Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27646 - 27654 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammationattenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression. |
---|---|
AbstractList | Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression. Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression. Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammationattenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression. Recently, the field of Parkinson’s disease biology has shifted attention away from pure proteinotoxic hypotheses to emphasize primary cellular insults, including glycolipid disturbances. In this work, dopaminergic neurons in the Parkinson’s disease-vulnerable region of substantia nigra were found to accumulate neutral lipids, whereas in the same tissues, astrocytes have reduced lipid content, and resident microglia (a form of brain macrophage) show overall accumulation of lipids associated with inflammation. These changes were reproduced experimentally by blocking a specific lysosomal hydrolase in mice, generating a glycolipid accumulation in the animals. Based on these findings, it is reasonable to propose that restoring lipid homeostasis between neurons, astrocytes, and microglia could potentially influence PD pathogenesis and disease progression. Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson’s disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression. |
Author | Honey, Jonathan R. Brekk, Oeystein Roed Lee, Seungil Isacson, Ole Hallett, Penelope J. |
Author_xml | – sequence: 1 givenname: Oeystein Roed surname: Brekk fullname: Brekk, Oeystein Roed – sequence: 2 givenname: Jonathan R. surname: Honey fullname: Honey, Jonathan R. – sequence: 3 givenname: Seungil surname: Lee fullname: Lee, Seungil – sequence: 4 givenname: Penelope J. surname: Hallett fullname: Hallett, Penelope J. – sequence: 5 givenname: Ole surname: Isacson fullname: Isacson, Ole |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33060302$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kr9uFDEQxi0URC6BmgpkiYZmE9vrXa8bpOjEPykSFFBbXnv24mPPXmwv4jpaHoHX40nw6sIBKahczO_75hvPnKETHzwg9JiSC0pEfTl5nS4YITVhlFJxD60okbRquSQnaEUIE1XHGT9FZyltCSGy6cgDdFrXpF00K_R9DeOI836CKk1g3OAMHt3kLE45RL0BbG6030DCzuP3On5yPgX_89uPhK1LoBPgSWcHPuM-6lLEOgKOYPTk8jzqDBb3ewxfJ4huVzA94s24N-HQpHjkOfbaG3iI7g96TPDo9j1HH1-9_LB-U12_e_12fXVdGc7rXNVUM2GE1WQQjbSybUgnLDAOGjhhg2SSWUoATMNgsHZo24ZZ2QvbtFIyXp-jFwffae53YE3JFPWophJPx70K2ql_K97dqE34ooRsJJd1MXh-axDD5xlSVjuXTPlG7SHMSTHe0I53RC69nt1Bt2GOvoy3UJ1su66WhXr6d6JjlN9bKsDlATAxpBRhOCKUqOUO1HIH6s8dFEVzR2FcLnsKy0hu_I_uyUG3XdZ_bMNaKco8ov4FVLfFjA |
CitedBy_id | crossref_primary_10_1038_s41467_023_40927_1 crossref_primary_10_3390_biom12010040 crossref_primary_10_3389_fnagi_2022_1077738 crossref_primary_10_1016_j_neuron_2024_06_002 crossref_primary_10_1371_journal_pbio_3001977 crossref_primary_10_3389_fncel_2021_718324 crossref_primary_10_1007_s10753_023_01844_z crossref_primary_10_1093_brain_awae380 crossref_primary_10_1038_s41593_023_01288_6 crossref_primary_10_1038_s41598_021_99090_6 crossref_primary_10_3390_biom13060912 crossref_primary_10_1038_s41420_023_01504_z crossref_primary_10_3390_cells11152416 crossref_primary_10_1016_j_bbrc_2022_06_082 crossref_primary_10_1016_j_celrep_2024_115099 crossref_primary_10_3389_fmolb_2021_673977 crossref_primary_10_1016_j_cmet_2023_03_006 crossref_primary_10_1007_s00018_024_05373_2 crossref_primary_10_1016_j_jinorgbio_2022_112027 crossref_primary_10_1073_pnas_2103425118 crossref_primary_10_1089_genbio_2023_0017 crossref_primary_10_1172_jci_insight_179126 crossref_primary_10_1016_j_bcp_2023_115619 crossref_primary_10_3390_biomedicines12122841 crossref_primary_10_1038_s41531_023_00459_3 crossref_primary_10_3390_ijms22052541 crossref_primary_10_1007_s11010_024_04985_3 crossref_primary_10_3389_fpsyt_2023_1213011 crossref_primary_10_1016_j_bbi_2021_11_018 crossref_primary_10_3389_fnana_2021_711955 crossref_primary_10_3389_fimmu_2022_964138 crossref_primary_10_1038_s42003_023_05127_z crossref_primary_10_1073_pnas_2111405119 crossref_primary_10_1007_s10719_021_10023_x crossref_primary_10_20517_and_2024_11 crossref_primary_10_3389_fncel_2024_1432887 crossref_primary_10_1002_2211_5463_13651 crossref_primary_10_2139_ssrn_3904961 crossref_primary_10_1152_physrev_00004_2024 crossref_primary_10_1038_s41531_022_00335_6 crossref_primary_10_1016_j_nbd_2023_106105 crossref_primary_10_1007_s11064_024_04152_6 crossref_primary_10_3389_fnins_2022_900338 crossref_primary_10_1016_j_cca_2023_117682 crossref_primary_10_1016_j_nbd_2021_105290 crossref_primary_10_3390_antiox11010022 crossref_primary_10_1111_febs_16638 crossref_primary_10_1016_j_nbd_2023_106181 crossref_primary_10_1097_CM9_0000000000002397 crossref_primary_10_1096_fj_202100081RR crossref_primary_10_1007_s40120_023_00542_0 crossref_primary_10_1038_s41598_023_41240_z crossref_primary_10_1007_s12035_023_03823_9 crossref_primary_10_1002_glia_24654 crossref_primary_10_3389_fimmu_2022_836494 crossref_primary_10_3390_ph16070914 crossref_primary_10_1016_j_nbd_2022_105663 crossref_primary_10_1016_j_bbrc_2024_150386 crossref_primary_10_1083_jcb_202102136 crossref_primary_10_1186_s12974_024_03296_0 crossref_primary_10_3389_fendo_2021_668396 crossref_primary_10_1038_s41467_024_52874_6 crossref_primary_10_3390_biology12030414 crossref_primary_10_1016_j_celrep_2025_115343 crossref_primary_10_1111_febs_70011 crossref_primary_10_3390_cells12212564 |
Cites_doi | 10.1073/pnas.1525528113 10.1038/s41531-017-0015-3 10.1007/s00441-018-2817-y 10.1006/exnr.2000.7527 10.3389/fneur.2019.01053 10.1038/s41531-019-0103-7 10.1038/srep17625 10.1083/jcb.116.5.1071 10.1056/NEJMoa0901281 10.1186/s40478-020-01004-6 10.1073/pnas.1108197108 10.3389/fimmu.2017.01810 10.1002/mds.870090325 10.1001/jamaneurol.2013.1925 10.1016/j.cell.2019.04.001 10.1016/j.plefa.2010.02.005 10.1038/nrdp.2017.13 10.1038/174190a0 10.1038/nrn3039 10.1093/jnen/63.4.323 10.1126/science.aan4183 10.1016/j.bcmd.2016.12.002 10.1126/science.aaf6659 10.1038/srep23795 10.1186/s12974-018-1100-1 10.1172/JCI77983 10.1038/42166 10.1038/mp.2015.177 10.1523/JNEUROSCI.15-05-03318.1995 10.1016/j.neuron.2017.02.042 10.1002/mds.20593 10.1021/bi500918m 10.1038/s41598-018-33474-z 10.1007/s13238-012-2025-6 10.1038/jcbfm.2013.128 10.1002/2211-5463.12078 10.1016/j.cell.2014.12.019 10.1073/pnas.1903216116 10.1369/0022155411404073 10.1089/ars.2015.6307 10.1038/s41591-019-0611-3 10.1016/j.neurobiolaging.2018.02.028 10.1016/j.celrep.2018.11.028 10.1038/s41593-019-0423-2 10.1016/j.bcp.2014.01.008 10.1007/978-1-4939-6788-9_14 10.1016/j.nbd.2018.08.013 10.1016/j.cmet.2017.08.024 10.1038/nprot.2014.037 10.1038/s41591-018-0336-8 10.3389/fphys.2014.00282 10.1002/path.4328 10.1016/j.neuron.2016.06.015 10.1016/j.cell.2009.11.005 10.1016/j.cell.2017.05.018 10.1161/ATVBAHA.116.307023 10.1016/j.bbalip.2012.01.007 10.1038/s41593-019-0566-1 10.1016/j.nbd.2015.09.009 10.1016/S1096-7192(03)00071-4 10.1242/jcs.s3-99.46.231 10.1016/j.it.2018.01.012 10.1186/s12974-019-1532-2 10.1016/j.jns.2008.04.011 10.1016/j.ymgme.2010.12.014 10.1371/journal.pgen.1002141 10.1002/acn3.177 10.1016/j.molcel.2018.11.028 10.1007/s11263-013-0615-2 10.1016/j.bbalip.2010.08.004 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Nov 3, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Nov 3, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2003021117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 27654 |
ExternalDocumentID | PMC7959493 33060302 10_1073_pnas_2003021117 26970947 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG060195 – fundername: NINDS NIH HHS grantid: R01 NS092667 – fundername: The Consolidated Anti-Aging Foundation grantid: N/A – fundername: Harold and Ronna Cooper Postdoctoral Fellowship for Parkinson's Disease Research grantid: N/A – fundername: HHS | NIH | National Institute on Aging (NIA) grantid: R01AG060195 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: 1R01NS092667 – fundername: The Orchard Foundation grantid: N/A – fundername: U.S. Department of Defense (DOD) grantid: W81XWH2010368 – fundername: U.S. Department of Defense (DOD) grantid: W81XWH2010371 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-31a27c7da0f759d965087de24eae402f9292d10eec52efddf6652d9b7d5699243 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:54 EDT 2025 Fri Jul 11 03:00:48 EDT 2025 Mon Jun 30 10:07:46 EDT 2025 Thu Apr 03 07:05:31 EDT 2025 Tue Jul 01 03:40:33 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Thu May 29 09:12:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | lipids astrocytes neurons Parkinson’s disease glucocerebrosidase |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-31a27c7da0f759d965087de24eae402f9292d10eec52efddf6652d9b7d5699243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: O.R.B., P.J.H., and O.I. designed research; O.R.B., J.R.H., and S.L. performed research; O.R.B., J.R.H., S.L., P.J.H., and O.I. analyzed data; and O.R.B., S.L., P.J.H., and O.I. wrote the paper. 2Present address: School of Clinical Medicine, Addenbrooke’s Hospital/University of Cambridge, Cambridge, CB2 0QQ Cambridgeshire, UK. Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 2, 2020 (received for review February 17, 2020) |
ORCID | 0000-0002-5619-4022 0000-0002-9698-4707 0000-0003-2829-2941 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7959493 |
PMID | 33060302 |
PQID | 2458968839 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959493 proquest_miscellaneous_2451848094 proquest_journals_2458968839 pubmed_primary_33060302 crossref_primary_10_1073_pnas_2003021117 crossref_citationtrail_10_1073_pnas_2003021117 jstor_primary_26970947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-03 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_47_2 doi: 10.1073/pnas.1525528113 – ident: e_1_3_4_3_2 doi: 10.1038/s41531-017-0015-3 – ident: e_1_3_4_4_2 doi: 10.1007/s00441-018-2817-y – ident: e_1_3_4_58_2 doi: 10.1006/exnr.2000.7527 – ident: e_1_3_4_23_2 doi: 10.3389/fneur.2019.01053 – ident: e_1_3_4_24_2 doi: 10.1038/s41531-019-0103-7 – ident: e_1_3_4_59_2 doi: 10.1038/srep17625 – ident: e_1_3_4_62_2 doi: 10.1083/jcb.116.5.1071 – ident: e_1_3_4_14_2 doi: 10.1056/NEJMoa0901281 – ident: e_1_3_4_25_2 doi: 10.1186/s40478-020-01004-6 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1108197108 – ident: e_1_3_4_67_2 doi: 10.3389/fimmu.2017.01810 – ident: e_1_3_4_8_2 doi: 10.1002/mds.870090325 – ident: e_1_3_4_13_2 doi: 10.1001/jamaneurol.2013.1925 – ident: e_1_3_4_51_2 doi: 10.1016/j.cell.2019.04.001 – ident: e_1_3_4_53_2 doi: 10.1016/j.plefa.2010.02.005 – ident: e_1_3_4_22_2 doi: 10.1038/nrdp.2017.13 – ident: e_1_3_4_45_2 doi: 10.1038/174190a0 – ident: e_1_3_4_16_2 doi: 10.1038/nrn3039 – ident: e_1_3_4_9_2 doi: 10.1093/jnen/63.4.323 – ident: e_1_3_4_36_2 doi: 10.1126/science.aan4183 – ident: e_1_3_4_40_2 doi: 10.1016/j.bcmd.2016.12.002 – ident: e_1_3_4_66_2 doi: 10.1126/science.aaf6659 – ident: e_1_3_4_54_2 doi: 10.1038/srep23795 – ident: e_1_3_4_39_2 doi: 10.1186/s12974-018-1100-1 – ident: e_1_3_4_37_2 doi: 10.1172/JCI77983 – ident: e_1_3_4_21_2 doi: 10.1038/42166 – ident: e_1_3_4_32_2 doi: 10.1038/mp.2015.177 – ident: e_1_3_4_49_2 doi: 10.1523/JNEUROSCI.15-05-03318.1995 – ident: e_1_3_4_38_2 doi: 10.1016/j.neuron.2017.02.042 – ident: e_1_3_4_11_2 doi: 10.1002/mds.20593 – ident: e_1_3_4_44_2 doi: 10.1021/bi500918m – ident: e_1_3_4_56_2 doi: 10.1038/s41598-018-33474-z – ident: e_1_3_4_65_2 doi: 10.1007/s13238-012-2025-6 – ident: e_1_3_4_29_2 doi: 10.1038/jcbfm.2013.128 – ident: e_1_3_4_61_2 doi: 10.1002/2211-5463.12078 – ident: e_1_3_4_50_2 doi: 10.1016/j.cell.2014.12.019 – ident: e_1_3_4_27_2 doi: 10.1073/pnas.1903216116 – ident: e_1_3_4_63_2 doi: 10.1369/0022155411404073 – ident: e_1_3_4_18_2 doi: 10.1089/ars.2015.6307 – ident: e_1_3_4_31_2 doi: 10.1038/s41591-019-0611-3 – ident: e_1_3_4_15_2 doi: 10.1016/j.neurobiolaging.2018.02.028 – ident: e_1_3_4_28_2 doi: 10.1016/j.celrep.2018.11.028 – ident: e_1_3_4_60_2 doi: 10.1038/s41593-019-0423-2 – ident: e_1_3_4_68_2 doi: 10.1016/j.bcp.2014.01.008 – ident: e_1_3_4_70_2 doi: 10.1007/978-1-4939-6788-9_14 – ident: e_1_3_4_41_2 doi: 10.1016/j.nbd.2018.08.013 – ident: e_1_3_4_2_2 doi: 10.1016/j.cmet.2017.08.024 – ident: e_1_3_4_42_2 doi: 10.1038/nprot.2014.037 – ident: e_1_3_4_30_2 doi: 10.1038/s41591-018-0336-8 – ident: e_1_3_4_48_2 doi: 10.3389/fphys.2014.00282 – ident: e_1_3_4_10_2 doi: 10.1002/path.4328 – ident: e_1_3_4_33_2 doi: 10.1016/j.neuron.2016.06.015 – ident: e_1_3_4_64_2 doi: 10.1016/j.cell.2009.11.005 – ident: e_1_3_4_69_2 doi: 10.1016/j.cell.2017.05.018 – ident: e_1_3_4_1_2 doi: 10.1161/ATVBAHA.116.307023 – ident: e_1_3_4_34_2 doi: 10.1016/j.bbalip.2012.01.007 – ident: e_1_3_4_35_2 doi: 10.1038/s41593-019-0566-1 – ident: e_1_3_4_57_2 doi: 10.1016/j.nbd.2015.09.009 – ident: e_1_3_4_12_2 doi: 10.1016/S1096-7192(03)00071-4 – ident: e_1_3_4_46_2 doi: 10.1242/jcs.s3-99.46.231 – ident: e_1_3_4_52_2 doi: 10.1016/j.it.2018.01.012 – ident: e_1_3_4_17_2 doi: 10.1186/s12974-019-1532-2 – ident: e_1_3_4_7_2 doi: 10.1016/j.jns.2008.04.011 – ident: e_1_3_4_19_2 doi: 10.1016/j.ymgme.2010.12.014 – ident: e_1_3_4_5_2 doi: 10.1371/journal.pgen.1002141 – ident: e_1_3_4_6_2 doi: 10.1002/acn3.177 – ident: e_1_3_4_26_2 doi: 10.1016/j.molcel.2018.11.028 – ident: e_1_3_4_43_2 doi: 10.1007/s11263-013-0615-2 – ident: e_1_3_4_55_2 doi: 10.1016/j.bbalip.2010.08.004 |
SSID | ssj0009580 |
Score | 2.5836673 |
Snippet | Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing... Recently, the field of Parkinson’s disease biology has shifted attention away from pure proteinotoxic hypotheses to emphasize primary cellular insults,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27646 |
SubjectTerms | Aged Aged, 80 and over alpha-Synuclein - metabolism Animals Astrocytes Astrocytes - metabolism Astrocytes - pathology Biological Sciences Case-Control Studies Central nervous system Cohort Studies Disease Models, Animal Dopamine receptors Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Female Fluorescent indicators Glucosylceramidase Glucosylceramidase - genetics Glucosylceramidase - metabolism Glycolipids - metabolism Glycoproteins Healthy Volunteers Homeostasis Humans Inflammation Lipids Localization Male Melanoma Membrane Glycoproteins - metabolism Mesencephalon Metabolites Metastases Mice Microglia Microglia - metabolism Microglia - pathology Middle Aged Movement disorders Neurodegenerative diseases Neuronal-glial interactions Neurons Parkinson Disease - pathology Parkinson's disease Pathogenesis Protein B Signaling Substantia nigra Substantia Nigra - cytology Substantia Nigra - metabolism Substantia Nigra - pathology Triglycerides Triglycerides - metabolism |
Title | Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance |
URI | https://www.jstor.org/stable/26970947 https://www.ncbi.nlm.nih.gov/pubmed/33060302 https://www.proquest.com/docview/2458968839 https://www.proquest.com/docview/2451848094 https://pubmed.ncbi.nlm.nih.gov/PMC7959493 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWBQGMhISAxFGZntxPHjNG2q0OgmaKW-RfnjjIoqq9b2YXwBviOfhjvb-TfGBLxUVeI4bu7X893ld3eEvI14qsIwB-8kDyQ4KJz7WRYLPxXgX4i8BKcDA_qfxtFoKj7Owtlg8LPDWtqss_38-615Jf8jVTgGcsUs2X-QbDMpHIDvIF_4BAnD51_J-AgDbxhE9TFhEkk_3mK-nBceUh6RjGPTeg3lFdObXaaXXNXvZeqyql6GnSJWHtLAQAWmy_ka23pZ67TXBOBicQ3QMTeBOWC_yhrYOBP3vNkSVzUBYVxHHA_b_BWnVFae752PO92Qr_Q3o6DPNNaYhoV_vnT5V4bk68hpddC_5Ts6RtEXDdqrpY2MsFVMzUSukB6l3YswF-kAtxajt7wlgtyx1q6KZ7DtCpuYva-tVgejyI-E7UvaqH2bM-rwLURXi8vIxkV_219AIWJT5Co1ld45GEj1NL1K3uOz5GR6eppMjmeTe-Q-AxeGmU2jWxA6tulRbrl12SnJP9yYvmcxWdLsbe7QTVZvx0yaPCIPnX9DDy1Yt8lAV4_Jdv0A6Z4rc_7-CfmB6KU99FIDLOrQSx166byiDXrfrajDLnXYpRa7FLBLe9il2TXtYpe22KUd7D4l05PjydHId21B_FwIvgarIWUyl0UalDJUhUIfQxaaCZ1qEbASDH5WHARa5yHTZVGUURSyQmWyCCOlmOA7ZKsCuD4nNGRRWiihYm7qZEYxOPRKgwedZ2nISz4k-_WjT3JXMx9btywSw92QPEFZJa2shmSvuWBpy8X8eeiOkWUzjkVKBkrAid1auIlTNnCdCGMVxeDODMmb5jRsBfh-L6305caMOYgF_AYxJM8sFprJOQ8ivPOQyB5KmgFYZr5_ppp_NeXmpQrhEfEXdy_rJXnQ_md3ydb6aqNfgb2-zl4b4P8CeRXyFQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+type-specific+lipid+storage+changes+in+Parkinson%27s+disease+patient+brains+are+recapitulated+by+experimental+glycolipid+disturbance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brekk%2C+Oeystein+Roed&rft.au=Honey%2C+Jonathan+R&rft.au=Lee%2C+Seungil&rft.au=Hallett%2C+Penelope+J&rft.date=2020-11-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27646&rft_id=info:doi/10.1073%2Fpnas.2003021117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |