Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis

[Display omitted] •Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger nu...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 394; pp. 353 - 365
Main Authors Al Maksoud, Walid, Rai, Rohit K., Morlanés, Natalia, Harb, Moussab, Ahmad, Rafia, Ould-Chikh, Samy, Anjum, Dalaver, Hedhili, Mohamed N., Al-Sabban, Bedour E., Albahily, Khalid, Cavallo, Luigi, Basset, Jean-Marie
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger number of exposed iron atoms.•A non-dissociative mechanism proposed by DFT, a stepwise addition of H on N leading to NH3. Worldwide NH3 production reached 0.18 Gton in 2019, and 1–2% of the global CO2 emissions are due to large-scale NH3 synthesis (1 billion tons of CO2 / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N2, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H2 treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H2 treatment, with Fe in the core and promoters (“Cs2O” and “K2O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH3 at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g−1 h−1 with K. The apparent activation energy was found to be 31 kJ mol−1 and 34 kJ mol−1 for 3-K-FePc700 and 10-Cs-FePc700 suggesting the facile activation of N2 on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe(0) for N2 non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures.
AbstractList [Display omitted] •Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs obtained with Fe(0) located on core and surrounded by Cs or K oxides.•The DFT reveals a geometrical repartition of alkali, leading to a larger number of exposed iron atoms.•A non-dissociative mechanism proposed by DFT, a stepwise addition of H on N leading to NH3. Worldwide NH3 production reached 0.18 Gton in 2019, and 1–2% of the global CO2 emissions are due to large-scale NH3 synthesis (1 billion tons of CO2 / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N2, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H2 treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H2 treatment, with Fe in the core and promoters (“Cs2O” and “K2O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH3 at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g−1 h−1 with K. The apparent activation energy was found to be 31 kJ mol−1 and 34 kJ mol−1 for 3-K-FePc700 and 10-Cs-FePc700 suggesting the facile activation of N2 on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe(0) for N2 non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures.
Worldwide NH₃ production reached 0.18 Gton in 2019, and 1–2% of the global CO₂ emissions are due to large-scale NH₃ synthesis (1 billion tons of CO₂ / year). A catalyst for ammonia synthesis has been obtained by pyrolysis of iron phthalocyanine (FePc) precursor under N₂, followed by impregnation with alkali metals (Na, Li, K, and Cs) and H₂ treatment. Characterization (XPS, XRD, HR-TEM, ICP-OES, TGA, CHNS analysis, and BET) revealed nano-sized core–shell structures formed during H₂ treatment, with Fe in the core and promoters (“Cs₂O” and “K₂O”) with carbon on the shell. The alkali metals partially inhibit the methanation process of carbon. These Fe NPs were found to be very active and stable catalysts, as compared to the commercial iron-based catalyst KM1 (Haldor-Topsoe). Activities of promoted catalysts follow the order: K > Cs > Na ~ Li, with more than 6% of NH₃ at 400 °C and 7 MPa, and contact time (WHSV) of 12000 ml g⁻¹ h⁻¹ with K. The apparent activation energy was found to be 31 kJ mol⁻¹ and 34 kJ mol⁻¹ for 3-K-FePc₇₀₀ and 10-Cs-FePc₇₀₀ suggesting the facile activation of N₂ on the catalysts surface. DFT-based predicted atomic and electronic structures reveal a similarity in the partial charge distribution on surface Fe species with K or Cs. Surprisingly the main effect of alkali is related to the geometrical repartition of alkali, leading to a larger number of exposed iron atoms, active sites, in the case of K than Cs. The alkali (present as metal oxide) leaves at medium coverage of the surface some exposed Fe⁽⁰⁾ for N₂ non-dissociative chemisorption (end-on type). The free energy profile demonstrates that the thermodynamic stability of the reaction intermediates for nitrogen reduction reaction (NRR) increases with pressure indicating better feasibility of the reaction at higher pressures.
Author Rai, Rohit K.
Harb, Moussab
Hedhili, Mohamed N.
Al-Sabban, Bedour E.
Cavallo, Luigi
Anjum, Dalaver
Al Maksoud, Walid
Ahmad, Rafia
Basset, Jean-Marie
Morlanés, Natalia
Ould-Chikh, Samy
Albahily, Khalid
Author_xml – sequence: 1
  givenname: Walid
  surname: Al Maksoud
  fullname: Al Maksoud, Walid
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 2
  givenname: Rohit K.
  surname: Rai
  fullname: Rai, Rohit K.
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Natalia
  surname: Morlanés
  fullname: Morlanés, Natalia
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Moussab
  surname: Harb
  fullname: Harb, Moussab
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 5
  givenname: Rafia
  surname: Ahmad
  fullname: Ahmad, Rafia
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 6
  givenname: Samy
  surname: Ould-Chikh
  fullname: Ould-Chikh, Samy
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 7
  givenname: Dalaver
  orcidid: 0000-0003-2336-2859
  surname: Anjum
  fullname: Anjum, Dalaver
  organization: King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
– sequence: 8
  givenname: Mohamed N.
  surname: Hedhili
  fullname: Hedhili, Mohamed N.
  organization: King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
– sequence: 9
  givenname: Bedour E.
  surname: Al-Sabban
  fullname: Al-Sabban, Bedour E.
  organization: SABIC Corporate Research and Development Center at KAUST, Saudi Basic Industries Corporation, Thuwal 23955, Saudi Arabia
– sequence: 10
  givenname: Khalid
  surname: Albahily
  fullname: Albahily, Khalid
  organization: SABIC Corporate Research and Development Center at KAUST, Saudi Basic Industries Corporation, Thuwal 23955, Saudi Arabia
– sequence: 11
  givenname: Luigi
  surname: Cavallo
  fullname: Cavallo, Luigi
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
– sequence: 12
  givenname: Jean-Marie
  orcidid: 0000-0003-3166-8882
  surname: Basset
  fullname: Basset, Jean-Marie
  email: jeanmarie.basset@kaust.edu.sa
  organization: KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
BookMark eNp9kD1rHDEQhkVwIGcnfyCVyhTey0j7pYU0xsRJwODGqcWsdhbrvCs5Gtlw_z5aX6oUrgaG53mZec_FWYiBhPisYK9AdV8P-4PDvNegt8UeavVO7BQMUOluaM7EDkCramhV_0GcMx8AlGpbsxN05bJ_IYlhkpxxXEjeUDUi0yRLIi5HzpdyJfeAwfN6-Qo-0lGmWNA4S1wecfHyKcU1ZkosfZC4rjF4lHwM-YHY80fxfsaF6dO_eSF-33y_v_5Z3d79-HV9dVu5pqlzpaeuRegQ22kCNztdHhhVbwh0D_UApp-bRtVYd_PYGQM4wlyodjBzW2s91Bfiyym3nPPnmTjb1bOjZcFA8ZmtbgZTq6bpTUHNCXUpMiearfMZs48hJ_SLVWC3Zu3Bbs3ardltV5otqv5PfUp-xXR8W_p2kqj8_-IpWXaegqPJJ3LZTtG_pf8F4jqUEQ
CitedBy_id crossref_primary_10_1002_aenm_202404030
crossref_primary_10_1016_j_mcat_2025_115009
crossref_primary_10_1021_acscatal_1c05078
crossref_primary_10_1021_acssuschemeng_2c06711
crossref_primary_10_1016_j_ces_2024_121000
crossref_primary_10_1021_acscatal_1c02887
crossref_primary_10_3390_cryst14090818
crossref_primary_10_1002_cssc_202300942
crossref_primary_10_1016_j_cjche_2023_03_028
crossref_primary_10_1002_smll_202411468
crossref_primary_10_1002_cssc_202300551
crossref_primary_10_1039_D4SE00411F
crossref_primary_10_1002_advs_202410313
crossref_primary_10_1016_j_cjche_2023_03_009
crossref_primary_10_1016_j_gce_2022_06_003
crossref_primary_10_1002_cssc_202300459
crossref_primary_10_1016_j_ijhydene_2023_09_141
crossref_primary_10_1016_j_cogsc_2024_100965
crossref_primary_10_1039_D3RA04824A
crossref_primary_10_1016_j_cogsc_2024_100945
crossref_primary_10_1016_j_rser_2022_112918
crossref_primary_10_3390_ma15207378
crossref_primary_10_1002_adma_202405578
crossref_primary_10_1021_acscatal_4c05146
crossref_primary_10_1016_j_cej_2023_145650
Cites_doi 10.1017/S143192761900919X
10.1016/0021-9517(88)90184-4
10.1134/S2070050416040115
10.1016/j.jnoncrysol.2010.09.031
10.1007/s00269-001-0222-6
10.1006/jcat.1998.2364
10.1016/S0926-860X(98)00139-2
10.1021/ja010963d
10.1021/acs.chemmater.8b03859
10.1016/0927-0256(96)00008-0
10.1016/j.jnoncrysol.2011.09.027
10.1016/0009-2614(90)85247-A
10.1021/ic300498b
10.1006/jcat.1999.2628
10.1038/s41467-020-14287-z
10.1002/aenm.201701536
10.3390/catal8110494
10.1007/s12274-019-2349-0
10.1103/PhysRevB.49.14251
10.1021/ja5003907
10.1016/j.apcata.2005.11.003
10.1021/acsnano.6b07522
10.1063/1.458452
10.1039/D0TA05238H
10.1021/j100411a003
10.1002/aenm.201801772
10.1016/0021-9517(75)90069-X
10.1126/science.1143078
10.1002/smll.200500150
10.1021/acscatal.6b00044
10.1016/S0167-2991(01)80040-9
10.1007/BF02498142
10.1038/s41929-017-0022-0
10.1002/adfm.201803309
10.1021/jacs.0c02345
10.1016/0039-6028(82)90703-8
10.1002/jctb.5152
10.1039/C4CS00085D
10.1007/s10975-005-0113-9
10.1038/294643a0
10.1103/PhysRevLett.77.3865
10.1002/anie.201712398
10.1039/b720020j
10.1021/acssuschemeng.7b02812
10.1063/1.481103
10.1016/j.cattod.2016.08.012
10.1021/acs.jpcc.7b12364
10.1063/1.1316015
10.1016/B978-0-444-81468-5.50012-1
10.1016/j.jcou.2019.12.010
10.1016/S0039-6028(01)01397-8
10.1038/s41467-018-03795-8
10.1103/PhysRevB.54.11169
10.1016/S0926-860X(01)00626-3
10.1016/j.cplett.2014.03.003
10.1103/PhysRevB.50.17953
10.1007/s10800-005-9054-2
10.1021/la981132x
10.1103/PhysRevB.13.5188
10.1039/C9CY02326G
10.1021/acs.jpcc.5b08508
10.1039/C3CS60206K
10.1002/adma.201306328
10.1016/j.apsusc.2010.10.051
10.1103/PhysRevB.59.1758
10.1016/0021-9517(82)90161-0
10.1021/j100784a503
10.1002/cctc.201500024
10.1073/pnas.82.8.2207
10.1016/j.joule.2018.04.017
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2020.10.031
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 365
ExternalDocumentID 10_1016_j_jcat_2020_10_031
S0021951720304449
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c443t-2d65a06aa5dd0cfc2090b178e027039087f4413a36fb6880ab0ffc2598f532293
IEDL.DBID .~1
ISSN 0021-9517
IngestDate Mon Jul 21 11:55:39 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 03:14:12 EDT 2025
Fri Feb 23 02:46:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Alkali promoters
Electronic and geometrical effects
MS
Ammonia synthesis
Iron phthalocyanines
XRD
TGA
FePc
SI
Non-dissociative mechanism
TPR
TOS
XPS
WHSV
ICP-OES
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-2d65a06aa5dd0cfc2090b178e027039087f4413a36fb6880ab0ffc2598f532293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2336-2859
0000-0003-3166-8882
OpenAccessLink http://hdl.handle.net/10754/665972
PQID 2498314478
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2498314478
crossref_citationtrail_10_1016_j_jcat_2020_10_031
crossref_primary_10_1016_j_jcat_2020_10_031
elsevier_sciencedirect_doi_10_1016_j_jcat_2020_10_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Journal of catalysis
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhi, Gorelik, Friedlein, Wu, Kolb, Salaneck, Müllen (b0160) 2005; 1
Ozaki, Nozawa, Yamada, Uchiyama, Yoshimoto, Furuichi, Yokoyama, Oya, Brown, Cashion (b0255) 2006; 36
Vojvodic, Medford, Studt, Abild-Pedersen, Khan, Bligaard, Nørskov (b0345) 2014; 598
Yan, Guo, Liang, Meng, Yin, Li, Li, Zhang, Yan, Xiao, Zou, Ma (b0260) 2019; 12
van Ommen, Bolink, Prasad, Mars (b0075) 1975; 38
Shur, Yunusov (b0040) 1998; 47
Bowker (b0060) 1993
Bare, Strongin, Somorjai (b0115) 1986; 90
Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (b0015) 2018; 2
Strongin, Somorjai (b0080) 1988; 109
Zhu, Rosenfeld, Harb, Anjum, Hedhili, Ould-Chikh, Basset (b0240) 2016; 6
Gong, Wu, Kitano, Wang, Ye, Li, Kobayashi, Kishida, Abe, Niwa, Yang, Tada, Hosono (b0095) 2018; 1
Liang, Wei, Luo, Ying, Xin, Li (b0355) 2001
Li, Cheng, Zhang, Wang, Dong, Yang, Li (b0065) 2017; 92
Jedrzejewski, Lendzion-Bielun (b0310) 2018; 8
Raróg-Pilecka, Jedynak-Koczuk, Petryk, Miśkiewicz, Jodzis, Kaszkur, Kowalczyk (b0265) 2006; 300
Kresse, Hafner (b0200) 1994; 49
Egeberg, Dahl, Logadottir, Larsen, Nørskov, Chorkendorff (b0085) 2001; 491
Garden, Skúlason (b0370) 2015; 119
Solans-Monfort, Chow, Goure, Kaya, Basset, Taoufik, Quadrelli, Eisenstein (b0130) 2012; 51
Rod, Logadottir, Nørskov (b0030) 2000; 112
van Aken, Liebscher (b0325) 2002; 29
Kojima, Aika (b0125) 2001; 218
Spencer, Schoonmaker, Somorjai (b0335) 1981; 294
Silverman, Boudart (b0055) 1982; 77
Larichev, Prosvirin, Shlyapin, Shitova, Tsyrul’nikov, Bukhtiyarov (b0285) 2005; 46
Delley (b0230) 2000; 113
Kresse, Joubert (b0215) 1999; 59
Avenier, Taoufik, Lesage, Solans-Monfort, Baudouin, de Mallmann, Veyre, Basset, Eisenstein, Emsley, Quadrelli (b0090) 2007; 317
Kresse, Furthmüller (b0210) 1996; 6
Liu (b0045) 2013
Hagen, Barfod, Fehrmann, Jacobsen, Teunissen, Ståhl, Chorkendorff (b0110) 2002; 1206–1207
van der Ham, Koper, Hetterscheid (b0365) 2014; 43
Tüysüz, Schüth, Zhi, Müllen, Comotti (b0155) 2015; 7
Liu, Ma, Li, Wang, Xiao, Li (b0140) 2018; 9
Falicov, Somorjai (b0340) 1985; 82
Jia, Quadrelli (b0135) 2014; 43
Tsyrul’nikov, Iost, Shitova, Temerev (b0270) 2016; 8
Schlögl (b0120) 2008
Aijaz, Fujiwara, Xu (b0165) 2014; 136
Fan, Huang, Kähler, Folke, Girgsdies, Teschner, Ding, Hermann, Schlögl, Frei (b0350) 2017; 5
Wang, Peng, Chen, Liu, Zheng, Zheng, Ni, Au, Jiang (b0145) 2020; 11
Humphreys, Lan, Chen, Tao (b0025) 2020; 8
Kresse, Furthmüller (b0205) 1996; 54
Lamers, Li, Favaro, Starr, Friedrich, Lardhi, Cavallo, Harb, van de Krol, Wong, Abdi (b0250) 2018; 30
Strongin, Somorjai (b0105) 1991
Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov (b0035) 2001; 123
Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (b0290) 2011; 257
Kitano, Inoue, Sasase, Kishida, Kobayashi, Nishiyama, Tada, Kawamura, Yokoyama, Hara, Hosono (b0280) 2018; 57
Zeinalipour-Yazdi, Hargreaves, Catlow (b0300) 2018; 122
Xiang, Cao, Huang, Shui, Wang, Dai (b0170) 2014; 26
Sehested, Jacobsen, Törnqvist, Rokni, Stoltze (b0175) 1999; 188
Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka, H. Kageyama, Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis, Adv. Energy Mater., 8 (2018) n/a.
Wang, Ichihara, Pang, Chen, Ye (b0100) 2018; 28
Jang, Friedrich, Müller, Lamers, Hempel, Lardhi, Cao, Harb, Cavallo, Heller, Eichberger, van de Krol, Abdi (b0245) 2017; 7
Kammert, Moon, Cheng, Daemen, Irle, Fung, Liu, Page, Ma, Phaneuf, Tong, Ramirez-Cuesta, Wu (b0010) 2020; 142
Vandervell, Waugh (b0070) 1990; 171
Morlanes, Almaksoud, Rai, Ould-Chikh, Ali, Al-Sabban, Vidjayacoumar, Al-Bahily, Basset (b0150) 2020; 10
Anjum, AlMaksoud, Rai, Alsabban, Morlanes, Basset (b0330) 2019; 25
Aika (b0190) 2017; 286
Perdew, Burke, Ernzerhof (b0220) 1996; 77
Monkhorst, Pack (b0225) 1976; 13
Li, Ao, Liu, Sun, Rykov, Wang (b0295) 2016; 10
S. Cimino, F. Boccia, L. Lisi, Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane, J. CO2 Util., 37 (2020) 195-203.
Khoobiar (b0275) 1964; 68
Delley (b0235) 1990; 92
Klerke, Christensen, Nørskov, Vegge (b0005) 2008; 18
Li, Ichikuni, Shimazu, Uematsu (b0185) 1998; 172
Arabczyk, Narkiewicz, Moszynski (b0305) 1999; 15
Sawyer, Nesbitt, Secco (b0315) 2012; 358
Mortensen, Hansen, Hammer, Nørskov (b0360) 1999; 182
Ertl, Lee, Weiss (b0050) 1982; 114
Nesbitt, Bancroft, Henderson, Ho, Dalby, Huang, Yan (b0320) 2011; 357
Blöchl (b0195) 1994; 50
Blöchl (10.1016/j.jcat.2020.10.031_b0195) 1994; 50
Zeinalipour-Yazdi (10.1016/j.jcat.2020.10.031_b0300) 2018; 122
Humphreys (10.1016/j.jcat.2020.10.031_b0025) 2020; 8
Strongin (10.1016/j.jcat.2020.10.031_b0105) 1991
Jedrzejewski (10.1016/j.jcat.2020.10.031_b0310) 2018; 8
Monkhorst (10.1016/j.jcat.2020.10.031_b0225) 1976; 13
Kojima (10.1016/j.jcat.2020.10.031_b0125) 2001; 218
Sawyer (10.1016/j.jcat.2020.10.031_b0315) 2012; 358
Tsyrul’nikov (10.1016/j.jcat.2020.10.031_b0270) 2016; 8
van der Ham (10.1016/j.jcat.2020.10.031_b0365) 2014; 43
Sehested (10.1016/j.jcat.2020.10.031_b0175) 1999; 188
Zhu (10.1016/j.jcat.2020.10.031_b0240) 2016; 6
Aika (10.1016/j.jcat.2020.10.031_b0190) 2017; 286
van Ommen (10.1016/j.jcat.2020.10.031_b0075) 1975; 38
Yan (10.1016/j.jcat.2020.10.031_b0260) 2019; 12
Silverman (10.1016/j.jcat.2020.10.031_b0055) 1982; 77
Bare (10.1016/j.jcat.2020.10.031_b0115) 1986; 90
Solans-Monfort (10.1016/j.jcat.2020.10.031_b0130) 2012; 51
Larichev (10.1016/j.jcat.2020.10.031_b0285) 2005; 46
Aijaz (10.1016/j.jcat.2020.10.031_b0165) 2014; 136
Li (10.1016/j.jcat.2020.10.031_b0185) 1998; 172
Li (10.1016/j.jcat.2020.10.031_b0295) 2016; 10
Avenier (10.1016/j.jcat.2020.10.031_b0090) 2007; 317
Vojvodic (10.1016/j.jcat.2020.10.031_b0345) 2014; 598
Xiang (10.1016/j.jcat.2020.10.031_b0170) 2014; 26
Anjum (10.1016/j.jcat.2020.10.031_b0330) 2019; 25
Shur (10.1016/j.jcat.2020.10.031_b0040) 1998; 47
Wang (10.1016/j.jcat.2020.10.031_b0145) 2020; 11
Schlögl (10.1016/j.jcat.2020.10.031_b0120) 2008
Wang (10.1016/j.jcat.2020.10.031_b0015) 2018; 2
Liu (10.1016/j.jcat.2020.10.031_b0140) 2018; 9
Ozaki (10.1016/j.jcat.2020.10.031_b0255) 2006; 36
Klerke (10.1016/j.jcat.2020.10.031_b0005) 2008; 18
Jia (10.1016/j.jcat.2020.10.031_b0135) 2014; 43
Mortensen (10.1016/j.jcat.2020.10.031_b0360) 1999; 182
Rod (10.1016/j.jcat.2020.10.031_b0030) 2000; 112
Jacobsen (10.1016/j.jcat.2020.10.031_b0035) 2001; 123
Li (10.1016/j.jcat.2020.10.031_b0065) 2017; 92
Kresse (10.1016/j.jcat.2020.10.031_b0210) 1996; 6
Liang (10.1016/j.jcat.2020.10.031_b0355) 2001
Kammert (10.1016/j.jcat.2020.10.031_b0010) 2020; 142
Arabczyk (10.1016/j.jcat.2020.10.031_b0305) 1999; 15
Falicov (10.1016/j.jcat.2020.10.031_b0340) 1985; 82
Garden (10.1016/j.jcat.2020.10.031_b0370) 2015; 119
Wang (10.1016/j.jcat.2020.10.031_b0100) 2018; 28
Morlanes (10.1016/j.jcat.2020.10.031_b0150) 2020; 10
Perdew (10.1016/j.jcat.2020.10.031_b0220) 1996; 77
10.1016/j.jcat.2020.10.031_b0180
Delley (10.1016/j.jcat.2020.10.031_b0230) 2000; 113
Gong (10.1016/j.jcat.2020.10.031_b0095) 2018; 1
Hagen (10.1016/j.jcat.2020.10.031_b0110) 2002; 1206–1207
Kresse (10.1016/j.jcat.2020.10.031_b0205) 1996; 54
10.1016/j.jcat.2020.10.031_b0020
Kitano (10.1016/j.jcat.2020.10.031_b0280) 2018; 57
Delley (10.1016/j.jcat.2020.10.031_b0235) 1990; 92
Biesinger (10.1016/j.jcat.2020.10.031_b0290) 2011; 257
Kresse (10.1016/j.jcat.2020.10.031_b0215) 1999; 59
van Aken (10.1016/j.jcat.2020.10.031_b0325) 2002; 29
Zhi (10.1016/j.jcat.2020.10.031_b0160) 2005; 1
Kresse (10.1016/j.jcat.2020.10.031_b0200) 1994; 49
Nesbitt (10.1016/j.jcat.2020.10.031_b0320) 2011; 357
Vandervell (10.1016/j.jcat.2020.10.031_b0070) 1990; 171
Strongin (10.1016/j.jcat.2020.10.031_b0080) 1988; 109
Jang (10.1016/j.jcat.2020.10.031_b0245) 2017; 7
Spencer (10.1016/j.jcat.2020.10.031_b0335) 1981; 294
Egeberg (10.1016/j.jcat.2020.10.031_b0085) 2001; 491
Ertl (10.1016/j.jcat.2020.10.031_b0050) 1982; 114
Liu (10.1016/j.jcat.2020.10.031_b0045) 2013
Bowker (10.1016/j.jcat.2020.10.031_b0060) 1993
Tüysüz (10.1016/j.jcat.2020.10.031_b0155) 2015; 7
Fan (10.1016/j.jcat.2020.10.031_b0350) 2017; 5
Lamers (10.1016/j.jcat.2020.10.031_b0250) 2018; 30
Raróg-Pilecka (10.1016/j.jcat.2020.10.031_b0265) 2006; 300
Khoobiar (10.1016/j.jcat.2020.10.031_b0275) 1964; 68
References_xml – volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: b0225
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: b0230
  article-title: From molecules to solids with the DMol(3) approach
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 5343
  year: 2000
  end-page: 5347
  ident: b0030
  article-title: Ammonia synthesis at low temperatures
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 798
  year: 2005
  end-page: 801
  ident: b0160
  article-title: Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables
  publication-title: Small
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0210
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 15
  start-page: 5785
  year: 1999
  end-page: 5789
  ident: b0305
  article-title: Double-layer model of the fused iron catalyst for ammonia synthesis
  publication-title: Langmuir
– volume: 43
  start-page: 547
  year: 2014
  end-page: 564
  ident: b0135
  article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen
  publication-title: Chem. Soc. Rev.
– volume: 114
  start-page: 527
  year: 1982
  end-page: 545
  ident: b0050
  article-title: Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces
  publication-title: Surf. Sci.
– year: 1991
  ident: b0105
  article-title: Catalytic Ammonia Synthesis Fundamentals and Practice, Edited by J.R
– volume: 1206–1207
  year: 2002
  ident: b0110
  article-title: New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon
  publication-title: Chem. Commun.
– volume: 38
  start-page: 120
  year: 1975
  end-page: 127
  ident: b0075
  article-title: The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis
  publication-title: J. Catal.
– volume: 123
  start-page: 8404
  year: 2001
  end-page: 8405
  ident: b0035
  article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2341
  year: 2019
  end-page: 2347
  ident: b0260
  article-title: Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis
  publication-title: Nano Res.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: b0235
  article-title: An all-electron numerical-method for solving the local density functional for polyatomic-molecules
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 2852
  year: 2016
  end-page: 2866
  ident: b0240
  article-title: Ni–M–O (M= Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane
  publication-title: ACS Catal.
– volume: 357
  start-page: 170
  year: 2011
  end-page: 180
  ident: b0320
  article-title: Bridging, non-bridging and free (O
  publication-title: J. Non-Cryst. Solids
– volume: 47
  start-page: 765
  year: 1998
  end-page: 776
  ident: b0040
  article-title: On the path to catalysts for the low-temperature ammonia synthesis
  publication-title: Russ. Chem. Bull.
– year: 2008
  ident: b0120
  article-title: Ammonia Synthesis
– volume: 8
  start-page: 16676
  year: 2020
  end-page: 16689
  ident: b0025
  article-title: Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce0.8Sm0.2O2−δ for the efficient synthesis of ammonia
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0195
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 1055
  year: 2018
  end-page: 1074
  ident: b0015
  article-title: Greening ammonia toward the solar ammonia refinery
  publication-title: Joule
– volume: 358
  start-page: 290
  year: 2012
  end-page: 302
  ident: b0315
  article-title: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K
  publication-title: J. Non-Cryst. Solids
– volume: 68
  start-page: 411
  year: 1964
  end-page: 412
  ident: b0275
  article-title: Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles
  publication-title: J. Phys. Chem.
– reference: Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka, H. Kageyama, Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis, Adv. Energy Mater., 8 (2018) n/a.
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: b0200
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B Condens. Matter.
– volume: 30
  start-page: 8630
  year: 2018
  end-page: 8638
  ident: b0250
  article-title: Enhanced carrier transport and bandgap reduction in sulfur-modified BiVO
  publication-title: Chem. Mater.
– volume: 82
  start-page: 2207
  year: 1985
  ident: b0340
  article-title: Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence
  publication-title: Proc. Nat. Acad. Sci. U.S.A
– volume: 10
  start-page: 11532
  year: 2016
  end-page: 11540
  ident: b0295
  article-title: Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts
  publication-title: ACS Nano
– volume: 51
  start-page: 7237
  year: 2012
  end-page: 7249
  ident: b0130
  article-title: Successive heterolytic cleavages of H
  publication-title: Inorg. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0220
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 51
  year: 1988
  end-page: 60
  ident: b0080
  article-title: The effects of potassium on ammonia synthesis over iron single-crystal surfaces
  publication-title: J. Catal.
– volume: 7
  start-page: 1453
  year: 2015
  end-page: 1459
  ident: b0155
  article-title: Ammonia decomposition over iron phthalocyanine-based materials
  publication-title: ChemCatChem
– volume: 119
  start-page: 26554
  year: 2015
  end-page: 26559
  ident: b0370
  article-title: The mechanism of industrial ammonia synthesis revisited: calculations of the role of the associative mechanism
  publication-title: J. Phys. Chem. C
– volume: 188
  start-page: 83
  year: 1999
  end-page: 89
  ident: b0175
  article-title: Ammonia synthesis over a multipromoted iron catalyst: extended set of activity measurements, microkinetic model, and hydrogen inhibition
  publication-title: J. Catal.
– volume: 46
  start-page: 597
  year: 2005
  end-page: 602
  ident: b0285
  article-title: An XPS study of the promotion of Ru-Cs/sibunit catalysts for ammonia synthesis
  publication-title: Kinet. Catal.
– volume: 10
  start-page: 844
  year: 2020
  end-page: 852
  ident: b0150
  article-title: Development of catalysts for ammonia synthesis based on metal phthalocyanine materials
  publication-title: Catal. Sci. Technol.
– volume: 171
  start-page: 462
  year: 1990
  end-page: 468
  ident: b0070
  article-title: On the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia
  publication-title: Chem. Phys. Lett.
– volume: 90
  start-page: 4726
  year: 1986
  end-page: 4729
  ident: b0115
  article-title: Ammonia synthesis over iron single-crystal catalysts: the effects of alumina and potassium
  publication-title: J. Phys. Chem.
– start-page: 283
  year: 2001
  end-page: 290
  ident: b0355
  article-title: Hydrogen Spillover Effect in the Reduction of Barium Nitrate of Ru-Ba(NO
  publication-title: Studies in Surface Science and Catalysis
– volume: 18
  start-page: 2304
  year: 2008
  end-page: 2310
  ident: b0005
  article-title: Ammonia for hydrogen storage: challenges and opportunities
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 5183
  year: 2014
  end-page: 5191
  ident: b0365
  article-title: Challenges in reduction of dinitrogen by proton and electron transfer
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0215
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 122
  start-page: 6078
  year: 2018
  end-page: 6082
  ident: b0300
  article-title: Low-T mechanisms of ammonia synthesis on Co
  publication-title: J. Phys. Chem. C
– volume: 142
  start-page: 7655
  year: 2020
  end-page: 7667
  ident: b0010
  article-title: Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 494
  year: 2018
  ident: b0310
  article-title: Reduction process of iron catalyst precursors for ammonia synthesis doped with lithium oxide
  publication-title: Catalysts
– volume: 5
  start-page: 10900
  year: 2017
  end-page: 10909
  ident: b0350
  article-title: In-Situ formation of Fe nanoparticles from FeOOH nanosheets on γ-Al2O3 as efficient catalysts for ammonia synthesis
  publication-title: ACS Sustain. Chem. Eng.
– volume: 491
  start-page: 183
  year: 2001
  end-page: 194
  ident: b0085
  article-title: N
  publication-title: Surf. Sci.
– volume: 36
  start-page: 239
  year: 2006
  end-page: 247
  ident: b0255
  article-title: Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures
  publication-title: J. Appl. Electrochem.
– volume: 172
  start-page: 351
  year: 1998
  end-page: 358
  ident: b0185
  article-title: Catalytic properties of sprayed Ru/Al
  publication-title: Appl. Catal. A
– volume: 317
  start-page: 1056
  year: 2007
  end-page: 1060
  ident: b0090
  article-title: Dinitrogen dissociation on an isolated surface tantalum atom
  publication-title: Science
– volume: 28
  start-page: 1803309
  year: 2018
  ident: b0100
  article-title: Nitrogen fixation reaction derived from nanostructured catalytic materials
  publication-title: Adv. Funct. Mater.
– volume: 218
  start-page: 121
  year: 2001
  end-page: 128
  ident: b0125
  article-title: Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study
  publication-title: Appl. Catal. A
– volume: 598
  start-page: 108
  year: 2014
  end-page: 112
  ident: b0345
  article-title: Exploring the limits: a low-pressure, low-temperature Haber-Bosch process
  publication-title: Chem. Phys. Lett.
– volume: 294
  start-page: 643
  year: 1981
  end-page: 644
  ident: b0335
  article-title: Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia
  publication-title: Nature
– volume: 8
  start-page: 341
  year: 2016
  end-page: 347
  ident: b0270
  article-title: Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review
  publication-title: Catal. Ind.
– volume: 136
  start-page: 6790
  year: 2014
  end-page: 6793
  ident: b0165
  article-title: From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 208
  year: 1982
  end-page: 220
  ident: b0055
  article-title: Surface composition of promoted iron catalysts
  publication-title: J. Catal.
– volume: 25
  start-page: 1692
  year: 2019
  end-page: 1693
  ident: b0330
  article-title: Characterization of catalyst-nanomaterials with myriad modalities of transmission electron microscopy
  publication-title: Microsc. Microanal.
– volume: 26
  start-page: 3315
  year: 2014
  end-page: 3320
  ident: b0170
  article-title: Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction
  publication-title: Adv. Mater.
– start-page: 225
  year: 1993
  end-page: 268
  ident: b0060
  article-title: Chapter 7 - Promotion in Ammonia Synthesis
  publication-title: The Chemical Physics of Solid Surfaces
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– reference: S. Cimino, F. Boccia, L. Lisi, Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane, J. CO2 Util., 37 (2020) 195-203.
– year: 2013
  ident: b0045
  article-title: Ammonia synthesis catalysts innovation and practice
  publication-title: Ammonia Synthesis Catalysts Innovation and Practice
– volume: 92
  start-page: 1472
  year: 2017
  end-page: 1480
  ident: b0065
  article-title: Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion
  publication-title: J. Chem. Tech. Biotech.
– volume: 11
  start-page: 653
  year: 2020
  ident: b0145
  article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst
  publication-title: Nat. Commun.
– volume: 300
  start-page: 181
  year: 2006
  end-page: 185
  ident: b0265
  article-title: Carbon-supported cobalt–iron catalysts for ammonia synthesis
  publication-title: Appl. Catal. A
– volume: 1
  start-page: 178
  year: 2018
  end-page: 185
  ident: b0095
  article-title: Ternary intermetallic LaCoSi as a catalyst for N
  publication-title: Nat. Catal.
– volume: 57
  start-page: 2648
  year: 2018
  end-page: 2652
  ident: b0280
  article-title: Self-organized ruthenium-barium core–shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 188
  year: 2002
  end-page: 200
  ident: b0325
  article-title: Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23electron energy-loss near-edge spectra
  publication-title: Phys. Chem. Miner.
– volume: 257
  start-page: 2717
  year: 2011
  end-page: 2730
  ident: b0290
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 1701536
  year: 2017
  ident: b0245
  article-title: Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1610
  year: 2018
  ident: b0140
  article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
  publication-title: Nat. Commun.
– volume: 182
  start-page: 479
  year: 1999
  end-page: 488
  ident: b0360
  article-title: Nitrogen adsorption and dissociation on Fe(111)
  publication-title: J. Catal.
– volume: 286
  start-page: 14
  year: 2017
  end-page: 20
  ident: b0190
  article-title: Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism
  publication-title: Catal. Today
– volume: 25
  start-page: 1692
  year: 2019
  ident: 10.1016/j.jcat.2020.10.031_b0330
  article-title: Characterization of catalyst-nanomaterials with myriad modalities of transmission electron microscopy
  publication-title: Microsc. Microanal.
  doi: 10.1017/S143192761900919X
– volume: 109
  start-page: 51
  year: 1988
  ident: 10.1016/j.jcat.2020.10.031_b0080
  article-title: The effects of potassium on ammonia synthesis over iron single-crystal surfaces
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(88)90184-4
– volume: 8
  start-page: 341
  year: 2016
  ident: 10.1016/j.jcat.2020.10.031_b0270
  article-title: Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review
  publication-title: Catal. Ind.
  doi: 10.1134/S2070050416040115
– volume: 357
  start-page: 170
  year: 2011
  ident: 10.1016/j.jcat.2020.10.031_b0320
  article-title: Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2010.09.031
– volume: 29
  start-page: 188
  year: 2002
  ident: 10.1016/j.jcat.2020.10.031_b0325
  article-title: Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23electron energy-loss near-edge spectra
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-001-0222-6
– volume: 182
  start-page: 479
  year: 1999
  ident: 10.1016/j.jcat.2020.10.031_b0360
  article-title: Nitrogen adsorption and dissociation on Fe(111)
  publication-title: J. Catal.
  doi: 10.1006/jcat.1998.2364
– volume: 172
  start-page: 351
  year: 1998
  ident: 10.1016/j.jcat.2020.10.031_b0185
  article-title: Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(98)00139-2
– volume: 123
  start-page: 8404
  year: 2001
  ident: 10.1016/j.jcat.2020.10.031_b0035
  article-title: Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010963d
– volume: 30
  start-page: 8630
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0250
  article-title: Enhanced carrier transport and bandgap reduction in sulfur-modified BiVO4 photoanodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03859
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jcat.2020.10.031_b0210
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 358
  start-page: 290
  year: 2012
  ident: 10.1016/j.jcat.2020.10.031_b0315
  article-title: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K2O–SiO2 glasses: evidence for three types of O and at least two types of Si
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.09.027
– volume: 171
  start-page: 462
  year: 1990
  ident: 10.1016/j.jcat.2020.10.031_b0070
  article-title: On the role of promoters in promoted iron catalysts used in the industrial synthesis of ammonia
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)85247-A
– volume: 51
  start-page: 7237
  year: 2012
  ident: 10.1016/j.jcat.2020.10.031_b0130
  article-title: Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: a DFT proposed mechanism
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300498b
– volume: 188
  start-page: 83
  year: 1999
  ident: 10.1016/j.jcat.2020.10.031_b0175
  article-title: Ammonia synthesis over a multipromoted iron catalyst: extended set of activity measurements, microkinetic model, and hydrogen inhibition
  publication-title: J. Catal.
  doi: 10.1006/jcat.1999.2628
– volume: 11
  start-page: 653
  year: 2020
  ident: 10.1016/j.jcat.2020.10.031_b0145
  article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14287-z
– volume: 7
  start-page: 1701536
  year: 2017
  ident: 10.1016/j.jcat.2020.10.031_b0245
  article-title: Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701536
– volume: 8
  start-page: 494
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0310
  article-title: Reduction process of iron catalyst precursors for ammonia synthesis doped with lithium oxide
  publication-title: Catalysts
  doi: 10.3390/catal8110494
– volume: 12
  start-page: 2341
  year: 2019
  ident: 10.1016/j.jcat.2020.10.031_b0260
  article-title: Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2349-0
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.jcat.2020.10.031_b0200
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B Condens. Matter.
  doi: 10.1103/PhysRevB.49.14251
– volume: 136
  start-page: 6790
  year: 2014
  ident: 10.1016/j.jcat.2020.10.031_b0165
  article-title: From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5003907
– volume: 300
  start-page: 181
  year: 2006
  ident: 10.1016/j.jcat.2020.10.031_b0265
  article-title: Carbon-supported cobalt–iron catalysts for ammonia synthesis
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.11.003
– volume: 10
  start-page: 11532
  year: 2016
  ident: 10.1016/j.jcat.2020.10.031_b0295
  article-title: Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07522
– volume: 92
  start-page: 508
  year: 1990
  ident: 10.1016/j.jcat.2020.10.031_b0235
  article-title: An all-electron numerical-method for solving the local density functional for polyatomic-molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 8
  start-page: 16676
  year: 2020
  ident: 10.1016/j.jcat.2020.10.031_b0025
  article-title: Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce0.8Sm0.2O2−δ for the efficient synthesis of ammonia
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05238H
– volume: 90
  start-page: 4726
  year: 1986
  ident: 10.1016/j.jcat.2020.10.031_b0115
  article-title: Ammonia synthesis over iron single-crystal catalysts: the effects of alumina and potassium
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100411a003
– year: 2013
  ident: 10.1016/j.jcat.2020.10.031_b0045
  article-title: Ammonia synthesis catalysts innovation and practice
  publication-title: Ammonia Synthesis Catalysts Innovation and Practice
– ident: 10.1016/j.jcat.2020.10.031_b0020
  doi: 10.1002/aenm.201801772
– volume: 38
  start-page: 120
  year: 1975
  ident: 10.1016/j.jcat.2020.10.031_b0075
  article-title: The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(75)90069-X
– volume: 317
  start-page: 1056
  year: 2007
  ident: 10.1016/j.jcat.2020.10.031_b0090
  article-title: Dinitrogen dissociation on an isolated surface tantalum atom
  publication-title: Science
  doi: 10.1126/science.1143078
– volume: 1
  start-page: 798
  year: 2005
  ident: 10.1016/j.jcat.2020.10.031_b0160
  article-title: Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables
  publication-title: Small
  doi: 10.1002/smll.200500150
– volume: 6
  start-page: 2852
  year: 2016
  ident: 10.1016/j.jcat.2020.10.031_b0240
  article-title: Ni–M–O (M= Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00044
– start-page: 283
  year: 2001
  ident: 10.1016/j.jcat.2020.10.031_b0355
  article-title: Hydrogen Spillover Effect in the Reduction of Barium Nitrate of Ru-Ba(NO3)2/AC Catalysts for Ammonia Synthesis
  doi: 10.1016/S0167-2991(01)80040-9
– volume: 47
  start-page: 765
  year: 1998
  ident: 10.1016/j.jcat.2020.10.031_b0040
  article-title: On the path to catalysts for the low-temperature ammonia synthesis
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/BF02498142
– volume: 1
  start-page: 178
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0095
  article-title: Ternary intermetallic LaCoSi as a catalyst for N2 activation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0022-0
– volume: 28
  start-page: 1803309
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0100
  article-title: Nitrogen fixation reaction derived from nanostructured catalytic materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803309
– volume: 142
  start-page: 7655
  year: 2020
  ident: 10.1016/j.jcat.2020.10.031_b0010
  article-title: Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02345
– volume: 114
  start-page: 527
  year: 1982
  ident: 10.1016/j.jcat.2020.10.031_b0050
  article-title: Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90703-8
– volume: 92
  start-page: 1472
  year: 2017
  ident: 10.1016/j.jcat.2020.10.031_b0065
  article-title: Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion
  publication-title: J. Chem. Tech. Biotech.
  doi: 10.1002/jctb.5152
– volume: 43
  start-page: 5183
  year: 2014
  ident: 10.1016/j.jcat.2020.10.031_b0365
  article-title: Challenges in reduction of dinitrogen by proton and electron transfer
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 46
  start-page: 597
  year: 2005
  ident: 10.1016/j.jcat.2020.10.031_b0285
  article-title: An XPS study of the promotion of Ru-Cs/sibunit catalysts for ammonia synthesis
  publication-title: Kinet. Catal.
  doi: 10.1007/s10975-005-0113-9
– volume: 294
  start-page: 643
  year: 1981
  ident: 10.1016/j.jcat.2020.10.031_b0335
  article-title: Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia
  publication-title: Nature
  doi: 10.1038/294643a0
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcat.2020.10.031_b0220
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 57
  start-page: 2648
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0280
  article-title: Self-organized ruthenium-barium core–shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712398
– volume: 18
  start-page: 2304
  year: 2008
  ident: 10.1016/j.jcat.2020.10.031_b0005
  article-title: Ammonia for hydrogen storage: challenges and opportunities
  publication-title: J. Mater. Chem.
  doi: 10.1039/b720020j
– volume: 5
  start-page: 10900
  year: 2017
  ident: 10.1016/j.jcat.2020.10.031_b0350
  article-title: In-Situ formation of Fe nanoparticles from FeOOH nanosheets on γ-Al2O3 as efficient catalysts for ammonia synthesis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02812
– volume: 112
  start-page: 5343
  year: 2000
  ident: 10.1016/j.jcat.2020.10.031_b0030
  article-title: Ammonia synthesis at low temperatures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481103
– volume: 286
  start-page: 14
  year: 2017
  ident: 10.1016/j.jcat.2020.10.031_b0190
  article-title: Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.08.012
– volume: 122
  start-page: 6078
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0300
  article-title: Low-T mechanisms of ammonia synthesis on Co3Mo3N
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12364
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1016/j.jcat.2020.10.031_b0230
  article-title: From molecules to solids with the DMol(3) approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– start-page: 225
  year: 1993
  ident: 10.1016/j.jcat.2020.10.031_b0060
  article-title: Chapter 7 - Promotion in Ammonia Synthesis
  doi: 10.1016/B978-0-444-81468-5.50012-1
– ident: 10.1016/j.jcat.2020.10.031_b0180
  doi: 10.1016/j.jcou.2019.12.010
– volume: 491
  start-page: 183
  year: 2001
  ident: 10.1016/j.jcat.2020.10.031_b0085
  article-title: N2 dissociation on Fe(110) and Fe/Ru(0001): What is the role of steps?
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01397-8
– volume: 9
  start-page: 1610
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0140
  article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03795-8
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jcat.2020.10.031_b0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 218
  start-page: 121
  year: 2001
  ident: 10.1016/j.jcat.2020.10.031_b0125
  article-title: Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(01)00626-3
– volume: 598
  start-page: 108
  year: 2014
  ident: 10.1016/j.jcat.2020.10.031_b0345
  article-title: Exploring the limits: a low-pressure, low-temperature Haber-Bosch process
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.03.003
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jcat.2020.10.031_b0195
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 36
  start-page: 239
  year: 2006
  ident: 10.1016/j.jcat.2020.10.031_b0255
  article-title: Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-005-9054-2
– volume: 15
  start-page: 5785
  year: 1999
  ident: 10.1016/j.jcat.2020.10.031_b0305
  article-title: Double-layer model of the fused iron catalyst for ammonia synthesis
  publication-title: Langmuir
  doi: 10.1021/la981132x
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.jcat.2020.10.031_b0225
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 10
  start-page: 844
  year: 2020
  ident: 10.1016/j.jcat.2020.10.031_b0150
  article-title: Development of catalysts for ammonia synthesis based on metal phthalocyanine materials
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02326G
– volume: 119
  start-page: 26554
  year: 2015
  ident: 10.1016/j.jcat.2020.10.031_b0370
  article-title: The mechanism of industrial ammonia synthesis revisited: calculations of the role of the associative mechanism
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08508
– volume: 43
  start-page: 547
  year: 2014
  ident: 10.1016/j.jcat.2020.10.031_b0135
  article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60206K
– volume: 26
  start-page: 3315
  year: 2014
  ident: 10.1016/j.jcat.2020.10.031_b0170
  article-title: Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306328
– volume: 257
  start-page: 2717
  year: 2011
  ident: 10.1016/j.jcat.2020.10.031_b0290
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.10.051
– year: 2008
  ident: 10.1016/j.jcat.2020.10.031_b0120
– year: 1991
  ident: 10.1016/j.jcat.2020.10.031_b0105
– volume: 1206–1207
  year: 2002
  ident: 10.1016/j.jcat.2020.10.031_b0110
  article-title: New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon
  publication-title: Chem. Commun.
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.jcat.2020.10.031_b0215
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 77
  start-page: 208
  year: 1982
  ident: 10.1016/j.jcat.2020.10.031_b0055
  article-title: Surface composition of promoted iron catalysts
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(82)90161-0
– volume: 68
  start-page: 411
  year: 1964
  ident: 10.1016/j.jcat.2020.10.031_b0275
  article-title: Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100784a503
– volume: 7
  start-page: 1453
  year: 2015
  ident: 10.1016/j.jcat.2020.10.031_b0155
  article-title: Ammonia decomposition over iron phthalocyanine-based materials
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500024
– volume: 82
  start-page: 2207
  year: 1985
  ident: 10.1016/j.jcat.2020.10.031_b0340
  article-title: Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.82.8.2207
– volume: 2
  start-page: 1055
  year: 2018
  ident: 10.1016/j.jcat.2020.10.031_b0015
  article-title: Greening ammonia toward the solar ammonia refinery
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
SSID ssj0011558
Score 2.483133
Snippet [Display omitted] •Cs and K impact drastically the Fe NPs dispersed on N-C support material toward ammonia synthesis.•A core–shell structure of the Fe NPs...
Worldwide NH₃ production reached 0.18 Gton in 2019, and 1–2% of the global CO₂ emissions are due to large-scale NH₃ synthesis (1 billion tons of CO₂ / year). A...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms activation energy
active sites
alkali metals
Alkali promoters
ammonia
Ammonia synthesis
carbon
carbon dioxide
catalysts
catalytic activity
Electronic and geometrical effects
emissions
Gibbs free energy
iron
Iron phthalocyanines
leaves
methane production
nitrogen
Non-dissociative mechanism
pressure
pyrolysis
synthesis
Title Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis
URI https://dx.doi.org/10.1016/j.jcat.2020.10.031
https://www.proquest.com/docview/2498314478
Volume 394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQFRHpWR2CCt83DijFVFVUAwgcQWObEtpbRpRcrAwm_nzkkqQKIDq2VH0fke39nfnQm5DISbpUqC94sFdwLIah0RKuEYo7SrpXG1ZVU-PIbj5-Duhb-0yLCphUFaZe37K59uvXU90q-l2V_kOdb4grVxF-8RsekZFvEFQYRa3vtc0TwA8PDKGyMVAWbXhTMVx2uCp3uQ_uNAj_nuX8Hpl5u2sWe0R3Zr0EgH1X_tk5Yu2mRr2LzV1iY739oKHhA9sE6MykJRAH_pVNORdjBeKWqPaz7K5TWdaSz6zcvZtZ0IxkyRakjnhsrpK8BzurBUPcCHNC-oRIXNJS0_CsCMZV4ekufRzdNw7NTPKThZEPhLx1MhlyyUkivFMpN5LGapGwkNmSnzYyYiA9jIl35o0hDMWqbMwCweC8PB7GP_iGwU80IfExoKyF9NBtBMeoHkXLphiq3QPKYlhMSoQ9xGjklW9xrHJy-mSUMqmyQo-wRlj2Mg-w65Wq1ZVJ021s7mzfYkP_QlgVCwdt1Fs5cJ7BHejshCz9_LBPJQ4UN6GYmTf377lGx7qGaW031GNpZv7_ocIMsy7Vqd7JLNwe39-PELdO7pUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgGIAB8RRvgsQGhfSRXjqiE6fjOYHEFqVtIhWO3okewy38duy0RYAEA2vkVJUT25-Tzw7AUST9LM01er9ECi_CrNaTcS49a3PjG21941iVt3fx4CG6ehSPM9Bra2GIVtn4_tqnO2_djJw12jwbFwXV-KK1CZ_uEanpWTILcxGaLz1jcPr-yfNAxCNqd0xcBBRvKmdqktcTHe9h_k8Dpzz0f4tOP_y0Cz79ZVhqUCM7r39sBWZMuQrzvfaxtlVY_NJXcA3MufNiTJc5Q_SXDg3rG48CVs7cec20mpywF0NVv0X1cuIE0ZoZcQ3ZyDI9fEZ8zsaOq4cAkRUl07RjC82qaYmgsSqqdXjoX9z3Bl7znoKXRVE48YI8FprHWos855nNAp7w1O9Kg6kpDxMuuxbBUajD2KYx2rVOuUUpkUgr0O6TcAM65ag0m8BiiQmszRCb6SDSQmg_TqkXWsCNxpjY3QK_1aPKmmbj9ObFULWssidFulekexpD3W_B8eeccd1q409p0S6P-rZhFMaCP-cdtmupcI3oekSXZvRWKUxEZYj5ZVdu__PbBzA_uL-9UTeXd9c7sBDQlnME713oTF7fzB7il0m67_bnB9kb6uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+and+stable+Fe-based+catalyst%2C+mechanism%2C+and+key+role+of+alkali+promoters+in+ammonia+synthesis&rft.jtitle=Journal+of+catalysis&rft.au=Al+Maksoud%2C+Walid&rft.au=Rai%2C+Rohit+K&rft.au=Morlan%C3%A9s%2C+Natalia&rft.au=Harb%2C+Moussab&rft.date=2021-02-01&rft.issn=0021-9517&rft.volume=394+p.353-365&rft.spage=353&rft.epage=365&rft_id=info:doi/10.1016%2Fj.jcat.2020.10.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon