A new open boundary formulation for incompressible SPH

In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 72; no. 9; pp. 2417 - 2432
Main Authors Leroy, A., Violeau, D., Ferrand, M., Fratter, L., Joly, A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2016
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended to open boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH model relying on that formulation for solid boundaries was then proposed, which is the one considered here. It includes a buoyancy model for temperature effects and a k−ϵ turbulence closure. There are two main requirements for the imposition of open boundaries in ISPH: an algorithm to let particles enter and leave the domain, and the correct imposition of open boundary conditions on the fields. Regarding the algorithm for particles creation/destruction, it relies on the variation of mass of the particles located at the open boundaries. When the mass of such a particle reaches a threshold, a new particle is released. On the other hand, the imposition of open boundary conditions on the fields is done by prescribing the value of the boundary terms appearing in the semi-analytical formulation. The formulation was first validated in 2-D on a cut dam-break, a case of propagation of a solitary wave and a Creager weir. It was then extended to 3-D and tested on a 3-D circular pipe. A preliminary application case consisting of two connected pipes at different temperatures was then simulated. The results are promising since in all cases the fluid enters and leaves the domain as prescribed and generating none or very few reflected waves.
AbstractList In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended to open boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH model relying on that formulation for solid boundaries was then proposed, which is the one considered here. It includes a buoyancy model for temperature effects and a k − turbulence closure. There are two main requirements for the imposition of open boundaries in ISPH: an algorithm to let particles enter and leave the domain, and the correct imposition of open boundary conditions on the fields. Regarding the algorithm for particles creation/destruction, it relies on the variation of mass of the particles located at the open boundaries. When the mass of such a particle reaches a threshold, a new particle is released. On the other hand, the imposition of open boundary conditions on the fields is done by prescribing the value of the boundary terms appearing in the semi-analytical formulation. The formulation was first validated in 2-D on a cut dam-break, a case of propagation of a solitary wave and a Creager weir. It was then extended to 3-D and tested on a 3-D circular pipe. A preliminary application case consisting of two connected pipes at different temperatures was then simulated. The results are promising since in all cases the fluid enters and leaves the domain as prescribed and generating none or very few reflected waves.
In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended to open boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH model relying on that formulation for solid boundaries was then proposed, which is the one considered here. It includes a buoyancy model for temperature effects and a k - E turbulence closure. There are two main requirements for the imposition of open boundaries in ISPH: an algorithm to let particles enter and leave the domain, and the correct imposition of open boundary conditions on the fields. Regarding the algorithm for particles creation/destruction, it relies on the variation of mass of the particles located at the open boundaries. When the mass of such a particle reaches a threshold, a new particle is released. On the other hand, the imposition of open boundary conditions on the fields is done by prescribing the value of the boundary terms appearing in the semi-analytical formulation. The formulation was first validated in 2-D on a cut dam-break, a case of propagation of a solitary wave and a Creager weir. It was then extended to 3-D and tested on a 3-D circular pipe. A preliminary application case consisting of two connected pipes at different temperatures was then simulated. The results are promising since in all cases the fluid enters and leaves the domain as prescribed and generating none or very few reflected waves.
In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended to open boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH model relying on that formulation for solid boundaries was then proposed, which is the one considered here. It includes a buoyancy model for temperature effects and a turbulence closure. There are two main requirements for the imposition of open boundaries in ISPH: an algorithm to let particles enter and leave the domain, and the correct imposition of open boundary conditions on the fields. Regarding the algorithm for particles creation/destruction, it relies on the variation of mass of the particles located at the open boundaries. When the mass of such a particle reaches a threshold, a new particle is released. On the other hand, the imposition of open boundary conditions on the fields is done by prescribing the value of the boundary terms appearing in the semi-analytical formulation. The formulation was first validated in 2-D on a cut dam-break, a case of propagation of a solitary wave and a Creager weir. It was then extended to 3-D and tested on a 3-D circular pipe. A preliminary application case consisting of two connected pipes at different temperatures was then simulated. The results are promising since in all cases the fluid enters and leaves the domain as prescribed and generating none or very few reflected waves.
In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies on the technique of unified semi-analytical boundary conditions that was first proposed for wall boundary conditions in 2013, then extended to open boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH model relying on that formulation for solid boundaries was then proposed, which is the one considered here. It includes a buoyancy model for temperature effects and a k−ϵ turbulence closure. There are two main requirements for the imposition of open boundaries in ISPH: an algorithm to let particles enter and leave the domain, and the correct imposition of open boundary conditions on the fields. Regarding the algorithm for particles creation/destruction, it relies on the variation of mass of the particles located at the open boundaries. When the mass of such a particle reaches a threshold, a new particle is released. On the other hand, the imposition of open boundary conditions on the fields is done by prescribing the value of the boundary terms appearing in the semi-analytical formulation. The formulation was first validated in 2-D on a cut dam-break, a case of propagation of a solitary wave and a Creager weir. It was then extended to 3-D and tested on a 3-D circular pipe. A preliminary application case consisting of two connected pipes at different temperatures was then simulated. The results are promising since in all cases the fluid enters and leaves the domain as prescribed and generating none or very few reflected waves.
Author Joly, A.
Violeau, D.
Leroy, A.
Fratter, L.
Ferrand, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Leroy
  fullname: Leroy, A.
  email: agnes.leroy@edf.fr
  organization: EDF R&D, Chatou, France
– sequence: 2
  givenname: D.
  surname: Violeau
  fullname: Violeau, D.
  organization: EDF R&D, Chatou, France
– sequence: 3
  givenname: M.
  surname: Ferrand
  fullname: Ferrand, M.
  organization: EDF R&D, Chatou, France
– sequence: 4
  givenname: L.
  surname: Fratter
  fullname: Fratter, L.
  organization: EDF R&D, Chatou, France
– sequence: 5
  givenname: A.
  surname: Joly
  fullname: Joly, A.
  organization: EDF R&D, Chatou, France
BackLink https://hal.science/hal-01557021$$DView record in HAL
BookMark eNqFkM1q3DAURkVJoZO0T9CNIZt2Yffqx7K0yGIIaacw0ELbtZBkmWiwpYlkJ_TtI2dKFlmkK0mXc8R3v3N0FmJwCH3E0GDA_MuhsXp60A0pjwZkAyDeoA0WHa07zsUZ2oCQosaE4HfoPOcDADBKYIP4tgruoYpHFyoTl9Dr9LcaYpqWUc8-hvVe-WDjdEwuZ29GV_36uXuP3g56zO7Dv_MC_fl68_t6V-9_fPt-vd3XljE612ToWzDA255KMER3QhNu8dAbbrgduJG6M2JwLRMOBqCMGaMBr2sQSU1LL9Dn07-3elTH5KcST0Xt1W67V-sMcNt2QPA9LuynE3tM8W5xeVaTz9aNow4uLllh0bYlBmNdQS9foIe4pFA2UVhSgRnpJBSKniibYs7JDc8JMKi1d3VQT72rNbACqUrvxZIvLOvnpy7npP34H_fq5LrS6b13SWXrXbCu98nZWfXRv-o_AgsxnvM
CitedBy_id crossref_primary_10_3389_fenvs_2021_802091
crossref_primary_10_1016_j_camwa_2018_06_002
crossref_primary_10_1007_s40571_021_00404_2
crossref_primary_10_1063_1_5091999
crossref_primary_10_1007_s10404_020_02401_y
crossref_primary_10_1016_j_enganabound_2019_03_025
crossref_primary_10_1016_j_enganabound_2021_04_024
crossref_primary_10_1016_j_coastaleng_2022_104191
crossref_primary_10_1016_j_compfluid_2017_09_011
crossref_primary_10_1016_j_apor_2018_09_013
crossref_primary_10_1063_5_0220606
crossref_primary_10_1007_s00707_024_04103_w
crossref_primary_10_1063_5_0147750
crossref_primary_10_1098_rspa_2019_0801
crossref_primary_10_3390_jmse10081003
crossref_primary_10_1016_j_coastaleng_2020_103657
crossref_primary_10_1063_5_0242258
crossref_primary_10_1016_j_cma_2018_08_035
crossref_primary_10_1103_PhysRevE_110_055303
crossref_primary_10_1016_j_enganabound_2023_07_011
crossref_primary_10_1108_HFF_05_2019_0437
crossref_primary_10_1016_j_oceaneng_2018_06_034
crossref_primary_10_1016_j_advwatres_2023_104487
crossref_primary_10_1016_j_ijmultiphaseflow_2018_03_006
crossref_primary_10_1016_j_cma_2020_113367
crossref_primary_10_1016_j_enganabound_2021_12_011
crossref_primary_10_32604_cmes_2021_016766
crossref_primary_10_1016_j_compfluid_2018_09_008
crossref_primary_10_1016_j_matcom_2023_03_018
crossref_primary_10_1016_S1001_6058_16_60730_8
Cites_doi 10.1002/nme.2010
10.1006/jcph.1999.6246
10.1016/j.jcp.2013.01.043
10.1090/S0025-5718-1969-0242393-5
10.1016/S0309-1708(03)00030-7
10.1002/fld.4025
10.1061/(ASCE)HY.1943-7900.0000543
10.1016/j.jcp.2011.10.027
10.1016/j.cpc.2013.07.004
10.1016/j.jcp.2013.12.035
10.1007/BF02123482
10.1016/0021-9991(76)90023-1
10.1088/0034-4885/68/8/R01
10.1137/0913035
10.1007/s00466-003-0534-0
10.1142/9789812702838_0011
10.1016/j.compfluid.2014.07.006
10.1002/nme.2458
10.1016/B978-008044114-6/50014-4
10.1016/j.jcp.2015.02.015
10.1002/fld.3666
10.1016/j.jcp.2009.05.032
10.1016/j.cpc.2009.05.008
10.1007/s11075-014-9835-y
10.1016/j.jcp.2008.06.005
10.1016/j.jcp.2015.12.024
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Nov 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.camwa.2016.09.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 2432
ExternalDocumentID oai_HAL_hal_01557021v1
10_1016_j_camwa_2016_09_008
S0898122116305107
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c443t-2fd50b065d390b2a78a26c1fdb6b6cf6b9a7b8fe548e0f0344bba012016293b53
IEDL.DBID .~1
ISSN 0898-1221
IngestDate Thu Jul 10 06:57:51 EDT 2025
Mon Jul 21 10:44:33 EDT 2025
Mon Jul 14 07:24:37 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Jul 01 03:39:12 EDT 2025
Fri Feb 23 02:33:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Open boundary conditions
Incompressible
SPH
incompressible
open boundary conditions
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-2fd50b065d390b2a78a26c1fdb6b6cf6b9a7b8fe548e0f0344bba012016293b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://hal.science/hal-01557021
PQID 1938142790
PQPubID 2045493
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_01557021v1
proquest_miscellaneous_1855390447
proquest_journals_1938142790
crossref_primary_10_1016_j_camwa_2016_09_008
crossref_citationtrail_10_1016_j_camwa_2016_09_008
elsevier_sciencedirect_doi_10_1016_j_camwa_2016_09_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References C. Kassiotis, D. Violeau, M. Ferrand, Semi-analytical conditions for open boundaries in smoothed particle hydrodynamics, in: Proc. 8th International SPHERIC Workshop, 2013.
V. Guimet, D. Laurence, A linearised turbulent production in the k-
Leroy, Violeau, Ferrand, Kassiotis (br000060) 2014; 261
Mayrhofer, Rogers, Violeau, Ferrand (br000055) 2013; 184
Hervouet (br000115) 2007
Dean, Dalrymple (br000180) 1991; vol. 2
Launder, Spalding (br000120) 1972
Lee, Moulinec, Xu, Violeau, Laurence, Stansby (br000025) 2008; 227
Wendland (br000135) 1995; 4
Lind, Xu, Stansby, Rogers (br000155) 2012; 231
Shao, Lo (br000015) 2003; 26
Monaghan, Kajtar (br000010) 2009; 180
Kulasegaram, Bonet, Lewis, Profit (br000035) 2004; 33
Cummins, Rudman (br000145) 1999; 152
G. Oger, C. Leroy, E. Jacquin, D. Le Touzé, B. Alessandrini, Specific pre/post treatments for 3-D SPH applications through massive HPC simulations, in: Proc. 4th International SPHERIC Workshop, 2009, pp. 27–29.
Nair, Tomar (br000095) 2014; 102
Chorin (br000150) 1969; 23
Yildiz, Rook, Suleman (br000100) 2009; 77
Issa (br000020) 2004
Adami, Hu, Adams (br000200) 2013; 241
Violeau, Piccon, Chabard (br000105) 2002
Leroy, Violeau, Ferrand, Joly (br000165) 2015
Violeau, Leroy (br000160) 2015
USBR, Design of small dams.
Vacondio, Rogers, Stansby, Mignosa (br000070) 2011; 138
Monaghan (br000005) 2005; 68
Feldman, Bonet (br000040) 2007; 72
Ferrand, Laurence, Rogers, Violeau, Kassiotis (br000050) 2013; 71
O. Mahmood, D. Violeau, C. Kassiotis, B.D. Rogers, M. Ferrand, Absorbing inlet/outlet boundary conditions for 2D SPH turbulent free-surface flows, in: Proc. 7th International SPHERIC Workshop, 2012, pp. 296–302.
Xu, Stansby, Laurence (br000090) 2009; 228
Mayrhofer, Ferrand, Kassiotis, Violeau, Morel (br000140) 2015; 68
M. Ferrand, D. Laurence, B.D. Rogers, D. Violeau, Improved time scheme integration approach for dealing with semi analytical boundary conditions in SPARTACUS2D, in: Proc. 5th International SPHERIC Workshop, 2010.
D. Violeau, One and two-equations turbulent closures for Smoothed Particle Hydrodynamics, in: 6th Int. Conf. Hydroinformatics, Singapore, 2004, pp. 87–94.
model for engineering applications, in: Proc. Vth International Symposium on Engineering Turbulence Modelling and Measurements, Majorqua (Spain), 2002, pp. 157–166.
Hirschler, Kunz, Huber, Hahn, Nieken (br000080) 2016; 307
Rodi (br000125) 2000
Violeau (br000185) 2012
Orlanski (br000170) 1976; 21
Chow (br000190) 1959
D. Violeau, A. Leroy, A. Mayrhofer, Exact computation of SPH wall renormalising integrals in 3-D, in: Proc. 9th International SPHERIC Workshop, 2014.
Vorst (br000175) 1992; 13
Monaghan (10.1016/j.camwa.2016.09.008_br000005) 2005; 68
Shao (10.1016/j.camwa.2016.09.008_br000015) 2003; 26
Chorin (10.1016/j.camwa.2016.09.008_br000150) 1969; 23
Chow (10.1016/j.camwa.2016.09.008_br000190) 1959
Leroy (10.1016/j.camwa.2016.09.008_br000165) 2015
Nair (10.1016/j.camwa.2016.09.008_br000095) 2014; 102
Rodi (10.1016/j.camwa.2016.09.008_br000125) 2000
Cummins (10.1016/j.camwa.2016.09.008_br000145) 1999; 152
Kulasegaram (10.1016/j.camwa.2016.09.008_br000035) 2004; 33
10.1016/j.camwa.2016.09.008_br000045
Adami (10.1016/j.camwa.2016.09.008_br000200) 2013; 241
10.1016/j.camwa.2016.09.008_br000065
Mayrhofer (10.1016/j.camwa.2016.09.008_br000140) 2015; 68
10.1016/j.camwa.2016.09.008_br000085
Issa (10.1016/j.camwa.2016.09.008_br000020) 2004
Leroy (10.1016/j.camwa.2016.09.008_br000060) 2014; 261
Violeau (10.1016/j.camwa.2016.09.008_br000105) 2002
Yildiz (10.1016/j.camwa.2016.09.008_br000100) 2009; 77
Vorst (10.1016/j.camwa.2016.09.008_br000175) 1992; 13
Hirschler (10.1016/j.camwa.2016.09.008_br000080) 2016; 307
Monaghan (10.1016/j.camwa.2016.09.008_br000010) 2009; 180
Vacondio (10.1016/j.camwa.2016.09.008_br000070) 2011; 138
Xu (10.1016/j.camwa.2016.09.008_br000090) 2009; 228
Mayrhofer (10.1016/j.camwa.2016.09.008_br000055) 2013; 184
Launder (10.1016/j.camwa.2016.09.008_br000120) 1972
Wendland (10.1016/j.camwa.2016.09.008_br000135) 1995; 4
Feldman (10.1016/j.camwa.2016.09.008_br000040) 2007; 72
Lee (10.1016/j.camwa.2016.09.008_br000025) 2008; 227
Hervouet (10.1016/j.camwa.2016.09.008_br000115) 2007
Ferrand (10.1016/j.camwa.2016.09.008_br000050) 2013; 71
Dean (10.1016/j.camwa.2016.09.008_br000180) 1991; vol. 2
Orlanski (10.1016/j.camwa.2016.09.008_br000170) 1976; 21
Violeau (10.1016/j.camwa.2016.09.008_br000185) 2012
10.1016/j.camwa.2016.09.008_br000110
Lind (10.1016/j.camwa.2016.09.008_br000155) 2012; 231
Violeau (10.1016/j.camwa.2016.09.008_br000160) 2015
10.1016/j.camwa.2016.09.008_br000075
10.1016/j.camwa.2016.09.008_br000130
10.1016/j.camwa.2016.09.008_br000030
10.1016/j.camwa.2016.09.008_br000195
References_xml – volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: br000135
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 68
  start-page: 15
  year: 2015
  end-page: 34
  ident: br000140
  article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D
  publication-title: Numer. Algorithms
– volume: 180
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: br000010
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Comm.
– reference: O. Mahmood, D. Violeau, C. Kassiotis, B.D. Rogers, M. Ferrand, Absorbing inlet/outlet boundary conditions for 2D SPH turbulent free-surface flows, in: Proc. 7th International SPHERIC Workshop, 2012, pp. 296–302.
– year: 2000
  ident: br000125
  article-title: Turbulence models and their applications in hydraulics
  publication-title: IAHR Monograph
– volume: 23
  start-page: 341
  year: 1969
  end-page: 353
  ident: br000150
  article-title: On convergence of discrete approximations to the Navier-Stokes equations
  publication-title: Math. Comp.
– year: 2015
  ident: br000165
  article-title: Buoyancy modelling with incompressible sph for laminar and turbulent flows
  publication-title: Internat. J. Numer. Methods Fluids
– year: 2004
  ident: br000020
  article-title: Numerical assessment of the smoothed particle hydrodynamics gridless method for incompressible flows and its extension to turbulent flows
– volume: 72
  start-page: 295
  year: 2007
  end-page: 324
  ident: br000040
  article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 184
  start-page: 2515
  year: 2013
  end-page: 2527
  ident: br000055
  article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions
  publication-title: Comput. Phys. Comm.
– volume: 138
  start-page: 530
  year: 2011
  end-page: 541
  ident: br000070
  article-title: SPH modeling of shallow flow with open boundaries for practical flood simulation
  publication-title: J. Hydraul. Eng.
– reference: USBR, Design of small dams.
– volume: 228
  start-page: 6703
  year: 2009
  end-page: 6725
  ident: br000090
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach,’
  publication-title: J. Comput. Phys.
– year: 1959
  ident: br000190
  article-title: Open-Channel Hydraulics
– volume: 241
  start-page: 292
  year: 2013
  end-page: 307
  ident: br000200
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 102
  start-page: 304
  year: 2014
  end-page: 314
  ident: br000095
  article-title: An improved free surface modeling for incompressible SPH
  publication-title: Comput. & Fluids
– volume: 227
  start-page: 8417
  year: 2008
  end-page: 8436
  ident: br000025
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
– reference: D. Violeau, One and two-equations turbulent closures for Smoothed Particle Hydrodynamics, in: 6th Int. Conf. Hydroinformatics, Singapore, 2004, pp. 87–94.
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: br000155
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
– reference: M. Ferrand, D. Laurence, B.D. Rogers, D. Violeau, Improved time scheme integration approach for dealing with semi analytical boundary conditions in SPARTACUS2D, in: Proc. 5th International SPHERIC Workshop, 2010.
– reference: D. Violeau, A. Leroy, A. Mayrhofer, Exact computation of SPH wall renormalising integrals in 3-D, in: Proc. 9th International SPHERIC Workshop, 2014.
– year: 2007
  ident: br000115
  article-title: Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: br000005
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
– volume: 261
  start-page: 106
  year: 2014
  end-page: 129
  ident: br000060
  article-title: Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH
  publication-title: J. Comput. Phys.
– volume: 152
  start-page: 584
  year: 1999
  end-page: 607
  ident: br000145
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
– year: 2002
  ident: br000105
  article-title: Two attempts of turbulence modelling in smoothed particle hydrodynamics
  publication-title: Advances in Fluid Modelling and Turbulence Measurements
– reference: V. Guimet, D. Laurence, A linearised turbulent production in the k-
– reference: model for engineering applications, in: Proc. Vth International Symposium on Engineering Turbulence Modelling and Measurements, Majorqua (Spain), 2002, pp. 157–166.
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  ident: br000050
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Internat. J. Numer. Methods Fluids
– year: 2015
  ident: br000160
  article-title: Optimal time-step for incompressible SPH
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 251
  year: 1976
  end-page: 269
  ident: br000170
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 631
  year: 1992
  end-page: 644
  ident: br000175
  article-title: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
  publication-title: J. Sci. Stat. Comput.
– reference: C. Kassiotis, D. Violeau, M. Ferrand, Semi-analytical conditions for open boundaries in smoothed particle hydrodynamics, in: Proc. 8th International SPHERIC Workshop, 2013.
– volume: vol. 2
  year: 1991
  ident: br000180
  article-title: Water Wave Mechanics for Engineers and Scientists
  publication-title: Advanced Series on Ocean Engineering
– volume: 33
  start-page: 316
  year: 2004
  end-page: 325
  ident: br000035
  article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications
  publication-title: Comput. Mech.
– volume: 307
  start-page: 614
  year: 2016
  end-page: 633
  ident: br000080
  article-title: Open boundary conditions for ISPH and their application to micro-flow
  publication-title: J. Comput. Phys.
– reference: G. Oger, C. Leroy, E. Jacquin, D. Le Touzé, B. Alessandrini, Specific pre/post treatments for 3-D SPH applications through massive HPC simulations, in: Proc. 4th International SPHERIC Workshop, 2009, pp. 27–29.
– year: 1972
  ident: br000120
  article-title: Mathematical Models of Turbulence
– volume: 77
  start-page: 1416
  year: 2009
  end-page: 1438
  ident: br000100
  article-title: SPH with the multiple boundary tangent method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 26
  start-page: 787
  year: 2003
  end-page: 800
  ident: br000015
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free-surface
  publication-title: Adv. Water Ressour.
– year: 2012
  ident: br000185
  article-title: Fluid Mechanics and the SPH Method
– ident: 10.1016/j.camwa.2016.09.008_br000075
– year: 2012
  ident: 10.1016/j.camwa.2016.09.008_br000185
– volume: 72
  start-page: 295
  year: 2007
  ident: 10.1016/j.camwa.2016.09.008_br000040
  article-title: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2010
– year: 1972
  ident: 10.1016/j.camwa.2016.09.008_br000120
– volume: 152
  start-page: 584
  issue: 2
  year: 1999
  ident: 10.1016/j.camwa.2016.09.008_br000145
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6246
– volume: 241
  start-page: 292
  year: 2013
  ident: 10.1016/j.camwa.2016.09.008_br000200
  article-title: A transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.043
– ident: 10.1016/j.camwa.2016.09.008_br000085
– year: 2002
  ident: 10.1016/j.camwa.2016.09.008_br000105
  article-title: Two attempts of turbulence modelling in smoothed particle hydrodynamics
– volume: 23
  start-page: 341
  year: 1969
  ident: 10.1016/j.camwa.2016.09.008_br000150
  article-title: On convergence of discrete approximations to the Navier-Stokes equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1969-0242393-5
– year: 2000
  ident: 10.1016/j.camwa.2016.09.008_br000125
  article-title: Turbulence models and their applications in hydraulics
– volume: 26
  start-page: 787
  year: 2003
  ident: 10.1016/j.camwa.2016.09.008_br000015
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free-surface
  publication-title: Adv. Water Ressour.
  doi: 10.1016/S0309-1708(03)00030-7
– year: 2015
  ident: 10.1016/j.camwa.2016.09.008_br000165
  article-title: Buoyancy modelling with incompressible sph for laminar and turbulent flows
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.4025
– year: 1959
  ident: 10.1016/j.camwa.2016.09.008_br000190
– volume: 138
  start-page: 530
  issue: 6
  year: 2011
  ident: 10.1016/j.camwa.2016.09.008_br000070
  article-title: SPH modeling of shallow flow with open boundaries for practical flood simulation
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000543
– year: 2007
  ident: 10.1016/j.camwa.2016.09.008_br000115
– volume: 231
  start-page: 1499
  issue: 4
  year: 2012
  ident: 10.1016/j.camwa.2016.09.008_br000155
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.027
– volume: 184
  start-page: 2515
  issue: 11
  year: 2013
  ident: 10.1016/j.camwa.2016.09.008_br000055
  article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2013.07.004
– volume: 261
  start-page: 106
  year: 2014
  ident: 10.1016/j.camwa.2016.09.008_br000060
  article-title: Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.12.035
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.camwa.2016.09.008_br000135
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– ident: 10.1016/j.camwa.2016.09.008_br000045
– volume: 21
  start-page: 251
  year: 1976
  ident: 10.1016/j.camwa.2016.09.008_br000170
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90023-1
– volume: 68
  start-page: 1703
  year: 2005
  ident: 10.1016/j.camwa.2016.09.008_br000005
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 13
  start-page: 631
  issue: 2
  year: 1992
  ident: 10.1016/j.camwa.2016.09.008_br000175
  article-title: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
  publication-title: J. Sci. Stat. Comput.
  doi: 10.1137/0913035
– volume: 33
  start-page: 316
  year: 2004
  ident: 10.1016/j.camwa.2016.09.008_br000035
  article-title: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0534-0
– ident: 10.1016/j.camwa.2016.09.008_br000110
  doi: 10.1142/9789812702838_0011
– volume: 102
  start-page: 304
  year: 2014
  ident: 10.1016/j.camwa.2016.09.008_br000095
  article-title: An improved free surface modeling for incompressible SPH
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2014.07.006
– volume: 77
  start-page: 1416
  year: 2009
  ident: 10.1016/j.camwa.2016.09.008_br000100
  article-title: SPH with the multiple boundary tangent method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2458
– year: 2004
  ident: 10.1016/j.camwa.2016.09.008_br000020
– ident: 10.1016/j.camwa.2016.09.008_br000130
  doi: 10.1016/B978-008044114-6/50014-4
– year: 2015
  ident: 10.1016/j.camwa.2016.09.008_br000160
  article-title: Optimal time-step for incompressible SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.02.015
– ident: 10.1016/j.camwa.2016.09.008_br000065
– volume: 71
  start-page: 446
  year: 2013
  ident: 10.1016/j.camwa.2016.09.008_br000050
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3666
– volume: 228
  start-page: 6703
  issue: 18
  year: 2009
  ident: 10.1016/j.camwa.2016.09.008_br000090
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach,’
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.032
– ident: 10.1016/j.camwa.2016.09.008_br000195
– volume: 180
  start-page: 1811
  issue: 10
  year: 2009
  ident: 10.1016/j.camwa.2016.09.008_br000010
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2009.05.008
– volume: 68
  start-page: 15
  issue: 1
  year: 2015
  ident: 10.1016/j.camwa.2016.09.008_br000140
  article-title: Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-014-9835-y
– ident: 10.1016/j.camwa.2016.09.008_br000030
– volume: 227
  start-page: 8417
  year: 2008
  ident: 10.1016/j.camwa.2016.09.008_br000025
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.06.005
– volume: 307
  start-page: 614
  year: 2016
  ident: 10.1016/j.camwa.2016.09.008_br000080
  article-title: Open boundary conditions for ISPH and their application to micro-flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.024
– volume: vol. 2
  year: 1991
  ident: 10.1016/j.camwa.2016.09.008_br000180
  article-title: Water Wave Mechanics for Engineers and Scientists
SSID ssj0004320
Score 2.3436706
Snippet In this work a new formulation for inflow/outflow boundary conditions in an incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed. It relies...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2417
SubjectTerms Boundaries
Boundary conditions
Buoyancy
Compressibility
Computational fluid dynamics
Computer simulation
Engineering Sciences
Fluid flow
Fluid mechanics
Fluids mechanics
Hydrodynamics
Imposition
Incompressible
Incompressible flow
Inflow
Mathematical analysis
Mathematical models
Mechanics
Open boundary conditions
Outflow
Pipes
Reflected waves
SPH
Studies
Temperature effects
Turbulence
Turbulent flow
Wave propagation
Title A new open boundary formulation for incompressible SPH
URI https://dx.doi.org/10.1016/j.camwa.2016.09.008
https://www.proquest.com/docview/1938142790
https://www.proquest.com/docview/1855390447
https://hal.science/hal-01557021
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XLz4FtcXUTxat480bY-rKPWJoMLeQpJNcEVX0VXx4m93pk1XFPHgLW2nDyaTmS905huA7RQxvDYmDLLCiYA7Hga5SziNehiRjE6rcrGzc1Fe8-Nu2h2D_aYWhtIqve-vfXrlrf2Zttdm-7Hfb1-GeYHRCTcwIiHLoopyzjOy8t2PrzQPntTUjCgckHTDPFTleBl1_0bkQ5GoyE6px-Tv0Wn8htIkf3jrKgQdzsK0x46sU3_eHIzZwTzMNH0ZmF-mCyA6DMEyo8ZYTFdtk57eGYFT36qLxoxYGe7rLFh9Z9nlRbkI14cHV_tl4PsjBIbzZBjErpeGGjFELylCHassV7EwketpoYVxQhcq07mzuCmxoSNuP60VFctGAoO8TpMlmBg8DOwyMF4oRY9QqTXccqFUrGMncIXbDCc5b0Hc6EUaTx5OPSzuZJMldisrZUp6ugwLicpswc7opseaO-NvcdEoXH4zAYne_e8bt3B6Rq8gwuyycyrpHCHCDGHMa9SCtWb2pF-mzxLRax7xOCvCFmyOLuMCo78mamAfXlAmT1PUL5rWyn8_cBWm6KguYVyDieHTi11HLDPUG5WxbsBk5-ikPMejo-7eJyEL8jE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HPTiW1yfUTxat480bY-LKFVXEVTwFpJsgoquoqvixd_uTJuuKOLBW8irYZKZ-UIn3wBsp4jhtTFhkBVOBNzxMMhdwqnUQ49kdFo9Fzs5FeUlP7pKr0Zgr3kLQ2GV3vbXNr2y1r6m7aXZfry5aZ-HeYHeCS8wIqGTlY3COEf1pTQGux9fcR48qbkZsXdA3RvqoSrIy6j7N2IfikTFdkpJJn93T6PXFCf5w1xXPuhgBqY8eGSden2zMGL7czDdJGZgXk_nQXQYomVGmbGYrvImPb0zQqc-VxeVGdEy3NdhsPrOsvOzcgEuD_Yv9srAJ0gIDOfJIIhdLw01goheUoQ6VlmuYmEi19NCC-OELlSmc2fxVmJDR-R-Wit6LRsJ9PI6TRZhrP_Qt0vAeKEUTaFSa7jlQqlYx06gitsMdzlvQdzIRRrPHk5JLO5kEyZ2KythSppdhoVEYbZgZzjosSbP-Lu7aAQuv50Bieb974FbuD3DTxBjdtnpSqojSJghjnmNWrDa7J70evosEb7mEY-zImzB5rAZNYx-m6i-fXjBPnmaonw5z5b_u8ANmCgvTrqye3h6vAKT1FK_Z1yFscHTi11DYDPQ69XB_QT-w_K7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+open+boundary+formulation+for+incompressible+SPH&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Leroy%2C+A.&rft.au=Violeau%2C+D.&rft.au=Ferrand%2C+M.&rft.au=Fratter%2C+L.&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=72&rft.issue=9&rft.spage=2417&rft.epage=2432&rft_id=info:doi/10.1016%2Fj.camwa.2016.09.008&rft.externalDocID=S0898122116305107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon