Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance

Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27646 - 27654
Main Authors Brekk, Oeystein Roed, Honey, Jonathan R., Lee, Seungil, Hallett, Penelope J., Isacson, Ole
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammationattenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
AbstractList Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammationattenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Recently, the field of Parkinson’s disease biology has shifted attention away from pure proteinotoxic hypotheses to emphasize primary cellular insults, including glycolipid disturbances. In this work, dopaminergic neurons in the Parkinson’s disease-vulnerable region of substantia nigra were found to accumulate neutral lipids, whereas in the same tissues, astrocytes have reduced lipid content, and resident microglia (a form of brain macrophage) show overall accumulation of lipids associated with inflammation. These changes were reproduced experimentally by blocking a specific lysosomal hydrolase in mice, generating a glycolipid accumulation in the animals. Based on these findings, it is reasonable to propose that restoring lipid homeostasis between neurons, astrocytes, and microglia could potentially influence PD pathogenesis and disease progression. Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Author Honey, Jonathan R.
Brekk, Oeystein Roed
Lee, Seungil
Isacson, Ole
Hallett, Penelope J.
Author_xml – sequence: 1
  givenname: Oeystein Roed
  surname: Brekk
  fullname: Brekk, Oeystein Roed
– sequence: 2
  givenname: Jonathan R.
  surname: Honey
  fullname: Honey, Jonathan R.
– sequence: 3
  givenname: Seungil
  surname: Lee
  fullname: Lee, Seungil
– sequence: 4
  givenname: Penelope J.
  surname: Hallett
  fullname: Hallett, Penelope J.
– sequence: 5
  givenname: Ole
  surname: Isacson
  fullname: Isacson, Ole
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33060302$$D View this record in MEDLINE/PubMed
BookMark eNp9kr9uFDEQxi0URC6BmgpkiYZmE9vrXa8bpOjEPykSFFBbXnv24mPPXmwv4jpaHoHX40nw6sIBKahczO_75hvPnKETHzwg9JiSC0pEfTl5nS4YITVhlFJxD60okbRquSQnaEUIE1XHGT9FZyltCSGy6cgDdFrXpF00K_R9DeOI836CKk1g3OAMHt3kLE45RL0BbG6030DCzuP3On5yPgX_89uPhK1LoBPgSWcHPuM-6lLEOgKOYPTk8jzqDBb3ewxfJ4huVzA94s24N-HQpHjkOfbaG3iI7g96TPDo9j1HH1-9_LB-U12_e_12fXVdGc7rXNVUM2GE1WQQjbSybUgnLDAOGjhhg2SSWUoATMNgsHZo24ZZ2QvbtFIyXp-jFwffae53YE3JFPWophJPx70K2ql_K97dqE34ooRsJJd1MXh-axDD5xlSVjuXTPlG7SHMSTHe0I53RC69nt1Bt2GOvoy3UJ1su66WhXr6d6JjlN9bKsDlATAxpBRhOCKUqOUO1HIH6s8dFEVzR2FcLnsKy0hu_I_uyUG3XdZ_bMNaKco8ov4FVLfFjA
CitedBy_id crossref_primary_10_1038_s41467_023_40927_1
crossref_primary_10_3390_biom12010040
crossref_primary_10_3389_fnagi_2022_1077738
crossref_primary_10_1016_j_neuron_2024_06_002
crossref_primary_10_1371_journal_pbio_3001977
crossref_primary_10_3389_fncel_2021_718324
crossref_primary_10_1007_s10753_023_01844_z
crossref_primary_10_1093_brain_awae380
crossref_primary_10_1038_s41593_023_01288_6
crossref_primary_10_1038_s41598_021_99090_6
crossref_primary_10_3390_biom13060912
crossref_primary_10_1038_s41420_023_01504_z
crossref_primary_10_3390_cells11152416
crossref_primary_10_1016_j_bbrc_2022_06_082
crossref_primary_10_1016_j_celrep_2024_115099
crossref_primary_10_3389_fmolb_2021_673977
crossref_primary_10_1016_j_cmet_2023_03_006
crossref_primary_10_1007_s00018_024_05373_2
crossref_primary_10_1016_j_jinorgbio_2022_112027
crossref_primary_10_1073_pnas_2103425118
crossref_primary_10_1089_genbio_2023_0017
crossref_primary_10_1172_jci_insight_179126
crossref_primary_10_1016_j_bcp_2023_115619
crossref_primary_10_3390_biomedicines12122841
crossref_primary_10_1038_s41531_023_00459_3
crossref_primary_10_3390_ijms22052541
crossref_primary_10_1007_s11010_024_04985_3
crossref_primary_10_3389_fpsyt_2023_1213011
crossref_primary_10_1016_j_bbi_2021_11_018
crossref_primary_10_3389_fnana_2021_711955
crossref_primary_10_3389_fimmu_2022_964138
crossref_primary_10_1038_s42003_023_05127_z
crossref_primary_10_1073_pnas_2111405119
crossref_primary_10_1007_s10719_021_10023_x
crossref_primary_10_20517_and_2024_11
crossref_primary_10_3389_fncel_2024_1432887
crossref_primary_10_1002_2211_5463_13651
crossref_primary_10_2139_ssrn_3904961
crossref_primary_10_1152_physrev_00004_2024
crossref_primary_10_1038_s41531_022_00335_6
crossref_primary_10_1016_j_nbd_2023_106105
crossref_primary_10_1007_s11064_024_04152_6
crossref_primary_10_3389_fnins_2022_900338
crossref_primary_10_1016_j_cca_2023_117682
crossref_primary_10_1016_j_nbd_2021_105290
crossref_primary_10_3390_antiox11010022
crossref_primary_10_1111_febs_16638
crossref_primary_10_1016_j_nbd_2023_106181
crossref_primary_10_1097_CM9_0000000000002397
crossref_primary_10_1096_fj_202100081RR
crossref_primary_10_1007_s40120_023_00542_0
crossref_primary_10_1038_s41598_023_41240_z
crossref_primary_10_1007_s12035_023_03823_9
crossref_primary_10_1002_glia_24654
crossref_primary_10_3389_fimmu_2022_836494
crossref_primary_10_3390_ph16070914
crossref_primary_10_1016_j_nbd_2022_105663
crossref_primary_10_1016_j_bbrc_2024_150386
crossref_primary_10_1083_jcb_202102136
crossref_primary_10_1186_s12974_024_03296_0
crossref_primary_10_3389_fendo_2021_668396
crossref_primary_10_1038_s41467_024_52874_6
crossref_primary_10_3390_biology12030414
crossref_primary_10_1016_j_celrep_2025_115343
crossref_primary_10_1111_febs_70011
crossref_primary_10_3390_cells12212564
Cites_doi 10.1073/pnas.1525528113
10.1038/s41531-017-0015-3
10.1007/s00441-018-2817-y
10.1006/exnr.2000.7527
10.3389/fneur.2019.01053
10.1038/s41531-019-0103-7
10.1038/srep17625
10.1083/jcb.116.5.1071
10.1056/NEJMoa0901281
10.1186/s40478-020-01004-6
10.1073/pnas.1108197108
10.3389/fimmu.2017.01810
10.1002/mds.870090325
10.1001/jamaneurol.2013.1925
10.1016/j.cell.2019.04.001
10.1016/j.plefa.2010.02.005
10.1038/nrdp.2017.13
10.1038/174190a0
10.1038/nrn3039
10.1093/jnen/63.4.323
10.1126/science.aan4183
10.1016/j.bcmd.2016.12.002
10.1126/science.aaf6659
10.1038/srep23795
10.1186/s12974-018-1100-1
10.1172/JCI77983
10.1038/42166
10.1038/mp.2015.177
10.1523/JNEUROSCI.15-05-03318.1995
10.1016/j.neuron.2017.02.042
10.1002/mds.20593
10.1021/bi500918m
10.1038/s41598-018-33474-z
10.1007/s13238-012-2025-6
10.1038/jcbfm.2013.128
10.1002/2211-5463.12078
10.1016/j.cell.2014.12.019
10.1073/pnas.1903216116
10.1369/0022155411404073
10.1089/ars.2015.6307
10.1038/s41591-019-0611-3
10.1016/j.neurobiolaging.2018.02.028
10.1016/j.celrep.2018.11.028
10.1038/s41593-019-0423-2
10.1016/j.bcp.2014.01.008
10.1007/978-1-4939-6788-9_14
10.1016/j.nbd.2018.08.013
10.1016/j.cmet.2017.08.024
10.1038/nprot.2014.037
10.1038/s41591-018-0336-8
10.3389/fphys.2014.00282
10.1002/path.4328
10.1016/j.neuron.2016.06.015
10.1016/j.cell.2009.11.005
10.1016/j.cell.2017.05.018
10.1161/ATVBAHA.116.307023
10.1016/j.bbalip.2012.01.007
10.1038/s41593-019-0566-1
10.1016/j.nbd.2015.09.009
10.1016/S1096-7192(03)00071-4
10.1242/jcs.s3-99.46.231
10.1016/j.it.2018.01.012
10.1186/s12974-019-1532-2
10.1016/j.jns.2008.04.011
10.1016/j.ymgme.2010.12.014
10.1371/journal.pgen.1002141
10.1002/acn3.177
10.1016/j.molcel.2018.11.028
10.1007/s11263-013-0615-2
10.1016/j.bbalip.2010.08.004
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 3, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 3, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2003021117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 27654
ExternalDocumentID PMC7959493
33060302
10_1073_pnas_2003021117
26970947
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG060195
– fundername: NINDS NIH HHS
  grantid: R01 NS092667
– fundername: The Consolidated Anti-Aging Foundation
  grantid: N/A
– fundername: Harold and Ronna Cooper Postdoctoral Fellowship for Parkinson's Disease Research
  grantid: N/A
– fundername: HHS | NIH | National Institute on Aging (NIA)
  grantid: R01AG060195
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: 1R01NS092667
– fundername: The Orchard Foundation
  grantid: N/A
– fundername: U.S. Department of Defense (DOD)
  grantid: W81XWH2010368
– fundername: U.S. Department of Defense (DOD)
  grantid: W81XWH2010371
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-31a27c7da0f759d965087de24eae402f9292d10eec52efddf6652d9b7d5699243
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:54 EDT 2025
Fri Jul 11 03:00:48 EDT 2025
Mon Jun 30 10:07:46 EDT 2025
Thu Apr 03 07:05:31 EDT 2025
Tue Jul 01 03:40:33 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Thu May 29 09:12:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords lipids
astrocytes
neurons
Parkinson’s disease
glucocerebrosidase
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-31a27c7da0f759d965087de24eae402f9292d10eec52efddf6652d9b7d5699243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: O.R.B., P.J.H., and O.I. designed research; O.R.B., J.R.H., and S.L. performed research; O.R.B., J.R.H., S.L., P.J.H., and O.I. analyzed data; and O.R.B., S.L., P.J.H., and O.I. wrote the paper.
2Present address: School of Clinical Medicine, Addenbrooke’s Hospital/University of Cambridge, Cambridge, CB2 0QQ Cambridgeshire, UK.
Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 2, 2020 (received for review February 17, 2020)
ORCID 0000-0002-5619-4022
0000-0002-9698-4707
0000-0003-2829-2941
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7959493
PMID 33060302
PQID 2458968839
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959493
proquest_miscellaneous_2451848094
proquest_journals_2458968839
pubmed_primary_33060302
crossref_primary_10_1073_pnas_2003021117
crossref_citationtrail_10_1073_pnas_2003021117
jstor_primary_26970947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_47_2
  doi: 10.1073/pnas.1525528113
– ident: e_1_3_4_3_2
  doi: 10.1038/s41531-017-0015-3
– ident: e_1_3_4_4_2
  doi: 10.1007/s00441-018-2817-y
– ident: e_1_3_4_58_2
  doi: 10.1006/exnr.2000.7527
– ident: e_1_3_4_23_2
  doi: 10.3389/fneur.2019.01053
– ident: e_1_3_4_24_2
  doi: 10.1038/s41531-019-0103-7
– ident: e_1_3_4_59_2
  doi: 10.1038/srep17625
– ident: e_1_3_4_62_2
  doi: 10.1083/jcb.116.5.1071
– ident: e_1_3_4_14_2
  doi: 10.1056/NEJMoa0901281
– ident: e_1_3_4_25_2
  doi: 10.1186/s40478-020-01004-6
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1108197108
– ident: e_1_3_4_67_2
  doi: 10.3389/fimmu.2017.01810
– ident: e_1_3_4_8_2
  doi: 10.1002/mds.870090325
– ident: e_1_3_4_13_2
  doi: 10.1001/jamaneurol.2013.1925
– ident: e_1_3_4_51_2
  doi: 10.1016/j.cell.2019.04.001
– ident: e_1_3_4_53_2
  doi: 10.1016/j.plefa.2010.02.005
– ident: e_1_3_4_22_2
  doi: 10.1038/nrdp.2017.13
– ident: e_1_3_4_45_2
  doi: 10.1038/174190a0
– ident: e_1_3_4_16_2
  doi: 10.1038/nrn3039
– ident: e_1_3_4_9_2
  doi: 10.1093/jnen/63.4.323
– ident: e_1_3_4_36_2
  doi: 10.1126/science.aan4183
– ident: e_1_3_4_40_2
  doi: 10.1016/j.bcmd.2016.12.002
– ident: e_1_3_4_66_2
  doi: 10.1126/science.aaf6659
– ident: e_1_3_4_54_2
  doi: 10.1038/srep23795
– ident: e_1_3_4_39_2
  doi: 10.1186/s12974-018-1100-1
– ident: e_1_3_4_37_2
  doi: 10.1172/JCI77983
– ident: e_1_3_4_21_2
  doi: 10.1038/42166
– ident: e_1_3_4_32_2
  doi: 10.1038/mp.2015.177
– ident: e_1_3_4_49_2
  doi: 10.1523/JNEUROSCI.15-05-03318.1995
– ident: e_1_3_4_38_2
  doi: 10.1016/j.neuron.2017.02.042
– ident: e_1_3_4_11_2
  doi: 10.1002/mds.20593
– ident: e_1_3_4_44_2
  doi: 10.1021/bi500918m
– ident: e_1_3_4_56_2
  doi: 10.1038/s41598-018-33474-z
– ident: e_1_3_4_65_2
  doi: 10.1007/s13238-012-2025-6
– ident: e_1_3_4_29_2
  doi: 10.1038/jcbfm.2013.128
– ident: e_1_3_4_61_2
  doi: 10.1002/2211-5463.12078
– ident: e_1_3_4_50_2
  doi: 10.1016/j.cell.2014.12.019
– ident: e_1_3_4_27_2
  doi: 10.1073/pnas.1903216116
– ident: e_1_3_4_63_2
  doi: 10.1369/0022155411404073
– ident: e_1_3_4_18_2
  doi: 10.1089/ars.2015.6307
– ident: e_1_3_4_31_2
  doi: 10.1038/s41591-019-0611-3
– ident: e_1_3_4_15_2
  doi: 10.1016/j.neurobiolaging.2018.02.028
– ident: e_1_3_4_28_2
  doi: 10.1016/j.celrep.2018.11.028
– ident: e_1_3_4_60_2
  doi: 10.1038/s41593-019-0423-2
– ident: e_1_3_4_68_2
  doi: 10.1016/j.bcp.2014.01.008
– ident: e_1_3_4_70_2
  doi: 10.1007/978-1-4939-6788-9_14
– ident: e_1_3_4_41_2
  doi: 10.1016/j.nbd.2018.08.013
– ident: e_1_3_4_2_2
  doi: 10.1016/j.cmet.2017.08.024
– ident: e_1_3_4_42_2
  doi: 10.1038/nprot.2014.037
– ident: e_1_3_4_30_2
  doi: 10.1038/s41591-018-0336-8
– ident: e_1_3_4_48_2
  doi: 10.3389/fphys.2014.00282
– ident: e_1_3_4_10_2
  doi: 10.1002/path.4328
– ident: e_1_3_4_33_2
  doi: 10.1016/j.neuron.2016.06.015
– ident: e_1_3_4_64_2
  doi: 10.1016/j.cell.2009.11.005
– ident: e_1_3_4_69_2
  doi: 10.1016/j.cell.2017.05.018
– ident: e_1_3_4_1_2
  doi: 10.1161/ATVBAHA.116.307023
– ident: e_1_3_4_34_2
  doi: 10.1016/j.bbalip.2012.01.007
– ident: e_1_3_4_35_2
  doi: 10.1038/s41593-019-0566-1
– ident: e_1_3_4_57_2
  doi: 10.1016/j.nbd.2015.09.009
– ident: e_1_3_4_12_2
  doi: 10.1016/S1096-7192(03)00071-4
– ident: e_1_3_4_46_2
  doi: 10.1242/jcs.s3-99.46.231
– ident: e_1_3_4_52_2
  doi: 10.1016/j.it.2018.01.012
– ident: e_1_3_4_17_2
  doi: 10.1186/s12974-019-1532-2
– ident: e_1_3_4_7_2
  doi: 10.1016/j.jns.2008.04.011
– ident: e_1_3_4_19_2
  doi: 10.1016/j.ymgme.2010.12.014
– ident: e_1_3_4_5_2
  doi: 10.1371/journal.pgen.1002141
– ident: e_1_3_4_6_2
  doi: 10.1002/acn3.177
– ident: e_1_3_4_26_2
  doi: 10.1016/j.molcel.2018.11.028
– ident: e_1_3_4_43_2
  doi: 10.1007/s11263-013-0615-2
– ident: e_1_3_4_55_2
  doi: 10.1016/j.bbalip.2010.08.004
SSID ssj0009580
Score 2.5836673
Snippet Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing...
Recently, the field of Parkinson’s disease biology has shifted attention away from pure proteinotoxic hypotheses to emphasize primary cellular insults,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27646
SubjectTerms Aged
Aged, 80 and over
alpha-Synuclein - metabolism
Animals
Astrocytes
Astrocytes - metabolism
Astrocytes - pathology
Biological Sciences
Case-Control Studies
Central nervous system
Cohort Studies
Disease Models, Animal
Dopamine receptors
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Female
Fluorescent indicators
Glucosylceramidase
Glucosylceramidase - genetics
Glucosylceramidase - metabolism
Glycolipids - metabolism
Glycoproteins
Healthy Volunteers
Homeostasis
Humans
Inflammation
Lipids
Localization
Male
Melanoma
Membrane Glycoproteins - metabolism
Mesencephalon
Metabolites
Metastases
Mice
Microglia
Microglia - metabolism
Microglia - pathology
Middle Aged
Movement disorders
Neurodegenerative diseases
Neuronal-glial interactions
Neurons
Parkinson Disease - pathology
Parkinson's disease
Pathogenesis
Protein B
Signaling
Substantia nigra
Substantia Nigra - cytology
Substantia Nigra - metabolism
Substantia Nigra - pathology
Triglycerides
Triglycerides - metabolism
Title Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance
URI https://www.jstor.org/stable/26970947
https://www.ncbi.nlm.nih.gov/pubmed/33060302
https://www.proquest.com/docview/2458968839
https://www.proquest.com/docview/2451848094
https://pubmed.ncbi.nlm.nih.gov/PMC7959493
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWBQGMhISAxFGZntxPHjNG2q0OgmaKW-RfnjjIoqq9b2YXwBviOfhjvb-TfGBLxUVeI4bu7X893ld3eEvI14qsIwB-8kDyQ4KJz7WRYLPxXgX4i8BKcDA_qfxtFoKj7Owtlg8LPDWtqss_38-615Jf8jVTgGcsUs2X-QbDMpHIDvIF_4BAnD51_J-AgDbxhE9TFhEkk_3mK-nBceUh6RjGPTeg3lFdObXaaXXNXvZeqyql6GnSJWHtLAQAWmy_ka23pZ67TXBOBicQ3QMTeBOWC_yhrYOBP3vNkSVzUBYVxHHA_b_BWnVFae752PO92Qr_Q3o6DPNNaYhoV_vnT5V4bk68hpddC_5Ts6RtEXDdqrpY2MsFVMzUSukB6l3YswF-kAtxajt7wlgtyx1q6KZ7DtCpuYva-tVgejyI-E7UvaqH2bM-rwLURXi8vIxkV_219AIWJT5Co1ld45GEj1NL1K3uOz5GR6eppMjmeTe-Q-AxeGmU2jWxA6tulRbrl12SnJP9yYvmcxWdLsbe7QTVZvx0yaPCIPnX9DDy1Yt8lAV4_Jdv0A6Z4rc_7-CfmB6KU99FIDLOrQSx166byiDXrfrajDLnXYpRa7FLBLe9il2TXtYpe22KUd7D4l05PjydHId21B_FwIvgarIWUyl0UalDJUhUIfQxaaCZ1qEbASDH5WHARa5yHTZVGUURSyQmWyCCOlmOA7ZKsCuD4nNGRRWiihYm7qZEYxOPRKgwedZ2nISz4k-_WjT3JXMx9btywSw92QPEFZJa2shmSvuWBpy8X8eeiOkWUzjkVKBkrAid1auIlTNnCdCGMVxeDODMmb5jRsBfh-L6305caMOYgF_AYxJM8sFprJOQ8ivPOQyB5KmgFYZr5_ppp_NeXmpQrhEfEXdy_rJXnQ_md3ydb6aqNfgb2-zl4b4P8CeRXyFQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+type-specific+lipid+storage+changes+in+Parkinson%27s+disease+patient+brains+are+recapitulated+by+experimental+glycolipid+disturbance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brekk%2C+Oeystein+Roed&rft.au=Honey%2C+Jonathan+R&rft.au=Lee%2C+Seungil&rft.au=Hallett%2C+Penelope+J&rft.date=2020-11-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27646&rft_id=info:doi/10.1073%2Fpnas.2003021117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon