Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis
[Display omitted] •Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger nu...
Saved in:
Published in | Journal of catalysis Vol. 394; pp. 353 - 365 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger number of exposed iron atoms.•A non-dissociative mechanism proposed by DFT, a stepwise addition of H on N leading to NH3.
Worldwide NH3 production reached 0.18 Gton in 2019, and 1–2% of the global CO2 emissions are due to large-scale NH3 synthesis (1 billion tons of CO2 / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N2, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H2 treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H2 treatment, with Fe in the core and promoters (“Cs2O” and “K2O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH3 at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g−1 h−1 with K. The apparent activation energy was found to be 31 kJ mol−1 and 34 kJ mol−1 for 3-K-FePc700 and 10-Cs-FePc700 suggesting the facile activation of N2 on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe(0) for N2 non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures. |
---|---|
AbstractList | [Display omitted]
•Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger number of exposed iron atoms.•A non-dissociative mechanism proposed by DFT, a stepwise addition of H on N leading to NH3.
Worldwide NH3 production reached 0.18 Gton in 2019, and 1–2% of the global CO2 emissions are due to large-scale NH3 synthesis (1 billion tons of CO2 / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N2, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H2 treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H2 treatment, with Fe in the core and promoters (“Cs2O” and “K2O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH3 at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g−1 h−1 with K. The apparent activation energy was found to be 31 kJ mol−1 and 34 kJ mol−1 for 3-K-FePc700 and 10-Cs-FePc700 suggesting the facile activation of N2 on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe(0) for N2 non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures. Worldwide NH₃ production reached 0.18 Gton in 2019, and 1–2% of the global CO₂ emissions are due to large-scale NH₃ synthesis (1 billion tons of CO₂ / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N₂, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H₂ treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H₂ treatment, with Fe in the core and promoters (“Cs₂O” and “K₂O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH₃ at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g⁻¹ h⁻¹ with K. The apparent activation energy was found to be 31 kJ mol⁻¹ and 34 kJ mol⁻¹ for 3-K-FePc₇₀₀ and 10-Cs-FePc₇₀₀ suggesting the facile activation of N₂ on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe⁽⁰⁾ for N₂ non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures. |
Author | Rai, Rohit K. Harb, Moussab Hedhili, Mohamed N. Al-Sabban, Bedour E. Cavallo, Luigi Anjum, Dalaver Al Maksoud, Walid Ahmad, Rafia Basset, Jean-Marie Morlanés, Natalia Ould-Chikh, Samy Albahily, Khalid |
Author_xml | – sequence: 1 givenname: Walid surname: Al Maksoud fullname: Al Maksoud, Walid organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 2 givenname: Rohit K. surname: Rai fullname: Rai, Rohit K. organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 3 givenname: Natalia surname: Morlanés fullname: Morlanés, Natalia organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 4 givenname: Moussab surname: Harb fullname: Harb, Moussab organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 5 givenname: Rafia surname: Ahmad fullname: Ahmad, Rafia organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 6 givenname: Samy surname: Ould-Chikh fullname: Ould-Chikh, Samy organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 7 givenname: Dalaver orcidid: 0000-0003-2336-2859 surname: Anjum fullname: Anjum, Dalaver organization: King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia – sequence: 8 givenname: Mohamed N. surname: Hedhili fullname: Hedhili, Mohamed N. organization: King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia – sequence: 9 givenname: Bedour E. surname: Al-Sabban fullname: Al-Sabban, Bedour E. organization: SABIC Corporate Research and Development Center at KAUST, Saudi Basic Industries Corporation, Thuwal 23955, Saudi Arabia – sequence: 10 givenname: Khalid surname: Albahily fullname: Albahily, Khalid organization: SABIC Corporate Research and Development Center at KAUST, Saudi Basic Industries Corporation, Thuwal 23955, Saudi Arabia – sequence: 11 givenname: Luigi surname: Cavallo fullname: Cavallo, Luigi organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia – sequence: 12 givenname: Jean-Marie orcidid: 0000-0003-3166-8882 surname: Basset fullname: Basset, Jean-Marie email: jeanmarie.basset@kaust.edu.sa organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia |
BookMark | eNp9kD1rHDEQhkVwIGcnfyCVyhTey0j7pYU0xsRJwODGqcWsdhbrvCs5Gtlw_z5aX6oUrgaG53mZec_FWYiBhPisYK9AdV8P-4PDvNegt8UeavVO7BQMUOluaM7EDkCramhV_0GcMx8AlGpbsxN05bJ_IYlhkpxxXEjeUDUi0yRLIi5HzpdyJfeAwfN6-Qo-0lGmWNA4S1wecfHyKcU1ZkosfZC4rjF4lHwM-YHY80fxfsaF6dO_eSF-33y_v_5Z3d79-HV9dVu5pqlzpaeuRegQ22kCNztdHhhVbwh0D_UApp-bRtVYd_PYGQM4wlyodjBzW2s91Bfiyym3nPPnmTjb1bOjZcFA8ZmtbgZTq6bpTUHNCXUpMiearfMZs48hJ_SLVWC3Zu3Bbs3ardltV5otqv5PfUp-xXR8W_p2kqj8_-IpWXaegqPJJ3LZTtG_pf8F4jqUEQ |
CitedBy_id | crossref_primary_10_1002_aenm_202404030 crossref_primary_10_1016_j_mcat_2025_115009 crossref_primary_10_1021_acscatal_1c05078 crossref_primary_10_1021_acssuschemeng_2c06711 crossref_primary_10_1016_j_ces_2024_121000 crossref_primary_10_1021_acscatal_1c02887 crossref_primary_10_3390_cryst14090818 crossref_primary_10_1002_cssc_202300942 crossref_primary_10_1016_j_cjche_2023_03_028 crossref_primary_10_1002_smll_202411468 crossref_primary_10_1002_cssc_202300551 crossref_primary_10_1039_D4SE00411F crossref_primary_10_1002_advs_202410313 crossref_primary_10_1016_j_cjche_2023_03_009 crossref_primary_10_1016_j_gce_2022_06_003 crossref_primary_10_1002_cssc_202300459 crossref_primary_10_1016_j_ijhydene_2023_09_141 crossref_primary_10_1016_j_cogsc_2024_100965 crossref_primary_10_1039_D3RA04824A crossref_primary_10_1016_j_cogsc_2024_100945 crossref_primary_10_1016_j_rser_2022_112918 crossref_primary_10_3390_ma15207378 crossref_primary_10_1002_adma_202405578 crossref_primary_10_1021_acscatal_4c05146 crossref_primary_10_1016_j_cej_2023_145650 |
Cites_doi | 10.1017/S143192761900919X 10.1016/0021-9517(88)90184-4 10.1134/S2070050416040115 10.1016/j.jnoncrysol.2010.09.031 10.1007/s00269-001-0222-6 10.1006/jcat.1998.2364 10.1016/S0926-860X(98)00139-2 10.1021/ja010963d 10.1021/acs.chemmater.8b03859 10.1016/0927-0256(96)00008-0 10.1016/j.jnoncrysol.2011.09.027 10.1016/0009-2614(90)85247-A 10.1021/ic300498b 10.1006/jcat.1999.2628 10.1038/s41467-020-14287-z 10.1002/aenm.201701536 10.3390/catal8110494 10.1007/s12274-019-2349-0 10.1103/PhysRevB.49.14251 10.1021/ja5003907 10.1016/j.apcata.2005.11.003 10.1021/acsnano.6b07522 10.1063/1.458452 10.1039/D0TA05238H 10.1021/j100411a003 10.1002/aenm.201801772 10.1016/0021-9517(75)90069-X 10.1126/science.1143078 10.1002/smll.200500150 10.1021/acscatal.6b00044 10.1016/S0167-2991(01)80040-9 10.1007/BF02498142 10.1038/s41929-017-0022-0 10.1002/adfm.201803309 10.1021/jacs.0c02345 10.1016/0039-6028(82)90703-8 10.1002/jctb.5152 10.1039/C4CS00085D 10.1007/s10975-005-0113-9 10.1038/294643a0 10.1103/PhysRevLett.77.3865 10.1002/anie.201712398 10.1039/b720020j 10.1021/acssuschemeng.7b02812 10.1063/1.481103 10.1016/j.cattod.2016.08.012 10.1021/acs.jpcc.7b12364 10.1063/1.1316015 10.1016/B978-0-444-81468-5.50012-1 10.1016/j.jcou.2019.12.010 10.1016/S0039-6028(01)01397-8 10.1038/s41467-018-03795-8 10.1103/PhysRevB.54.11169 10.1016/S0926-860X(01)00626-3 10.1016/j.cplett.2014.03.003 10.1103/PhysRevB.50.17953 10.1007/s10800-005-9054-2 10.1021/la981132x 10.1103/PhysRevB.13.5188 10.1039/C9CY02326G 10.1021/acs.jpcc.5b08508 10.1039/C3CS60206K 10.1002/adma.201306328 10.1016/j.apsusc.2010.10.051 10.1103/PhysRevB.59.1758 10.1016/0021-9517(82)90161-0 10.1021/j100784a503 10.1002/cctc.201500024 10.1073/pnas.82.8.2207 10.1016/j.joule.2018.04.017 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jcat.2020.10.031 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 365 |
ExternalDocumentID | 10_1016_j_jcat_2020_10_031 S0021951720304449 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c443t-2d65a06aa5dd0cfc2090b178e027039087f4413a36fb6880ab0ffc2598f532293 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Mon Jul 21 11:55:39 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 03:14:12 EDT 2025 Fri Feb 23 02:46:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alkali promoters Electronic and geometrical effects MS Ammonia synthesis Iron phthalocyanines XRD TGA FePc SI Non-dissociative mechanism TPR TOS XPS WHSV ICP-OES |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-2d65a06aa5dd0cfc2090b178e027039087f4413a36fb6880ab0ffc2598f532293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2336-2859 0000-0003-3166-8882 |
OpenAccessLink | http://hdl.handle.net/10754/665972 |
PQID | 2498314478 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2498314478 crossref_citationtrail_10_1016_j_jcat_2020_10_031 crossref_primary_10_1016_j_jcat_2020_10_031 elsevier_sciencedirect_doi_10_1016_j_jcat_2020_10_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of catalysis |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhi, Gorelik, Friedlein, Wu, Kolb, Salaneck, Müllen (b0160) 2005; 1 Ozaki, Nozawa, Yamada, Uchiyama, Yoshimoto, Furuichi, Yokoyama, Oya, Brown, Cashion (b0255) 2006; 36 Vojvodic, Medford, Studt, Abild-Pedersen, Khan, Bligaard, Nørskov (b0345) 2014; 598 Yan, Guo, Liang, Meng, Yin, Li, Li, Zhang, Yan, Xiao, Zou, Ma (b0260) 2019; 12 van Ommen, Bolink, Prasad, Mars (b0075) 1975; 38 Shur, Yunusov (b0040) 1998; 47 Bowker (b0060) 1993 Bare, Strongin, Somorjai (b0115) 1986; 90 Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (b0015) 2018; 2 Strongin, Somorjai (b0080) 1988; 109 Zhu, Rosenfeld, Harb, Anjum, Hedhili, Ould-Chikh, Basset (b0240) 2016; 6 Gong, Wu, Kitano, Wang, Ye, Li, Kobayashi, Kishida, Abe, Niwa, Yang, Tada, Hosono (b0095) 2018; 1 Liang, Wei, Luo, Ying, Xin, Li (b0355) 2001 Li, Cheng, Zhang, Wang, Dong, Yang, Li (b0065) 2017; 92 Jedrzejewski, Lendzion-Bielun (b0310) 2018; 8 Raróg-Pilecka, Jedynak-Koczuk, Petryk, Miśkiewicz, Jodzis, Kaszkur, Kowalczyk (b0265) 2006; 300 Kresse, Hafner (b0200) 1994; 49 Egeberg, Dahl, Logadottir, Larsen, Nørskov, Chorkendorff (b0085) 2001; 491 Garden, Skúlason (b0370) 2015; 119 Solans-Monfort, Chow, Goure, Kaya, Basset, Taoufik, Quadrelli, Eisenstein (b0130) 2012; 51 Rod, Logadottir, Nørskov (b0030) 2000; 112 van Aken, Liebscher (b0325) 2002; 29 Kojima, Aika (b0125) 2001; 218 Spencer, Schoonmaker, Somorjai (b0335) 1981; 294 Silverman, Boudart (b0055) 1982; 77 Larichev, Prosvirin, Shlyapin, Shitova, Tsyrul’nikov, Bukhtiyarov (b0285) 2005; 46 Delley (b0230) 2000; 113 Kresse, Joubert (b0215) 1999; 59 Avenier, Taoufik, Lesage, Solans-Monfort, Baudouin, de Mallmann, Veyre, Basset, Eisenstein, Emsley, Quadrelli (b0090) 2007; 317 Kresse, Furthmüller (b0210) 1996; 6 Liu (b0045) 2013 Hagen, Barfod, Fehrmann, Jacobsen, Teunissen, Ståhl, Chorkendorff (b0110) 2002; 1206–1207 van der Ham, Koper, Hetterscheid (b0365) 2014; 43 Tüysüz, Schüth, Zhi, Müllen, Comotti (b0155) 2015; 7 Liu, Ma, Li, Wang, Xiao, Li (b0140) 2018; 9 Falicov, Somorjai (b0340) 1985; 82 Jia, Quadrelli (b0135) 2014; 43 Tsyrul’nikov, Iost, Shitova, Temerev (b0270) 2016; 8 Schlögl (b0120) 2008 Aijaz, Fujiwara, Xu (b0165) 2014; 136 Fan, Huang, Kähler, Folke, Girgsdies, Teschner, Ding, Hermann, Schlögl, Frei (b0350) 2017; 5 Wang, Peng, Chen, Liu, Zheng, Zheng, Ni, Au, Jiang (b0145) 2020; 11 Humphreys, Lan, Chen, Tao (b0025) 2020; 8 Kresse, Furthmüller (b0205) 1996; 54 Lamers, Li, Favaro, Starr, Friedrich, Lardhi, Cavallo, Harb, van de Krol, Wong, Abdi (b0250) 2018; 30 Strongin, Somorjai (b0105) 1991 Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov (b0035) 2001; 123 Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (b0290) 2011; 257 Kitano, Inoue, Sasase, Kishida, Kobayashi, Nishiyama, Tada, Kawamura, Yokoyama, Hara, Hosono (b0280) 2018; 57 Zeinalipour-Yazdi, Hargreaves, Catlow (b0300) 2018; 122 Xiang, Cao, Huang, Shui, Wang, Dai (b0170) 2014; 26 Sehested, Jacobsen, Törnqvist, Rokni, Stoltze (b0175) 1999; 188 Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka, H. Kageyama, Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis, Adv. Energy Mater., 8 (2018) n/a. Wang, Ichihara, Pang, Chen, Ye (b0100) 2018; 28 Jang, Friedrich, Müller, Lamers, Hempel, Lardhi, Cao, Harb, Cavallo, Heller, Eichberger, van de Krol, Abdi (b0245) 2017; 7 Kammert, Moon, Cheng, Daemen, Irle, Fung, Liu, Page, Ma, Phaneuf, Tong, Ramirez-Cuesta, Wu (b0010) 2020; 142 Vandervell, Waugh (b0070) 1990; 171 Morlanes, Almaksoud, Rai, Ould-Chikh, Ali, Al-Sabban, Vidjayacoumar, Al-Bahily, Basset (b0150) 2020; 10 Anjum, AlMaksoud, Rai, Alsabban, Morlanes, Basset (b0330) 2019; 25 Aika (b0190) 2017; 286 Perdew, Burke, Ernzerhof (b0220) 1996; 77 Monkhorst, Pack (b0225) 1976; 13 Li, Ao, Liu, Sun, Rykov, Wang (b0295) 2016; 10 S. Cimino, F. Boccia, L. Lisi, Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane, J. CO2 Util., 37 (2020) 195-203. Khoobiar (b0275) 1964; 68 Delley (b0235) 1990; 92 Klerke, Christensen, Nørskov, Vegge (b0005) 2008; 18 Li, Ichikuni, Shimazu, Uematsu (b0185) 1998; 172 Arabczyk, Narkiewicz, Moszynski (b0305) 1999; 15 Sawyer, Nesbitt, Secco (b0315) 2012; 358 Mortensen, Hansen, Hammer, Nørskov (b0360) 1999; 182 Ertl, Lee, Weiss (b0050) 1982; 114 Nesbitt, Bancroft, Henderson, Ho, Dalby, Huang, Yan (b0320) 2011; 357 Blöchl (b0195) 1994; 50 Blöchl (10.1016/j.jcat.2020.10.031_b0195) 1994; 50 Zeinalipour-Yazdi (10.1016/j.jcat.2020.10.031_b0300) 2018; 122 Humphreys (10.1016/j.jcat.2020.10.031_b0025) 2020; 8 Strongin (10.1016/j.jcat.2020.10.031_b0105) 1991 Jedrzejewski (10.1016/j.jcat.2020.10.031_b0310) 2018; 8 Monkhorst (10.1016/j.jcat.2020.10.031_b0225) 1976; 13 Kojima (10.1016/j.jcat.2020.10.031_b0125) 2001; 218 Sawyer (10.1016/j.jcat.2020.10.031_b0315) 2012; 358 Tsyrul’nikov (10.1016/j.jcat.2020.10.031_b0270) 2016; 8 van der Ham (10.1016/j.jcat.2020.10.031_b0365) 2014; 43 Sehested (10.1016/j.jcat.2020.10.031_b0175) 1999; 188 Zhu (10.1016/j.jcat.2020.10.031_b0240) 2016; 6 Aika (10.1016/j.jcat.2020.10.031_b0190) 2017; 286 van Ommen (10.1016/j.jcat.2020.10.031_b0075) 1975; 38 Yan (10.1016/j.jcat.2020.10.031_b0260) 2019; 12 Silverman (10.1016/j.jcat.2020.10.031_b0055) 1982; 77 Bare (10.1016/j.jcat.2020.10.031_b0115) 1986; 90 Solans-Monfort (10.1016/j.jcat.2020.10.031_b0130) 2012; 51 Larichev (10.1016/j.jcat.2020.10.031_b0285) 2005; 46 Aijaz (10.1016/j.jcat.2020.10.031_b0165) 2014; 136 Li (10.1016/j.jcat.2020.10.031_b0185) 1998; 172 Li (10.1016/j.jcat.2020.10.031_b0295) 2016; 10 Avenier (10.1016/j.jcat.2020.10.031_b0090) 2007; 317 Vojvodic (10.1016/j.jcat.2020.10.031_b0345) 2014; 598 Xiang (10.1016/j.jcat.2020.10.031_b0170) 2014; 26 Anjum (10.1016/j.jcat.2020.10.031_b0330) 2019; 25 Shur (10.1016/j.jcat.2020.10.031_b0040) 1998; 47 Wang (10.1016/j.jcat.2020.10.031_b0145) 2020; 11 Schlögl (10.1016/j.jcat.2020.10.031_b0120) 2008 Wang (10.1016/j.jcat.2020.10.031_b0015) 2018; 2 Liu (10.1016/j.jcat.2020.10.031_b0140) 2018; 9 Ozaki (10.1016/j.jcat.2020.10.031_b0255) 2006; 36 Klerke (10.1016/j.jcat.2020.10.031_b0005) 2008; 18 Jia (10.1016/j.jcat.2020.10.031_b0135) 2014; 43 Mortensen (10.1016/j.jcat.2020.10.031_b0360) 1999; 182 Rod (10.1016/j.jcat.2020.10.031_b0030) 2000; 112 Jacobsen (10.1016/j.jcat.2020.10.031_b0035) 2001; 123 Li (10.1016/j.jcat.2020.10.031_b0065) 2017; 92 Kresse (10.1016/j.jcat.2020.10.031_b0210) 1996; 6 Liang (10.1016/j.jcat.2020.10.031_b0355) 2001 Kammert (10.1016/j.jcat.2020.10.031_b0010) 2020; 142 Arabczyk (10.1016/j.jcat.2020.10.031_b0305) 1999; 15 Falicov (10.1016/j.jcat.2020.10.031_b0340) 1985; 82 Garden (10.1016/j.jcat.2020.10.031_b0370) 2015; 119 Wang (10.1016/j.jcat.2020.10.031_b0100) 2018; 28 Morlanes (10.1016/j.jcat.2020.10.031_b0150) 2020; 10 Perdew (10.1016/j.jcat.2020.10.031_b0220) 1996; 77 10.1016/j.jcat.2020.10.031_b0180 Delley (10.1016/j.jcat.2020.10.031_b0230) 2000; 113 Gong (10.1016/j.jcat.2020.10.031_b0095) 2018; 1 Hagen (10.1016/j.jcat.2020.10.031_b0110) 2002; 1206–1207 Kresse (10.1016/j.jcat.2020.10.031_b0205) 1996; 54 10.1016/j.jcat.2020.10.031_b0020 Kitano (10.1016/j.jcat.2020.10.031_b0280) 2018; 57 Delley (10.1016/j.jcat.2020.10.031_b0235) 1990; 92 Biesinger (10.1016/j.jcat.2020.10.031_b0290) 2011; 257 Kresse (10.1016/j.jcat.2020.10.031_b0215) 1999; 59 van Aken (10.1016/j.jcat.2020.10.031_b0325) 2002; 29 Zhi (10.1016/j.jcat.2020.10.031_b0160) 2005; 1 Kresse (10.1016/j.jcat.2020.10.031_b0200) 1994; 49 Nesbitt (10.1016/j.jcat.2020.10.031_b0320) 2011; 357 Vandervell (10.1016/j.jcat.2020.10.031_b0070) 1990; 171 Strongin (10.1016/j.jcat.2020.10.031_b0080) 1988; 109 Jang (10.1016/j.jcat.2020.10.031_b0245) 2017; 7 Spencer (10.1016/j.jcat.2020.10.031_b0335) 1981; 294 Egeberg (10.1016/j.jcat.2020.10.031_b0085) 2001; 491 Ertl (10.1016/j.jcat.2020.10.031_b0050) 1982; 114 Liu (10.1016/j.jcat.2020.10.031_b0045) 2013 Bowker (10.1016/j.jcat.2020.10.031_b0060) 1993 Tüysüz (10.1016/j.jcat.2020.10.031_b0155) 2015; 7 Fan (10.1016/j.jcat.2020.10.031_b0350) 2017; 5 Lamers (10.1016/j.jcat.2020.10.031_b0250) 2018; 30 Raróg-Pilecka (10.1016/j.jcat.2020.10.031_b0265) 2006; 300 Khoobiar (10.1016/j.jcat.2020.10.031_b0275) 1964; 68 |
References_xml | – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: b0225 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: b0230 article-title: From molecules to solids with the DMol(3) approach publication-title: J. Chem. Phys. – volume: 112 start-page: 5343 year: 2000 end-page: 5347 ident: b0030 article-title: Ammonia synthesis at low temperatures publication-title: J. Chem. Phys. – volume: 1 start-page: 798 year: 2005 end-page: 801 ident: b0160 article-title: Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables publication-title: Small – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: b0210 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 15 start-page: 5785 year: 1999 end-page: 5789 ident: b0305 article-title: Double-layer model of the fused iron catalyst for ammonia synthesis publication-title: Langmuir – volume: 43 start-page: 547 year: 2014 end-page: 564 ident: b0135 article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen publication-title: Chem. Soc. Rev. – volume: 114 start-page: 527 year: 1982 end-page: 545 ident: b0050 article-title: Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces publication-title: Surf. Sci. – year: 1991 ident: b0105 article-title: Catalytic Ammonia Synthesis Fundamentals and Practice, Edited by J.R – volume: 1206–1207 year: 2002 ident: b0110 article-title: New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon publication-title: Chem. Commun. – volume: 38 start-page: 120 year: 1975 end-page: 127 ident: b0075 article-title: The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis publication-title: J. Catal. – volume: 123 start-page: 8404 year: 2001 end-page: 8405 ident: b0035 article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2341 year: 2019 end-page: 2347 ident: b0260 article-title: Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis publication-title: Nano Res. – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: b0235 article-title: An all-electron numerical-method for solving the local density functional for polyatomic-molecules publication-title: J. Chem. Phys. – volume: 6 start-page: 2852 year: 2016 end-page: 2866 ident: b0240 article-title: Ni–M–O (M= Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane publication-title: ACS Catal. – volume: 357 start-page: 170 year: 2011 end-page: 180 ident: b0320 article-title: Bridging, non-bridging and free (O publication-title: J. Non-Cryst. Solids – volume: 47 start-page: 765 year: 1998 end-page: 776 ident: b0040 article-title: On the path to catalysts for the low-temperature ammonia synthesis publication-title: Russ. Chem. Bull. – year: 2008 ident: b0120 article-title: Ammonia Synthesis – volume: 8 start-page: 16676 year: 2020 end-page: 16689 ident: b0025 article-title: Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce0.8Sm0.2O2−δ for the efficient synthesis of ammonia publication-title: J. Mater. Chem. A – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: b0195 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 2 start-page: 1055 year: 2018 end-page: 1074 ident: b0015 article-title: Greening ammonia toward the solar ammonia refinery publication-title: Joule – volume: 358 start-page: 290 year: 2012 end-page: 302 ident: b0315 article-title: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K publication-title: J. Non-Cryst. Solids – volume: 68 start-page: 411 year: 1964 end-page: 412 ident: b0275 article-title: Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles publication-title: J. Phys. Chem. – reference: Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka, H. Kageyama, Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis, Adv. Energy Mater., 8 (2018) n/a. – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: b0200 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B Condens. Matter. – volume: 30 start-page: 8630 year: 2018 end-page: 8638 ident: b0250 article-title: Enhanced carrier transport and bandgap reduction in sulfur-modified BiVO publication-title: Chem. Mater. – volume: 82 start-page: 2207 year: 1985 ident: b0340 article-title: Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence publication-title: Proc. Nat. Acad. Sci. U.S.A – volume: 10 start-page: 11532 year: 2016 end-page: 11540 ident: b0295 article-title: Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts publication-title: ACS Nano – volume: 51 start-page: 7237 year: 2012 end-page: 7249 ident: b0130 article-title: Successive heterolytic cleavages of H publication-title: Inorg. Chem. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0220 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 109 start-page: 51 year: 1988 end-page: 60 ident: b0080 article-title: The effects of potassium on ammonia synthesis over iron single-crystal surfaces publication-title: J. Catal. – volume: 7 start-page: 1453 year: 2015 end-page: 1459 ident: b0155 article-title: Ammonia decomposition over iron phthalocyanine-based materials publication-title: ChemCatChem – volume: 119 start-page: 26554 year: 2015 end-page: 26559 ident: b0370 article-title: The mechanism of industrial ammonia synthesis revisited: calculations of the role of the associative mechanism publication-title: J. Phys. Chem. C – volume: 188 start-page: 83 year: 1999 end-page: 89 ident: b0175 article-title: Ammonia synthesis over a multipromoted iron catalyst: extended set of activity measurements, microkinetic model, and hydrogen inhibition publication-title: J. Catal. – volume: 46 start-page: 597 year: 2005 end-page: 602 ident: b0285 article-title: An XPS study of the promotion of Ru-Cs/sibunit catalysts for ammonia synthesis publication-title: Kinet. Catal. – volume: 10 start-page: 844 year: 2020 end-page: 852 ident: b0150 article-title: Development of catalysts for ammonia synthesis based on metal phthalocyanine materials publication-title: Catal. Sci. Technol. – volume: 171 start-page: 462 year: 1990 end-page: 468 ident: b0070 article-title: On the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia publication-title: Chem. Phys. Lett. – volume: 90 start-page: 4726 year: 1986 end-page: 4729 ident: b0115 article-title: Ammonia synthesis over iron single-crystal catalysts: the effects of alumina and potassium publication-title: J. Phys. Chem. – start-page: 283 year: 2001 end-page: 290 ident: b0355 article-title: Hydrogen Spillover Effect in the Reduction of Barium Nitrate of Ru-Ba(NO publication-title: Studies in Surface Science and Catalysis – volume: 18 start-page: 2304 year: 2008 end-page: 2310 ident: b0005 article-title: Ammonia for hydrogen storage: challenges and opportunities publication-title: J. Mater. Chem. – volume: 43 start-page: 5183 year: 2014 end-page: 5191 ident: b0365 article-title: Challenges in reduction of dinitrogen by proton and electron transfer publication-title: Chem. Soc. Rev. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0215 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 122 start-page: 6078 year: 2018 end-page: 6082 ident: b0300 article-title: Low-T mechanisms of ammonia synthesis on Co publication-title: J. Phys. Chem. C – volume: 142 start-page: 7655 year: 2020 end-page: 7667 ident: b0010 article-title: Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 494 year: 2018 ident: b0310 article-title: Reduction process of iron catalyst precursors for ammonia synthesis doped with lithium oxide publication-title: Catalysts – volume: 5 start-page: 10900 year: 2017 end-page: 10909 ident: b0350 article-title: In-Situ formation of Fe nanoparticles from FeOOH nanosheets on γ-Al2O3 as efficient catalysts for ammonia synthesis publication-title: ACS Sustain. Chem. Eng. – volume: 491 start-page: 183 year: 2001 end-page: 194 ident: b0085 article-title: N publication-title: Surf. Sci. – volume: 36 start-page: 239 year: 2006 end-page: 247 ident: b0255 article-title: Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures publication-title: J. Appl. Electrochem. – volume: 172 start-page: 351 year: 1998 end-page: 358 ident: b0185 article-title: Catalytic properties of sprayed Ru/Al publication-title: Appl. Catal. A – volume: 317 start-page: 1056 year: 2007 end-page: 1060 ident: b0090 article-title: Dinitrogen dissociation on an isolated surface tantalum atom publication-title: Science – volume: 28 start-page: 1803309 year: 2018 ident: b0100 article-title: Nitrogen fixation reaction derived from nanostructured catalytic materials publication-title: Adv. Funct. Mater. – volume: 218 start-page: 121 year: 2001 end-page: 128 ident: b0125 article-title: Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study publication-title: Appl. Catal. A – volume: 598 start-page: 108 year: 2014 end-page: 112 ident: b0345 article-title: Exploring the limits: a low-pressure, low-temperature Haber-Bosch process publication-title: Chem. Phys. Lett. – volume: 294 start-page: 643 year: 1981 end-page: 644 ident: b0335 article-title: Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia publication-title: Nature – volume: 8 start-page: 341 year: 2016 end-page: 347 ident: b0270 article-title: Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review publication-title: Catal. Ind. – volume: 136 start-page: 6790 year: 2014 end-page: 6793 ident: b0165 article-title: From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 208 year: 1982 end-page: 220 ident: b0055 article-title: Surface composition of promoted iron catalysts publication-title: J. Catal. – volume: 25 start-page: 1692 year: 2019 end-page: 1693 ident: b0330 article-title: Characterization of catalyst-nanomaterials with myriad modalities of transmission electron microscopy publication-title: Microsc. Microanal. – volume: 26 start-page: 3315 year: 2014 end-page: 3320 ident: b0170 article-title: Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction publication-title: Adv. Mater. – start-page: 225 year: 1993 end-page: 268 ident: b0060 article-title: Chapter 7 - Promotion in Ammonia Synthesis publication-title: The Chemical Physics of Solid Surfaces – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0205 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – reference: S. Cimino, F. Boccia, L. Lisi, Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane, J. CO2 Util., 37 (2020) 195-203. – year: 2013 ident: b0045 article-title: Ammonia synthesis catalysts innovation and practice publication-title: Ammonia Synthesis Catalysts Innovation and Practice – volume: 92 start-page: 1472 year: 2017 end-page: 1480 ident: b0065 article-title: Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion publication-title: J. Chem. Tech. Biotech. – volume: 11 start-page: 653 year: 2020 ident: b0145 article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst publication-title: Nat. Commun. – volume: 300 start-page: 181 year: 2006 end-page: 185 ident: b0265 article-title: Carbon-supported cobalt–iron catalysts for ammonia synthesis publication-title: Appl. Catal. A – volume: 1 start-page: 178 year: 2018 end-page: 185 ident: b0095 article-title: Ternary intermetallic LaCoSi as a catalyst for N publication-title: Nat. Catal. – volume: 57 start-page: 2648 year: 2018 end-page: 2652 ident: b0280 article-title: Self-organized ruthenium-barium core–shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 188 year: 2002 end-page: 200 ident: b0325 article-title: Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23electron energy-loss near-edge spectra publication-title: Phys. Chem. Miner. – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: b0290 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1701536 year: 2017 ident: b0245 article-title: Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment publication-title: Adv. Energy Mater. – volume: 9 start-page: 1610 year: 2018 ident: b0140 article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism publication-title: Nat. Commun. – volume: 182 start-page: 479 year: 1999 end-page: 488 ident: b0360 article-title: Nitrogen adsorption and dissociation on Fe(111) publication-title: J. Catal. – volume: 286 start-page: 14 year: 2017 end-page: 20 ident: b0190 article-title: Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism publication-title: Catal. Today – volume: 25 start-page: 1692 year: 2019 ident: 10.1016/j.jcat.2020.10.031_b0330 article-title: Characterization of catalyst-nanomaterials with myriad modalities of transmission electron microscopy publication-title: Microsc. Microanal. doi: 10.1017/S143192761900919X – volume: 109 start-page: 51 year: 1988 ident: 10.1016/j.jcat.2020.10.031_b0080 article-title: The effects of potassium on ammonia synthesis over iron single-crystal surfaces publication-title: J. Catal. doi: 10.1016/0021-9517(88)90184-4 – volume: 8 start-page: 341 year: 2016 ident: 10.1016/j.jcat.2020.10.031_b0270 article-title: Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review publication-title: Catal. Ind. doi: 10.1134/S2070050416040115 – volume: 357 start-page: 170 year: 2011 ident: 10.1016/j.jcat.2020.10.031_b0320 article-title: Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2010.09.031 – volume: 29 start-page: 188 year: 2002 ident: 10.1016/j.jcat.2020.10.031_b0325 article-title: Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23electron energy-loss near-edge spectra publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-001-0222-6 – volume: 182 start-page: 479 year: 1999 ident: 10.1016/j.jcat.2020.10.031_b0360 article-title: Nitrogen adsorption and dissociation on Fe(111) publication-title: J. Catal. doi: 10.1006/jcat.1998.2364 – volume: 172 start-page: 351 year: 1998 ident: 10.1016/j.jcat.2020.10.031_b0185 article-title: Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(98)00139-2 – volume: 123 start-page: 8404 year: 2001 ident: 10.1016/j.jcat.2020.10.031_b0035 article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010963d – volume: 30 start-page: 8630 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0250 article-title: Enhanced carrier transport and bandgap reduction in sulfur-modified BiVO4 photoanodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03859 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.jcat.2020.10.031_b0210 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 358 start-page: 290 year: 2012 ident: 10.1016/j.jcat.2020.10.031_b0315 article-title: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K2O–SiO2 glasses: evidence for three types of O and at least two types of Si publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.09.027 – volume: 171 start-page: 462 year: 1990 ident: 10.1016/j.jcat.2020.10.031_b0070 article-title: On the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)85247-A – volume: 51 start-page: 7237 year: 2012 ident: 10.1016/j.jcat.2020.10.031_b0130 article-title: Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: a DFT proposed mechanism publication-title: Inorg. Chem. doi: 10.1021/ic300498b – volume: 188 start-page: 83 year: 1999 ident: 10.1016/j.jcat.2020.10.031_b0175 article-title: Ammonia synthesis over a multipromoted iron catalyst: extended set of activity measurements, microkinetic model, and hydrogen inhibition publication-title: J. Catal. doi: 10.1006/jcat.1999.2628 – volume: 11 start-page: 653 year: 2020 ident: 10.1016/j.jcat.2020.10.031_b0145 article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-020-14287-z – volume: 7 start-page: 1701536 year: 2017 ident: 10.1016/j.jcat.2020.10.031_b0245 article-title: Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701536 – volume: 8 start-page: 494 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0310 article-title: Reduction process of iron catalyst precursors for ammonia synthesis doped with lithium oxide publication-title: Catalysts doi: 10.3390/catal8110494 – volume: 12 start-page: 2341 year: 2019 ident: 10.1016/j.jcat.2020.10.031_b0260 article-title: Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis publication-title: Nano Res. doi: 10.1007/s12274-019-2349-0 – volume: 49 start-page: 14251 year: 1994 ident: 10.1016/j.jcat.2020.10.031_b0200 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B Condens. Matter. doi: 10.1103/PhysRevB.49.14251 – volume: 136 start-page: 6790 year: 2014 ident: 10.1016/j.jcat.2020.10.031_b0165 article-title: From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5003907 – volume: 300 start-page: 181 year: 2006 ident: 10.1016/j.jcat.2020.10.031_b0265 article-title: Carbon-supported cobalt–iron catalysts for ammonia synthesis publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.11.003 – volume: 10 start-page: 11532 year: 2016 ident: 10.1016/j.jcat.2020.10.031_b0295 article-title: Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts publication-title: ACS Nano doi: 10.1021/acsnano.6b07522 – volume: 92 start-page: 508 year: 1990 ident: 10.1016/j.jcat.2020.10.031_b0235 article-title: An all-electron numerical-method for solving the local density functional for polyatomic-molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 8 start-page: 16676 year: 2020 ident: 10.1016/j.jcat.2020.10.031_b0025 article-title: Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce0.8Sm0.2O2−δ for the efficient synthesis of ammonia publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05238H – volume: 90 start-page: 4726 year: 1986 ident: 10.1016/j.jcat.2020.10.031_b0115 article-title: Ammonia synthesis over iron single-crystal catalysts: the effects of alumina and potassium publication-title: J. Phys. Chem. doi: 10.1021/j100411a003 – year: 2013 ident: 10.1016/j.jcat.2020.10.031_b0045 article-title: Ammonia synthesis catalysts innovation and practice publication-title: Ammonia Synthesis Catalysts Innovation and Practice – ident: 10.1016/j.jcat.2020.10.031_b0020 doi: 10.1002/aenm.201801772 – volume: 38 start-page: 120 year: 1975 ident: 10.1016/j.jcat.2020.10.031_b0075 article-title: The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis publication-title: J. Catal. doi: 10.1016/0021-9517(75)90069-X – volume: 317 start-page: 1056 year: 2007 ident: 10.1016/j.jcat.2020.10.031_b0090 article-title: Dinitrogen dissociation on an isolated surface tantalum atom publication-title: Science doi: 10.1126/science.1143078 – volume: 1 start-page: 798 year: 2005 ident: 10.1016/j.jcat.2020.10.031_b0160 article-title: Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables publication-title: Small doi: 10.1002/smll.200500150 – volume: 6 start-page: 2852 year: 2016 ident: 10.1016/j.jcat.2020.10.031_b0240 article-title: Ni–M–O (M= Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane publication-title: ACS Catal. doi: 10.1021/acscatal.6b00044 – start-page: 283 year: 2001 ident: 10.1016/j.jcat.2020.10.031_b0355 article-title: Hydrogen Spillover Effect in the Reduction of Barium Nitrate of Ru-Ba(NO3)2/AC Catalysts for Ammonia Synthesis doi: 10.1016/S0167-2991(01)80040-9 – volume: 47 start-page: 765 year: 1998 ident: 10.1016/j.jcat.2020.10.031_b0040 article-title: On the path to catalysts for the low-temperature ammonia synthesis publication-title: Russ. Chem. Bull. doi: 10.1007/BF02498142 – volume: 1 start-page: 178 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0095 article-title: Ternary intermetallic LaCoSi as a catalyst for N2 activation publication-title: Nat. Catal. doi: 10.1038/s41929-017-0022-0 – volume: 28 start-page: 1803309 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0100 article-title: Nitrogen fixation reaction derived from nanostructured catalytic materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803309 – volume: 142 start-page: 7655 year: 2020 ident: 10.1016/j.jcat.2020.10.031_b0010 article-title: Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02345 – volume: 114 start-page: 527 year: 1982 ident: 10.1016/j.jcat.2020.10.031_b0050 article-title: Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90703-8 – volume: 92 start-page: 1472 year: 2017 ident: 10.1016/j.jcat.2020.10.031_b0065 article-title: Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion publication-title: J. Chem. Tech. Biotech. doi: 10.1002/jctb.5152 – volume: 43 start-page: 5183 year: 2014 ident: 10.1016/j.jcat.2020.10.031_b0365 article-title: Challenges in reduction of dinitrogen by proton and electron transfer publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 46 start-page: 597 year: 2005 ident: 10.1016/j.jcat.2020.10.031_b0285 article-title: An XPS study of the promotion of Ru-Cs/sibunit catalysts for ammonia synthesis publication-title: Kinet. Catal. doi: 10.1007/s10975-005-0113-9 – volume: 294 start-page: 643 year: 1981 ident: 10.1016/j.jcat.2020.10.031_b0335 article-title: Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia publication-title: Nature doi: 10.1038/294643a0 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcat.2020.10.031_b0220 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 57 start-page: 2648 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0280 article-title: Self-organized ruthenium-barium core–shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712398 – volume: 18 start-page: 2304 year: 2008 ident: 10.1016/j.jcat.2020.10.031_b0005 article-title: Ammonia for hydrogen storage: challenges and opportunities publication-title: J. Mater. Chem. doi: 10.1039/b720020j – volume: 5 start-page: 10900 year: 2017 ident: 10.1016/j.jcat.2020.10.031_b0350 article-title: In-Situ formation of Fe nanoparticles from FeOOH nanosheets on γ-Al2O3 as efficient catalysts for ammonia synthesis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02812 – volume: 112 start-page: 5343 year: 2000 ident: 10.1016/j.jcat.2020.10.031_b0030 article-title: Ammonia synthesis at low temperatures publication-title: J. Chem. Phys. doi: 10.1063/1.481103 – volume: 286 start-page: 14 year: 2017 ident: 10.1016/j.jcat.2020.10.031_b0190 article-title: Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism publication-title: Catal. Today doi: 10.1016/j.cattod.2016.08.012 – volume: 122 start-page: 6078 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0300 article-title: Low-T mechanisms of ammonia synthesis on Co3Mo3N publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12364 – volume: 113 start-page: 7756 year: 2000 ident: 10.1016/j.jcat.2020.10.031_b0230 article-title: From molecules to solids with the DMol(3) approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – start-page: 225 year: 1993 ident: 10.1016/j.jcat.2020.10.031_b0060 article-title: Chapter 7 - Promotion in Ammonia Synthesis doi: 10.1016/B978-0-444-81468-5.50012-1 – ident: 10.1016/j.jcat.2020.10.031_b0180 doi: 10.1016/j.jcou.2019.12.010 – volume: 491 start-page: 183 year: 2001 ident: 10.1016/j.jcat.2020.10.031_b0085 article-title: N2 dissociation on Fe(110) and Fe/Ru(0001): What is the role of steps? publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01397-8 – volume: 9 start-page: 1610 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0140 article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism publication-title: Nat. Commun. doi: 10.1038/s41467-018-03795-8 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jcat.2020.10.031_b0205 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 218 start-page: 121 year: 2001 ident: 10.1016/j.jcat.2020.10.031_b0125 article-title: Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(01)00626-3 – volume: 598 start-page: 108 year: 2014 ident: 10.1016/j.jcat.2020.10.031_b0345 article-title: Exploring the limits: a low-pressure, low-temperature Haber-Bosch process publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.03.003 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.jcat.2020.10.031_b0195 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 36 start-page: 239 year: 2006 ident: 10.1016/j.jcat.2020.10.031_b0255 article-title: Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-005-9054-2 – volume: 15 start-page: 5785 year: 1999 ident: 10.1016/j.jcat.2020.10.031_b0305 article-title: Double-layer model of the fused iron catalyst for ammonia synthesis publication-title: Langmuir doi: 10.1021/la981132x – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.jcat.2020.10.031_b0225 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 10 start-page: 844 year: 2020 ident: 10.1016/j.jcat.2020.10.031_b0150 article-title: Development of catalysts for ammonia synthesis based on metal phthalocyanine materials publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02326G – volume: 119 start-page: 26554 year: 2015 ident: 10.1016/j.jcat.2020.10.031_b0370 article-title: The mechanism of industrial ammonia synthesis revisited: calculations of the role of the associative mechanism publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08508 – volume: 43 start-page: 547 year: 2014 ident: 10.1016/j.jcat.2020.10.031_b0135 article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60206K – volume: 26 start-page: 3315 year: 2014 ident: 10.1016/j.jcat.2020.10.031_b0170 article-title: Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.201306328 – volume: 257 start-page: 2717 year: 2011 ident: 10.1016/j.jcat.2020.10.031_b0290 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – year: 2008 ident: 10.1016/j.jcat.2020.10.031_b0120 – year: 1991 ident: 10.1016/j.jcat.2020.10.031_b0105 – volume: 1206–1207 year: 2002 ident: 10.1016/j.jcat.2020.10.031_b0110 article-title: New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon publication-title: Chem. Commun. – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.jcat.2020.10.031_b0215 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 77 start-page: 208 year: 1982 ident: 10.1016/j.jcat.2020.10.031_b0055 article-title: Surface composition of promoted iron catalysts publication-title: J. Catal. doi: 10.1016/0021-9517(82)90161-0 – volume: 68 start-page: 411 year: 1964 ident: 10.1016/j.jcat.2020.10.031_b0275 article-title: Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles publication-title: J. Phys. Chem. doi: 10.1021/j100784a503 – volume: 7 start-page: 1453 year: 2015 ident: 10.1016/j.jcat.2020.10.031_b0155 article-title: Ammonia decomposition over iron phthalocyanine-based materials publication-title: ChemCatChem doi: 10.1002/cctc.201500024 – volume: 82 start-page: 2207 year: 1985 ident: 10.1016/j.jcat.2020.10.031_b0340 article-title: Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.82.8.2207 – volume: 2 start-page: 1055 year: 2018 ident: 10.1016/j.jcat.2020.10.031_b0015 article-title: Greening ammonia toward the solar ammonia refinery publication-title: Joule doi: 10.1016/j.joule.2018.04.017 |
SSID | ssj0011558 |
Score | 2.483133 |
Snippet | [Display omitted]
•Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs... Worldwide NH₃ production reached 0.18 Gton in 2019, and 1–2% of the global CO₂ emissions are due to large-scale NH₃ synthesis (1 billion tons of CO₂ / year). A... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 353 |
SubjectTerms | activation energy active sites alkali metals Alkali promoters ammonia Ammonia synthesis carbon carbon dioxide catalysts catalytic activity Electronic and geometrical effects emissions Gibbs free energy iron Iron phthalocyanines leaves methane production nitrogen Non-dissociative mechanism pressure pyrolysis synthesis |
Title | Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis |
URI | https://dx.doi.org/10.1016/j.jcat.2020.10.031 https://www.proquest.com/docview/2498314478 |
Volume | 394 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQFRHpWR2CCt83DijFVFVUAwgcQWObEtpbRpRcrAwm_nzkkqQKIDq2VH0fke39nfnQm5DISbpUqC94sFdwLIah0RKuEYo7SrpXG1ZVU-PIbj5-Duhb-0yLCphUFaZe37K59uvXU90q-l2V_kOdb4grVxF-8RsekZFvEFQYRa3vtc0TwA8PDKGyMVAWbXhTMVx2uCp3uQ_uNAj_nuX8Hpl5u2sWe0R3Zr0EgH1X_tk5Yu2mRr2LzV1iY739oKHhA9sE6MykJRAH_pVNORdjBeKWqPaz7K5TWdaSz6zcvZtZ0IxkyRakjnhsrpK8BzurBUPcCHNC-oRIXNJS0_CsCMZV4ekufRzdNw7NTPKThZEPhLx1MhlyyUkivFMpN5LGapGwkNmSnzYyYiA9jIl35o0hDMWqbMwCweC8PB7GP_iGwU80IfExoKyF9NBtBMeoHkXLphiq3QPKYlhMSoQ9xGjklW9xrHJy-mSUMqmyQo-wRlj2Mg-w65Wq1ZVJ021s7mzfYkP_QlgVCwdt1Fs5cJ7BHejshCz9_LBPJQ4UN6GYmTf377lGx7qGaW031GNpZv7_ocIMsy7Vqd7JLNwe39-PELdO7pUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgGIAB8RRvgsQGhfSRXjqiE6fjOYHEFqVtIhWO3okewy38duy0RYAEA2vkVJUT25-Tzw7AUST9LM01er9ECi_CrNaTcS49a3PjG21941iVt3fx4CG6ehSPM9Bra2GIVtn4_tqnO2_djJw12jwbFwXV-KK1CZ_uEanpWTILcxGaLz1jcPr-yfNAxCNqd0xcBBRvKmdqktcTHe9h_k8Dpzz0f4tOP_y0Cz79ZVhqUCM7r39sBWZMuQrzvfaxtlVY_NJXcA3MufNiTJc5Q_SXDg3rG48CVs7cec20mpywF0NVv0X1cuIE0ZoZcQ3ZyDI9fEZ8zsaOq4cAkRUl07RjC82qaYmgsSqqdXjoX9z3Bl7znoKXRVE48YI8FprHWos855nNAp7w1O9Kg6kpDxMuuxbBUajD2KYx2rVOuUUpkUgr0O6TcAM65ag0m8BiiQmszRCb6SDSQmg_TqkXWsCNxpjY3QK_1aPKmmbj9ObFULWssidFulekexpD3W_B8eeccd1q409p0S6P-rZhFMaCP-cdtmupcI3oekSXZvRWKUxEZYj5ZVdu__PbBzA_uL-9UTeXd9c7sBDQlnME713oTF7fzB7il0m67_bnB9kb6uA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+and+stable+Fe-based+catalyst%2C+mechanism%2C+and+key+role+of+alkali+promoters+in+ammonia+synthesis&rft.jtitle=Journal+of+catalysis&rft.au=Al+Maksoud%2C+Walid&rft.au=Rai%2C+Rohit+K&rft.au=Morlan%C3%A9s%2C+Natalia&rft.au=Harb%2C+Moussab&rft.date=2021-02-01&rft.issn=0021-9517&rft.volume=394+p.353-365&rft.spage=353&rft.epage=365&rft_id=info:doi/10.1016%2Fj.jcat.2020.10.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |