes are discussed. |
Author | Torres, Diego F |
Author_xml | – sequence: 1 fullname: Torres, Diego F |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16525396$$DView record in Pascal Francis |
BookMark | eNpl0VFrFDEQB_AgFbxW_QzxQR_E1cxmk931rZzXKlSUs4JvYZqbtJHdzZnkxH57s71yQn0KSX7MMPM_ZkdTmIix5yDeguj0u6ZWDahHbAFKdlUjVXvEFkKIptKy_fGEHaf0c77Wfb9gvy9vKETK3uLAP4cNDX665sHxfEP8g3dul4ivRp-SD9P8fo7jiHyNt4m7GEa--pMjjcTXdF1Emsm3jJGfhThiLk_veWnBl1jqlL_T9Vde1-Ipe-xwSPTs_jxh389Wl8uP1cWX80_L04vKNo3MlcQrQV3ftkKRqjsCKawjgF43WjpAZ5W20LdyIxCU6NBdCSWA6hZBWrLyhL3a193G8GtHKZsyiqVhwInCLhloJZQ96AJf3kNMZRUu4mR9MtvoR4y3BrSqlbxzb_bOxpBSJGesz3dz5oh-MCDMHILZh_Cv_4EfKj6Er_fQh-3BzCmZOTSjoTW16bU2240r-MX_-EHBv5X5nLw |
CODEN | ASJOAB |
CitedBy_id | crossref_primary_10_3847_1538_4357_ab44ba crossref_primary_10_1051_0004_6361_200809525 crossref_primary_10_1086_428903 crossref_primary_10_1093_mnras_stv1525 crossref_primary_10_1086_427496 crossref_primary_10_1088_1475_7516_2015_12_029 crossref_primary_10_1093_mnras_sty2198 crossref_primary_10_1111_j_1365_2966_2010_17205_x crossref_primary_10_1086_592562 crossref_primary_10_1088_0004_637X_807_1_33 crossref_primary_10_1103_PhysRevD_89_127304 crossref_primary_10_1103_PhysRevD_97_063010 crossref_primary_10_1088_0004_637X_698_2_1054 crossref_primary_10_1093_mnras_stz223 crossref_primary_10_1088_0004_637X_762_1_29 crossref_primary_10_1093_mnras_stt122 crossref_primary_10_3847_1538_4357_abee1a crossref_primary_10_1088_1475_7516_2006_05_003 crossref_primary_10_1093_mnras_stab2118 crossref_primary_10_1017_S1743921312009490 crossref_primary_10_1088_0004_637X_755_2_106 crossref_primary_10_1093_mnras_stab3273 crossref_primary_10_1093_mnras_stae138 crossref_primary_10_1088_0004_637X_794_1_26 crossref_primary_10_1093_mnras_stac516 crossref_primary_10_1093_mnras_staa698 crossref_primary_10_3847_1538_4357_aba043 crossref_primary_10_1093_mnras_stx2917 crossref_primary_10_1051_epjconf_201713602008 crossref_primary_10_1088_0004_637X_728_1_11 crossref_primary_10_1093_mnrasl_slv195 crossref_primary_10_1111_j_1365_2966_2009_16218_x crossref_primary_10_1103_PhysRevD_103_083017 crossref_primary_10_1093_mnras_stad1524 crossref_primary_10_1093_mnras_stt2336 crossref_primary_10_1016_j_jheap_2014_01_001 crossref_primary_10_1111_j_1365_2966_2012_20920_x crossref_primary_10_1142_S0217732305018748 crossref_primary_10_3847_2041_8213_ac25ff crossref_primary_10_1093_mnras_stt349 crossref_primary_10_1103_PhysRevD_102_023034 crossref_primary_10_3847_1538_4357_ab3e6f crossref_primary_10_3847_2041_8205_821_2_L20 crossref_primary_10_1088_1742_6596_60_1_045 crossref_primary_10_1093_mnras_stz1161 crossref_primary_10_1093_mnras_stac1808 crossref_primary_10_1093_mnras_stab659 crossref_primary_10_1016_j_physrep_2019_01_002 crossref_primary_10_1088_0004_637X_717_1_1 crossref_primary_10_1016_j_ndteint_2015_08_003 crossref_primary_10_1086_511173 crossref_primary_10_1146_annurev_astro_041224_011924 crossref_primary_10_1088_0004_637X_780_2_137 crossref_primary_10_1093_mnras_stab1325 crossref_primary_10_1093_mnras_stab1324 crossref_primary_10_1051_0004_6361_201322664 crossref_primary_10_1093_mnras_stad2105 crossref_primary_10_1051_0004_6361_201628667 crossref_primary_10_1051_0004_6361_20053613 crossref_primary_10_1051_0004_6361_201323154 crossref_primary_10_1051_0004_6361_201628702 crossref_primary_10_1093_mnras_stab2535 crossref_primary_10_1086_509068 crossref_primary_10_1093_mnras_stac2133 crossref_primary_10_1111_j_1745_3933_2008_00485_x crossref_primary_10_1088_2041_8205_729_1_L1 crossref_primary_10_1088_0004_637X_734_2_107 crossref_primary_10_1142_S0217732307024309 crossref_primary_10_3847_1538_4357_aa7464 crossref_primary_10_1088_0004_637X_765_2_108 crossref_primary_10_1007_s10509_007_9417_8 crossref_primary_10_1051_0004_6361_20054027 crossref_primary_10_1016_j_astropartphys_2007_02_004 crossref_primary_10_1086_504035 crossref_primary_10_1088_0004_637X_768_1_53 crossref_primary_10_1088_0004_637X_786_1_40 crossref_primary_10_3847_1538_4357_836_1_47 crossref_primary_10_1051_0004_6361_201834350 crossref_primary_10_1093_mnras_staa875 crossref_primary_10_3847_1538_4357_ab0ae2 crossref_primary_10_1088_1742_6596_355_1_012038 crossref_primary_10_1017_S1743921312009489 crossref_primary_10_1103_PhysRevD_104_083013 crossref_primary_10_1103_PhysRevD_98_123018 crossref_primary_10_3847_1538_4357_aaba74 crossref_primary_10_1007_s10509_007_9475_y crossref_primary_10_1088_0004_637X_755_2_164 crossref_primary_10_1088_0004_637X_790_2_86 crossref_primary_10_1051_0004_6361_202141295 |
Cites_doi | 10.1086/156061 10.1007/BF02710246 10.1086/166909 10.1007/BF00651256 10.1103/PhysRev.150.1088 10.1086/160167 10.1051/0004-6361:20034073 10.1086/307656 10.1086/167341 10.1086/176969 10.1103/PhysRevD.62.094030 10.1086/383003 10.1086/176526 10.1086/306951 10.1017/CBO9781139174404 10.1086/154386 10.1086/308008 10.1086/309068 10.1017/S0074180900221542 10.1086/175683 10.1046/j.1365-8711.2001.04255.x 10.1086/304368 10.1007/BF00653856 10.1103/PhysRevLett.92.071102 10.1086/175586 10.1201/9781420033335 10.1086/311121 10.1086/307483 10.1086/306470 10.1016/B978-0-08-013526-7.50011-6 10.1086/306855 10.1086/381803 10.1086/374333 10.1051/0004-6361:20030198 10.1088/0034-4885/67/9/R03 10.1086/133093 10.1086/305020 10.1007/978-94-011-0752-5_27 10.1086/152435 10.1086/300508 10.1029/JZ071i015p03687 10.1051/0004-6361:20021854 10.1007/978-3-662-04814-6 10.1093/mnras/251.1.112 10.1146/annurev.aa.05.090167.002405 10.1086/300879 10.1086/186984 10.1086/155088 10.1086/310165 10.1086/318925 10.1086/374654 10.1086/307155 10.1086/382999 10.1103/RevModPhys.42.237 10.1086/344439 10.1146/annurev.astro.34.1.749 10.1086/170407 10.1086/160470 10.1086/185374 10.1086/378041 10.1016/S0370-1573(03)00201-1 10.1088/0954-3899/28/6/316 10.1086/185437 10.1086/306339 10.1086/185897 10.1103/PhysRevD.52.3265 10.1046/j.1365-8711.2001.04478.x 10.1086/422868 10.1086/307274 10.1103/PhysRevD.15.820 10.1086/174515 10.1086/305152 10.1086/155019 10.1086/185224 10.1038/nature02407 10.1086/421871 10.1086/311122 10.1086/310783 10.1098/rspa.1938.0017 10.1093/mnras/182.3.443 10.1051/0004-6361:20000261 10.1086/378353 10.1086/322455 10.1051/0004-6361:20010239 10.1093/mnras/280.4.1143 10.1086/183868 10.1046/j.1365-8711.2003.06566.x 10.1086/303765 10.1007/978-94-010-1007-8_22 10.1086/344106 10.1093/mnras/278.4.1049 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. |
DOI | 10.1086/425415 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
EndPage | 986 |
ExternalDocumentID | 16525396 10_1086_425415 |
GroupedDBID | 123 1JI 23N 2WC 4.4 85S 8RP AAGCD AAJIO AALHV ABFLS ABPTK ACGFS ACNCT ADKFC AEFHF AENEX AFDAS ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CS3 DZ EBS EJD F5P G8K IOP KOT MVM N5L O3W O43 OHT OK1 RIN RNS RPA SJN SY9 T37 TN5 VOH WH7 X ZY4 -DZ -~X 2FS 6J9 6TJ AAFWJ AAYXX ABDPE ABHWH ACBEA ACHIP ADACN AFPKN AKPSB CITATION CRLBU FRP GROUPED_DOAJ IJHAN M~E PJBAE TR2 WHG XOL XSW 41~ 6TS 9M8 ADIYS ADXHL AETEA AI. FA8 IQODW ROL VH1 YYP ZCG ZKB 7TG KL. |
ID | FETCH-LOGICAL-c443t-3ab0e897705e528e130cfe1196463f1afc56c1973d0a1508afb0501e27a13cec3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri Jul 11 08:55:25 EDT 2025 Mon Jul 21 09:16:02 EDT 2025 Tue Jul 01 04:24:03 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Mon May 13 14:50:54 EDT 2019 Tue Nov 10 14:26:35 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Merging galaxies Gamma emission galaxies: starburst infrared: galaxies Radio galaxies Starburst galaxies Stellar formation region gamma rays: observations Continuum Radio emission gamma rays: theory Theoretical model Gamma radiation galaxies: individual (Arp 220) Cosmic radio sources Infrared galaxies Modelling Radio spectrum radio continuum: galaxies |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-3ab0e897705e528e130cfe1196463f1afc56c1973d0a1508afb0501e27a13cec3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://digital.library.unt.edu/ark:/67531/metadc1406315/ |
PQID | 17312996 |
PQPubID | 23462 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_17312996 crossref_primary_10_1086_425415 crossref_citationtrail_10_1086_425415 pascalfrancis_primary_16525396 iop_primary_10_1086_425415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-12-20 |
PublicationDateYYYYMMDD | 2004-12-20 |
PublicationDate_xml | – month: 12 year: 2004 text: 2004-12-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Chicago, IL |
PublicationPlace_xml | – name: Chicago, IL |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2004 |
Publisher | IOP Publishing University of Chicago Press |
Publisher_xml | – name: IOP Publishing – name: University of Chicago Press |
References | rf46_1139 rf47_1140 rf30_1123 rf106_1199 rf67_1160 rf9_1102 rf65_1158 rf1_1094 rf28_1121 rf26_1119 rf31_1124 Bell A. R. (rf11_1104) 1978; 182 rf66_1159 rf29_1122 rf50_1143 Ramaty R. (rf75_1168) 1966; 71 rf8_1101 rf87_1180 Romero G. E. (rf79_1172) 1999; 348 rf85_1178 rf64_1157 rf90_1183 Aharonian F. A. (rf4_1097) 1994; 285 rf68_1161 rf12_1105 rf88_1181 rf44_1137 rf70_1163 rf52_1145 rf27_1120 rf84_1177 rf104_1197 rf2_1095 Drury L. (rf36_1129) 1994; 287 Hummel E. (rf48_1141) 1995; 303 rf72_1165 rf33_1126 Dermer C. D. (rf32_1125) 1986; 157 Fazio G. G. (rf41_1134) 1967; 5 rf103_1196 rf91_1184 rf23_1116 rf99_1192 Uchida K. I. (rf109_1202) 1995; 298 rf63_1156 rf114_1207 rf24_1117 Stecker F. W. (rf97_1190) 1969; 6 rf82_1175 rf14_1107 rf6_1099 rf54_1147 rf17_1110 rf7_1100 rf69_1162 rf42_1135 rf45_1138 rf40_1133 Sopp H. M. (rf96_1189) 1991; 251 rf108_1201 rf57_1150 rf18_1111 rf100_1193 rf20_1113 rf94_1187 Aharonian F. A. (rf3_1096) 1996; 309 rf76_1169 rf77_1170 rf38_1131 rf107_1200 rf21_1114 rf95_1188 Rigopoulou D. (rf78_1171) 1996; 278 rf19_1112 rf56_1149 rf39_1132 rf93_1186 Bhabha H. J. (rf15_1108) 1938; 164 Killeen N. (rf51_1144) 1996; 280 Maraschi L. (rf60_1153) 1968; 53 rf73_1166 rf101_1194 rf55_1148 rf81_1174 rf59_1152 rf5_1098 rf110_1203 rf113_1206 rf35_1128 rf61_1154 rf89_1182 rf43_1136 rf62_1155 rf34_1127 rf92_1185 rf53_1146 rf102_1195 rf112_1205 rf115_1208 rf22_1115 rf105_1198 rf25_1118 rf80_1173 rf83_1176 Schlickeiser R. (rf86_1179) 1982; 106 Beck R. (rf10_1103) 2001; 99 rf49_1142 rf98_1191 rf13_1106 rf16_1109 rf71_1164 rf74_1167 Volk H. J. (rf111_1204) 1989; 237 Mannheim K. (rf58_1151) 1994; 286 rf37_1130 |
References_xml | – volume: 298 start-page: 473 year: 1995 ident: rf109_1202 publication-title: A&A – ident: rf62_1155 doi: 10.1086/156061 – volume: 53 start-page: 1975 year: 1968 ident: rf60_1153 publication-title: Nuovo Cimento B doi: 10.1007/BF02710246 – ident: rf64_1157 doi: 10.1086/166909 – ident: rf101_1194 doi: 10.1007/BF00651256 – ident: rf42_1135 – ident: rf1_1094 doi: 10.1103/PhysRev.150.1088 – ident: rf24_1117 doi: 10.1086/160167 – ident: rf39_1132 doi: 10.1051/0004-6361:20034073 – ident: rf61_1154 doi: 10.1086/307656 – ident: rf38_1131 doi: 10.1086/167341 – ident: rf71_1164 doi: 10.1086/176969 – ident: rf17_1110 doi: 10.1103/PhysRevD.62.094030 – ident: rf43_1136 doi: 10.1086/383003 – ident: rf7_1100 doi: 10.1086/176526 – ident: rf84_1177 doi: 10.1086/306951 – volume: 285 start-page: 645 year: 1994 ident: rf4_1097 publication-title: A&A – ident: rf2_1095 – volume: 309 start-page: 917 year: 1996 ident: rf3_1096 publication-title: A&A – ident: rf50_1143 doi: 10.1017/CBO9781139174404 – ident: rf70_1163 doi: 10.1086/154386 – ident: rf66_1159 doi: 10.1086/308008 – ident: rf82_1175 – ident: rf20_1113 doi: 10.1086/309068 – volume: 286 start-page: 983 year: 1994 ident: rf58_1151 publication-title: A&A – ident: rf57_1150 doi: 10.1017/S0074180900221542 – ident: rf37_1130 doi: 10.1086/175683 – ident: rf63_1156 doi: 10.1046/j.1365-8711.2001.04255.x – ident: rf89_1182 doi: 10.1086/304368 – ident: rf103_1196 – ident: rf29_1122 – volume: 6 start-page: 377 year: 1969 ident: rf97_1190 publication-title: Ap&SS doi: 10.1007/BF00653856 – ident: rf5_1098 doi: 10.1103/PhysRevLett.92.071102 – ident: rf46_1139 doi: 10.1086/175586 – ident: rf53_1146 doi: 10.1201/9781420033335 – ident: rf56_1149 doi: 10.1086/311121 – ident: rf30_1123 doi: 10.1086/307483 – ident: rf102_1195 doi: 10.1086/306470 – ident: rf45_1138 doi: 10.1016/B978-0-08-013526-7.50011-6 – ident: rf94_1187 doi: 10.1086/306855 – ident: rf105_1198 doi: 10.1086/381803 – ident: rf25_1118 – ident: rf114_1207 doi: 10.1086/374333 – ident: rf59_1152 doi: 10.1051/0004-6361:20030198 – ident: rf104_1197 doi: 10.1088/0034-4885/67/9/R03 – ident: rf23_1116 doi: 10.1086/133093 – ident: rf92_1185 doi: 10.1086/305020 – ident: rf74_1167 doi: 10.1007/978-94-011-0752-5_27 – ident: rf99_1192 doi: 10.1086/152435 – ident: rf52_1145 doi: 10.1086/300508 – volume: 71 start-page: 3687 year: 1966 ident: rf75_1168 publication-title: J. Geophys. Res. doi: 10.1029/JZ071i015p03687 – ident: rf12_1105 doi: 10.1051/0004-6361:20021854 – ident: rf87_1180 doi: 10.1007/978-3-662-04814-6 – volume: 251 start-page: 112 year: 1991 ident: rf96_1189 publication-title: MNRAS doi: 10.1093/mnras/251.1.112 – volume: 5 start-page: 481 year: 1967 ident: rf41_1134 publication-title: ARA&A doi: 10.1146/annurev.aa.05.090167.002405 – ident: rf22_1115 doi: 10.1086/300879 – ident: rf35_1128 doi: 10.1086/186984 – volume: 99 start-page: 243 year: 2001 ident: rf10_1103 publication-title: Rev. – ident: rf21_1114 doi: 10.1086/155088 – ident: rf115_1208 doi: 10.1086/310165 – ident: rf90_1183 doi: 10.1086/318925 – ident: rf80_1173 doi: 10.1086/374654 – ident: rf18_1111 doi: 10.1086/307155 – ident: rf44_1137 doi: 10.1086/382999 – ident: rf19_1112 doi: 10.1103/RevModPhys.42.237 – ident: rf26_1119 doi: 10.1086/344439 – ident: rf85_1178 doi: 10.1146/annurev.astro.34.1.749 – ident: rf27_1120 doi: 10.1086/170407 – ident: rf67_1160 doi: 10.1086/160470 – ident: rf113_1206 doi: 10.1086/185374 – ident: rf40_1133 doi: 10.1086/378041 – ident: rf108_1201 doi: 10.1016/S0370-1573(03)00201-1 – ident: rf91_1184 doi: 10.1088/0954-3899/28/6/316 – ident: rf65_1158 doi: 10.1086/185437 – ident: rf34_1127 doi: 10.1086/306339 – ident: rf88_1181 doi: 10.1086/185897 – ident: rf6_1099 doi: 10.1103/PhysRevD.52.3265 – ident: rf49_1142 doi: 10.1046/j.1365-8711.2001.04478.x – ident: rf47_1140 doi: 10.1086/422868 – ident: rf31_1124 doi: 10.1086/307274 – ident: rf9_1102 doi: 10.1103/PhysRevD.15.820 – volume: 157 start-page: 223 year: 1986 ident: rf32_1125 publication-title: A&A – ident: rf110_1203 doi: 10.1086/174515 – volume: 287 start-page: 959 year: 1994 ident: rf36_1129 publication-title: A&A – ident: rf55_1148 – ident: rf68_1161 doi: 10.1086/305152 – ident: rf100_1193 doi: 10.1086/155019 – volume: 303 start-page: 691 year: 1995 ident: rf48_1141 publication-title: A&A – volume: 237 start-page: 21 year: 1989 ident: rf111_1204 publication-title: A&A – ident: rf14_1107 – ident: rf77_1170 doi: 10.1086/185224 – volume: 106 start-page: L5 year: 1982 ident: rf86_1179 publication-title: A&A – ident: rf54_1147 doi: 10.1038/nature02407 – ident: rf106_1199 doi: 10.1086/421871 – ident: rf76_1169 – volume: 348 start-page: 868 year: 1999 ident: rf79_1172 publication-title: A&A – ident: rf93_1186 doi: 10.1086/311122 – ident: rf28_1121 – ident: rf33_1126 doi: 10.1086/310783 – ident: rf83_1176 – volume: 164 start-page: 258 year: 1938 ident: rf15_1108 publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.1938.0017 – ident: rf98_1191 – volume: 182 start-page: 443 year: 1978 ident: rf11_1104 publication-title: MNRAS doi: 10.1093/mnras/182.3.443 – ident: rf13_1106 doi: 10.1051/0004-6361:20000261 – ident: rf69_1162 doi: 10.1086/378353 – ident: rf72_1165 doi: 10.1086/322455 – ident: rf107_1200 doi: 10.1051/0004-6361:20010239 – volume: 280 start-page: 1143 year: 1996 ident: rf51_1144 publication-title: MNRAS doi: 10.1093/mnras/280.4.1143 – ident: rf8_1101 doi: 10.1086/183868 – ident: rf81_1174 doi: 10.1046/j.1365-8711.2003.06566.x – ident: rf95_1188 doi: 10.1086/303765 – ident: rf73_1166 doi: 10.1007/978-94-010-1007-8_22 – ident: rf112_1205 doi: 10.1086/344106 – ident: rf16_1109 – volume: 278 start-page: 1049 year: 1996 ident: rf78_1171 publication-title: MNRAS doi: 10.1093/mnras/278.4.1049 |
SSID | ssj0004299 |
Score | 2.2041624 |
Snippet | Our current understanding of ultraluminous infrared galaxies suggests that they are recent galaxy mergers in which much of the gas in the former spiral disks,... |
SourceID | proquest pascalfrancis crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 966 |
SubjectTerms | Astronomy Earth, ocean, space Exact sciences and technology Quasars. Active or peculiar galaxies, objects, and systems Starburst galaxies and infrared excess galaxies Stellar systems. Galactic and extragalactic objects and systems. The universe |
Title | Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220 |
URI | http://iopscience.iop.org/0004-637X/617/2/966 https://www.proquest.com/docview/17312996 |
Volume | 617 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdbYbCXre02mq7rBPt4cyJLlmzvLbTJusHaEFqWNyHLEpQtcaid0u6v350_mmyBsRcj7EMW_p11P510d4S8586D2RFhYIyxQQSLjgC0BP4rlRuGk2Gc4ULx27k6u4q-zuRsHax-XSzbmb8PzXonH1lHoEQ8G4CxHfAB8HOYccHy41Lry8VkHQXJ05bsNvIblYRAMSMsfLtheh5D_3gQ0pTwLXxTxGJrPq6NzPg5Oe9CdZqzJT_6qyrr21_bmRv_b_y75FlLN-mw0Y898sgt9snBsEQHeDG_px9p3W78G-U-eTJpWi_I7eU6xJFixTSMW6eFp8AY6em196vS0RFoCbrb8P5nM58bOjX3JcWYFTq6q9D3SKcOjzyXKALM9oaOu3DJTxReQU_AjOKz4XRCOWcvydV4dHlyFrRFGgIbRaIKhMmYS4BFMukkTxzYROtdiHm-lPCh8VYqG6axyJnB3PPGZ0yy0PHYhMI6K16RnUWxcAeECpklMs5SD6wnSrk3YZJnTHEO1Fr5POmRDx1-2rYZzLGQxk9d76QnSjc498jbB7llk7NjS-IdwPPwECHSCJEGiDTXAJFe5r5HDjel_u7i-A_dWYspyaVIFYyiUyYNYOA-jFm4YlXqMBbAslJ1-K_-X5OnXU5Jzo7ITnWzcm-A_1TZca32cL0Q338DAIX73w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9tQyBeJhigdcBmiY-3MMeOnYS3amsZX6OqNtE3y0lsCYk21dJO7L_nrk7ajUm8WfHFsfxzfD-ffXcAb4XzqHZkHFlryyjBTUeEswT_K11ZTothWtBG8fu5PrtMvkzUZAvU2hemnrdL_wcshkDBYQiPu7RAOMtQ6xzPK78ND5RMBYXM_yF_btwhRd6y3iTSMp3cSikU3r2jg7bxO3Qj0jY4KD5ks7i3MK-0zfAJ7LY0kfVDp57ClpvtwX6_IcN1Pb1h79mqHOwSzR48HIXSM7i-2LgmMsp0Rv7mrPYMmR47_eX9snFsgOiSmYyef7LTqWVje9Mw8jVhgz8LshmysaOryg2JICO9YsPOzfEjw0-wE1R_VNcfj5gQ_DlcDgcXJ2dRm1whKpNELiJpC-4yZH9cOSUyh7qs9C6m-Fxa-tj6UukyzlNZcUsx460vuOKxE6mNZelK-QJ2ZvXM7QOTqshUWuQe2UqSC2_jrCq4FgIpsfZV1oN33XCbso08TgkwfpvVCXimTYClB0druXmItXFP4g2ita4khA0hbJCHGWFw62ZwWvTg4LbUv00c3oF6I6aVUDLX2IsOe4Ng0PmJnbl62Zg4lciOcn3wv_aP4NHodGi-fT7_-hIed2EhBX8FO4urpXuNFGZRHK4m7F95E-c5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+modeling+of+the+diffuse+emission+of+gamma+rays+from+extreme+regions+of+star+formation%3A+The+case+of+ARP+220&rft.jtitle=The+Astrophysical+journal&rft.au=TORRES%2C+Diego+F&rft.date=2004-12-20&rft.pub=University+of+Chicago+Press&rft.issn=0004-637X&rft.volume=617&rft.issue=2&rft.spage=966&rft.epage=986&rft_id=info:doi/10.1086%2F425415&rft.externalDBID=n%2Fa&rft.externalDocID=16525396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |