Co-flowering plants support diverse pollinator populations and facilitate pollinator visitation to sweet cherry crops
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting reside...
Saved in:
Published in | Basic and applied ecology Vol. 63; pp. 36 - 48 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.09.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.
[Display omitted] |
---|---|
AbstractList | Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems. Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems. [Display omitted] |
Author | O'Brien, Corey Kobel, Conrad Power, Sally A. Gilpin, Amy-Marie Brettell, Laura E. Cook, James M. |
Author_xml | – sequence: 1 givenname: Amy-Marie orcidid: 0000-0002-3143-5678 surname: Gilpin fullname: Gilpin, Amy-Marie email: a.gilpin@westernsydney.edu.au organization: Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia – sequence: 2 givenname: Corey surname: O'Brien fullname: O'Brien, Corey organization: Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia – sequence: 3 givenname: Conrad surname: Kobel fullname: Kobel, Conrad organization: Australian Health Services Research Institute, University of Wollongong, Wollongong, Australia – sequence: 4 givenname: Laura E. orcidid: 0000-0002-6050-4804 surname: Brettell fullname: Brettell, Laura E. organization: Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia – sequence: 5 givenname: James M. surname: Cook fullname: Cook, James M. organization: Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia – sequence: 6 givenname: Sally A. orcidid: 0000-0002-2723-8671 surname: Power fullname: Power, Sally A. organization: Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia |
BookMark | eNp9UU1v3CAU5JBK-Wj_QE4cc7EL2GAs9VKt-hEpUi_tGT3jR8KKGBfwRvn3ZbPpoT3k9NDTzDxm5pKcLXFBQq45aznj6uO-nQCwFUyIlsmWMXlGLnjfjQ0fRn5OLnPeM8Z71ukLsu1i40J8wuSXe7oGWEqmeVvXmAqd_QFTRrrGEPwCJab6XLcAxcclU1hm6sD64AuUf1AHn4-7iqIl0vyEWKh9wJSeqU1xze_JOwch44fXeUV-ff3yc_e9ufvx7Xb3-a6xfd-VRmgQk3NWdXYApXrJ7aCEgAF6V61opWDqnRw6O2rFhLZcgdJyElwpofncXZHbk-4cYW_W5B8hPZsI3rwsYro3kIq3AY0a5cDtJEEPY8_Hem-cpJOun0DzCXXVujlprSn-3jAX8-izxVAjw7hlI9Qg5aC0EBWqT9BqNueEztjXOEoCHwxn5tiU2ZtjU-bYlGHS1KYqVfxH_fvrN0mfTiSsWR48JpOtx8Xi7BPaUs36t-h_AMpYst0 |
CitedBy_id | crossref_primary_10_1002_ppp3_10591 crossref_primary_10_1002_ece3_10289 crossref_primary_10_1080_01650521_2024_2333097 crossref_primary_10_1016_j_agee_2024_109163 crossref_primary_10_1016_j_agee_2025_109481 crossref_primary_10_1007_s00217_024_04490_3 crossref_primary_10_3390_insects16020118 crossref_primary_10_1016_j_actao_2024_104052 crossref_primary_10_1007_s11252_023_01353_9 crossref_primary_10_1111_1365_2664_14394 crossref_primary_10_1111_jen_13353 crossref_primary_10_1111_jen_13372 crossref_primary_10_3390_agriculture12081246 crossref_primary_10_1016_j_ecolind_2024_112827 crossref_primary_10_1111_1440_1703_12348 crossref_primary_10_1017_wsc_2023_27 crossref_primary_10_3389_fsufs_2024_1423511 crossref_primary_10_3390_land12020430 |
Cites_doi | 10.18637/jss.v067.i01 10.1186/1472-6785-6-9 10.1016/j.biocon.2011.07.008 10.1098/rspb.2008.0405 10.1016/j.agee.2017.11.002 10.1111/afe.12363 10.1098/rspb.2006.3721 10.1016/j.agee.2021.107383 10.1016/j.biocon.2012.04.032 10.1093/ee/nvx052 10.1146/annurev-ento-011019-024955 10.1111/ele.12342 10.1146/annurev.en.31.010186.000405 10.1071/ZO9930343 10.1098/rsif.2017.0213 10.1007/s13593-012-0092-y 10.1007/s11258-014-0301-7 10.1016/j.agee.2019.106586 10.1007/s13280-015-0679-z 10.1111/aen.12206 10.1890/12-2012.1 10.1016/j.agee.2018.05.004 10.1046/j.1442-1984.2000.00026.x 10.1126/science.1230200 10.1890/07-2121.1 10.1111/ele.13576 10.1111/1365-2664.13403 10.1007/s10980-021-01220-y 10.1007/s10980-015-0332-z 10.1016/j.baae.2016.07.005 10.1073/pnas.1517092112 10.1111/j.1461-0248.2010.01579.x 10.1111/j.1461-0248.2011.01669.x 10.1111/ele.13157 10.1016/j.agee.2017.01.031 10.1051/apido:19810402 10.1002/eap.1713 10.1111/1365-2664.12257 10.1007/s10841-013-9584-6 10.1126/sciadv.aax0121 10.1890/12-1051.1 10.1016/j.baae.2021.07.005 10.1007/BF00984103 10.1016/j.biocon.2017.06.018 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 10.1038/srep45296 10.2307/2401281 10.1111/j.1365-2745.2006.01098.x 10.1016/j.agee.2011.09.005 10.1071/AR01186 10.2174/1874213000902010007 10.1016/j.agee.2019.106806 10.1111/afe.12135 10.1111/j.2041-210x.2012.00261.x 10.1111/j.1365-2664.2012.02217.x 10.1016/j.cub.2008.08.066 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.baae.2022.05.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EndPage | 48 |
ExternalDocumentID | oai_doaj_org_article_69571cb5a8794197a69b5f5f4ba81be8 10_1016_j_baae_2022_05_005 S1439179122000445 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFYP ABGRD ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG CBWCG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SSA SSJ SSZ T5K Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c443t-28a2bffc63c7a66451c7622a7a4f791866ab4f573c986028c16a685b2166281d3 |
IEDL.DBID | .~1 |
ISSN | 1439-1791 |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Tue Aug 05 10:05:29 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 01:53:58 EDT 2025 Fri Feb 23 02:38:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Introduced honey bee Pollination facilitation Native bees Cross habitat spill-over Prunus avium Agricultural landscapes |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-28a2bffc63c7a66451c7622a7a4f791866ab4f573c986028c16a685b2166281d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3143-5678 0000-0002-2723-8671 0000-0002-6050-4804 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1439179122000445 |
PQID | 2675576822 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69571cb5a8794197a69b5f5f4ba81be8 proquest_miscellaneous_2675576822 crossref_citationtrail_10_1016_j_baae_2022_05_005 crossref_primary_10_1016_j_baae_2022_05_005 elsevier_sciencedirect_doi_10_1016_j_baae_2022_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Basic and applied ecology |
PublicationYear | 2022 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Iwasaki, Barratt, Lord, Mercer, Dickinson (bib0036) 2015; 44 Pywell, Heard, Woodcock, Hinsley, Ridding, Nowakowski, Bullock (bib0059) 2015; 282 Harmon-Threatt (bib0032) 2020; 65 Blitzer, Dormann, Holzschuh, Klein, Rand, Tscharntke (bib0008) 2012; 146 Cunningham, FitzGibbon, Heard (bib0016) 2002; 53 Garibaldi, Steffan-Dewenter, Winfree, Aizen, Bommarco, Cunningham, Kremen, Carvalheiro, Harder, Afik, Bartomeus (bib0028) 2013; 339 Kovács-Hostyánszki, Haenke, Batáry, Jauker, Báldi, Tscharntke, Holzschuh (bib0039) 2013; 23 Heard, Hendrikz (bib0033) 1993; 41 Saunders, Luck, Mayfield (bib0065) 2013; 17 Dormann, Fruend, Blüthgen, Gruber (bib0018) 2009; 2 (bib0061) 2021 Blaauw, Isaacs (bib0007) 2014; 51 Blüthgen, Menzel, Blüthgen (bib0010) 2006; 6 Eeraerts, Van Den Berge, Proesmans, Verheyen, Smagghe, Meeus (bib0022) 2021; 36 Richardson, Richardson, Shepherd (bib0063) 2011 McGregor (bib0052) 1976; 496 Pellow, Henwood, Carolin (bib0058) 2009 Kuznetsova, Brockhoff, Christensen (bib0045) 2017; 82 Martins, Albert, Lechowicz, Gonzalez (bib0050) 2018; 28 Csardi, Nepusz (bib0015) 2006; 1695 Redhead, Woodcock, Pocock, Pywell, Vanbergen, Oliver (bib0062) 2018; 21 Thorp (bib0072) 2000; 222 Földesi, Kovács-Hostyánszki, Kőrösi, Somay, Elek, Markó, Sárospataki, Bakos, Varga, Nyisztor, Báldi (bib0025) 2016; 18 Lundin, Ward, Artz, Boyle, Pitts-Singer, Williams (bib0047) 2017; 46 Schüepp, Herzog, Entling (bib0066) 2014; 281 Mallinger, Gibbs, Gratton (bib0048) 2016; 31 Hoehn, Tscharntke, Tylianakis, Steffan-Dewenter (bib0034) 2008; 275 Dainese, Martin, Aizen, Albrecht, Bartomeus, Bommarco, Ghazoul (bib0017) 2019; 5 Timberlake, Vaughan, Memmott (bib0073) 2019; 56 Eeraerts, Meeus, Van Den Berge, Smagghe (bib0019) 2017; 239 Klein, Vaissiere, Cane, Steffan-Dewenter, Cunningham, Kremen, Tscharntke (bib0038) 2007; 274 Simba, Foord, Thébault, van Veen, Joseph, Seymour (bib0067) 2018; 253 Somerville (bib0069) 1999; DAI 126 Rader, Bartomeus, Garibaldi, Garratt, Howlett, Winfree, Cunningham, Mayfield, Arthur, Andersson, Bommarco (bib0060) 2016; 113 Albrecht, Kleijn, Williams, Tschumi, Blaauw, Bommarco, Campbell, Dainese, Drummond, Entling, Ganser (bib0003) 2020 Holzschuh, Dudenhöffer, Tscharntke (bib0035) 2012; 153 Mandelik, Winfree, Neeson, Kremen (bib0049) 2012; 22 Eeraerts, Piot, Pisman, Claus, Meeus, Smagghe (bib0020) 2021; 56 Trillo, Montero-Castaño, Vilà (bib0074) 2020 Eeraerts, Vanderhaegen, Smagghe, Meeus (bib0023) 2020; 22 Landis (bib0046) 2017; 18 Bartholomée, Aullo, Becquet, Vannier, Lavorel (bib0004) 2020; 293 Samnegård, Persson, Smith (bib0064) 2011; 144 Nakagawa, Johnson, Schielzeth (bib0055) 2017; 14 Morandin, Kremen (bib0053) 2013; 23 Nicholls, Altieri (bib0056) 2013; 33 Kremen (bib0040) 2008 Mayer, Lunden (bib0051) 1991; 88 Eeraerts, Smagghe, Meeus (bib0021) 2019; 284 Osterman, Theodorou, Radzevičiūtė, Schnitker, Paxton (bib0057) 2021; 315 Alomar, González-Estévez, Traveset, Lázaro (bib0001) 2018; 264 Ghazoul (bib0029) 2006; 94 Carvalheiro, Veldtman, Shenkute, Tesfay, Pirk, Donaldson, Nicolson (bib0014) 2011; 14 Grab, Blitzer, Danforth, Loeb, Poveda (bib0030) 2017; 7 Thomson, Wilson, Valenzuela, Malzone (bib0071) 2000; 15 Carvalheiro, Seymour, Nicolson, Veldtman (bib0013) 2012; 49 Stanley, Stout (bib0070) 2014; 215 Garibaldi, Steffan-Dewenter, Kremen, Morales, Bommarco, Cunningham, Carvalheiro, Chacoff, Dudenhöffer, Greenleaf, Holzschuh (bib0027) 2011; 14 Carvalheiro, Biesmeijer, Benadi, Fründ, Stang, Bartomeus, Baldock (bib0012) 2014; 17 González-Varo, Vilà (bib0031) 2017; 212 Nakagawa, Schielzeth (bib0054) 2013; 4 Aizen, Garibaldi, Cunningham, Klein (bib0002) 2008; 18 Burrill, Dietz (bib0011) 1981; 12 Free (bib0026) 1968; 5 Bates, Maechler, Bolker, Walker (bib0005) 2015; 67 Blüthgen, Fründ, Vázquez, Menzel (bib0009) 2008; 89 Jay (bib0037) 1986; 31 Smith, Heard, Beekman, Gloag (bib0068) 2017; 56 Blitzer (10.1016/j.baae.2022.05.005_bib0008) 2012; 146 Blüthgen (10.1016/j.baae.2022.05.005_bib0009) 2008; 89 Ghazoul (10.1016/j.baae.2022.05.005_bib0029) 2006; 94 Redhead (10.1016/j.baae.2022.05.005_bib0062) 2018; 21 Heard (10.1016/j.baae.2022.05.005_bib0033) 1993; 41 Mayer (10.1016/j.baae.2022.05.005_bib0051) 1991; 88 (10.1016/j.baae.2022.05.005_bib0061) 2021 Simba (10.1016/j.baae.2022.05.005_bib0067) 2018; 253 Harmon-Threatt (10.1016/j.baae.2022.05.005_bib0032) 2020; 65 Eeraerts (10.1016/j.baae.2022.05.005_bib0020) 2021; 56 Carvalheiro (10.1016/j.baae.2022.05.005_bib0014) 2011; 14 Jay (10.1016/j.baae.2022.05.005_bib0037) 1986; 31 Hoehn (10.1016/j.baae.2022.05.005_bib0034) 2008; 275 Iwasaki (10.1016/j.baae.2022.05.005_bib0036) 2015; 44 Pellow (10.1016/j.baae.2022.05.005_bib0058) 2009 Carvalheiro (10.1016/j.baae.2022.05.005_bib0013) 2012; 49 Bartholomée (10.1016/j.baae.2022.05.005_bib0004) 2020; 293 Földesi (10.1016/j.baae.2022.05.005_bib0025) 2016; 18 Kuznetsova (10.1016/j.baae.2022.05.005_bib0045) 2017; 82 Lundin (10.1016/j.baae.2022.05.005_bib0047) 2017; 46 Albrecht (10.1016/j.baae.2022.05.005_bib0003) 2020 Eeraerts (10.1016/j.baae.2022.05.005_bib0019) 2017; 239 Mandelik (10.1016/j.baae.2022.05.005_bib0049) 2012; 22 Blüthgen (10.1016/j.baae.2022.05.005_bib0010) 2006; 6 Nakagawa (10.1016/j.baae.2022.05.005_bib0054) 2013; 4 Martins (10.1016/j.baae.2022.05.005_bib0050) 2018; 28 Trillo (10.1016/j.baae.2022.05.005_bib0074) 2020 Timberlake (10.1016/j.baae.2022.05.005_bib0073) 2019; 56 Saunders (10.1016/j.baae.2022.05.005_bib0065) 2013; 17 Rader (10.1016/j.baae.2022.05.005_bib0060) 2016; 113 Grab (10.1016/j.baae.2022.05.005_bib0030) 2017; 7 Garibaldi (10.1016/j.baae.2022.05.005_bib0028) 2013; 339 Pywell (10.1016/j.baae.2022.05.005_bib0059) 2015; 282 Burrill (10.1016/j.baae.2022.05.005_bib0011) 1981; 12 Thomson (10.1016/j.baae.2022.05.005_bib0071) 2000; 15 Bates (10.1016/j.baae.2022.05.005_bib0005) 2015; 67 Smith (10.1016/j.baae.2022.05.005_bib0068) 2017; 56 Kremen (10.1016/j.baae.2022.05.005_bib0040) 2008 McGregor (10.1016/j.baae.2022.05.005_bib0052) 1976; 496 Richardson (10.1016/j.baae.2022.05.005_bib0063) 2011 Eeraerts (10.1016/j.baae.2022.05.005_bib0023) 2020; 22 Dormann (10.1016/j.baae.2022.05.005_bib0018) 2009; 2 Free (10.1016/j.baae.2022.05.005_bib0026) 1968; 5 Mallinger (10.1016/j.baae.2022.05.005_bib0048) 2016; 31 Nicholls (10.1016/j.baae.2022.05.005_bib0056) 2013; 33 Klein (10.1016/j.baae.2022.05.005_bib0038) 2007; 274 Schüepp (10.1016/j.baae.2022.05.005_bib0066) 2014; 281 Stanley (10.1016/j.baae.2022.05.005_bib0070) 2014; 215 Eeraerts (10.1016/j.baae.2022.05.005_bib0021) 2019; 284 Somerville (10.1016/j.baae.2022.05.005_bib0069) 1999; DAI 126 Nakagawa (10.1016/j.baae.2022.05.005_bib0055) 2017; 14 Morandin (10.1016/j.baae.2022.05.005_bib0053) 2013; 23 Blaauw (10.1016/j.baae.2022.05.005_bib0007) 2014; 51 Dainese (10.1016/j.baae.2022.05.005_bib0017) 2019; 5 Aizen (10.1016/j.baae.2022.05.005_bib0002) 2008; 18 Csardi (10.1016/j.baae.2022.05.005_bib0015) 2006; 1695 Landis (10.1016/j.baae.2022.05.005_bib0046) 2017; 18 Bersier (10.1016/j.baae.2022.05.005_fur154) 2002; 83 González-Varo (10.1016/j.baae.2022.05.005_bib0031) 2017; 212 Eeraerts (10.1016/j.baae.2022.05.005_bib0022) 2021; 36 Holzschuh (10.1016/j.baae.2022.05.005_bib0035) 2012; 153 Thorp (10.1016/j.baae.2022.05.005_bib0072) 2000; 222 Carvalheiro (10.1016/j.baae.2022.05.005_bib0012) 2014; 17 Alomar (10.1016/j.baae.2022.05.005_bib0001) 2018; 264 Kovács-Hostyánszki (10.1016/j.baae.2022.05.005_bib0039) 2013; 23 Cunningham (10.1016/j.baae.2022.05.005_bib0016) 2002; 53 Osterman (10.1016/j.baae.2022.05.005_bib0057) 2021; 315 Garibaldi (10.1016/j.baae.2022.05.005_bib0027) 2011; 14 Samnegård (10.1016/j.baae.2022.05.005_bib0064) 2011; 144 |
References_xml | – volume: 7 start-page: 45296 year: 2017 ident: bib0030 article-title: Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops publication-title: Scientific Reports – volume: 21 start-page: 1821 year: 2018 end-page: 1832 ident: bib0062 article-title: Potential landscape-scale pollinator networks across Great Britain: Structure, stability and influence of agricultural land cover publication-title: Ecology Letters – volume: 281 year: 2014 ident: bib0066 article-title: Disentangling multiple drivers of pollination in a landscape-scale experiment publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 14 start-page: 1062 year: 2011 end-page: 1072 ident: bib0027 article-title: Stability of pollination services decreases with isolation from natural areas despite honey bee visits publication-title: Ecology letters – volume: 275 start-page: 2283 year: 2008 end-page: 2291 ident: bib0034 article-title: Functional group diversity of bee pollinators increases crop yield publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 53 start-page: 893 year: 2002 end-page: 900 ident: bib0016 article-title: The future of pollinators for Australian agriculture publication-title: Australian Journal of Agricultural Research – volume: 15 start-page: 11 year: 2000 end-page: 29 ident: bib0071 article-title: Pollen presentation and pollination syndromes, with special reference to Penstemon publication-title: Plant Species Biology – volume: 1695 year: 2006 ident: bib0015 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 2 start-page: 7 year: 2009 end-page: 24 ident: bib0018 article-title: Indices, graphs and null models: Analyzing bipartite ecological networks publication-title: The Open Ecology Journal – volume: 56 start-page: 1585 year: 2019 end-page: 1596 ident: bib0073 article-title: Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees publication-title: Journal of Applied Ecology – volume: 56 start-page: 122 year: 2021 end-page: 131 ident: bib0020 article-title: Landscapes with high amounts of mass-flowering fruit crops reduce the reproduction of two solitary bees publication-title: Basic and Applied Ecology – volume: 4 start-page: 133 year: 2013 end-page: 142 ident: bib0054 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods in Ecology and Evolution – volume: 46 start-page: 559 year: 2017 end-page: 564 ident: bib0047 article-title: Wildflower plantings do not compete with neighboring almond orchards for pollinator visits publication-title: Environmental Entomology – start-page: 1 year: 2020 end-page: 11 ident: bib0074 article-title: Seasonality of bumblebee spillover between strawberry crops and adjacent pinewoods publication-title: Apidologie – volume: 339 start-page: 1608 year: 2013 end-page: 1611 ident: bib0028 article-title: Wild pollinators enhance fruit set of crops regardless of honey bee abundance publication-title: Science – volume: 89 start-page: 3387 year: 2008 end-page: 3399 ident: bib0009 article-title: What do interaction network metrics tell us about specialization and biological traits? publication-title: Ecology – volume: 31 start-page: 1523 year: 2016 end-page: 1535 ident: bib0048 article-title: Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods publication-title: Landscape Ecology – volume: 31 start-page: 49 year: 1986 end-page: 65 ident: bib0037 article-title: Spatial management of honey bees on crops publication-title: Annual Review of Entomology – volume: 23 start-page: 1938 year: 2013 end-page: 1946 ident: bib0039 article-title: Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales publication-title: Ecological Applications – volume: 222 start-page: 211 year: 2000 end-page: 223 ident: bib0072 article-title: The collection of pollen by bees publication-title: Plant Systematics and Evolution – volume: 146 start-page: 34 year: 2012 end-page: 43 ident: bib0008 article-title: Spillover of functionally important organisms between managed and natural habitats publication-title: Agriculture, Ecosystems & Environment – year: 2020 ident: bib0003 article-title: The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis publication-title: Ecology Letters – volume: 496 start-page: 93 year: 1976 end-page: 98 ident: bib0052 article-title: Insect pollination of cultivated crop plants publication-title: USDA Agriculture Handbook – volume: 82 start-page: 1 year: 2017 end-page: 26 ident: bib0045 article-title: lmerTest package: Tests in linear mixed effects models publication-title: Journal of Statistical Software – volume: 56 start-page: 50 year: 2017 end-page: 53 ident: bib0068 article-title: Flight range of the Australian stingless bee publication-title: Austral Entomology – volume: 36 start-page: 1377 year: 2021 end-page: 1390 ident: bib0022 article-title: Fruit orchards and woody semi-natural habitat provide complementary resources for pollinators in agricultural landscapes publication-title: Landscape Ecology – volume: 28 start-page: 1093 year: 2018 end-page: 1105 ident: bib0050 article-title: Complementary crops and landscape features sustain wild bee communities publication-title: Ecological Applications – volume: 33 start-page: 257 year: 2013 end-page: 274 ident: bib0056 article-title: Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review publication-title: Agronomy for Sustainable Development – volume: 51 start-page: 890 year: 2014 end-page: 898 ident: bib0007 article-title: Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop publication-title: Journal of Applied Ecology – volume: 17 start-page: 1011 year: 2013 end-page: 1025 ident: bib0065 article-title: Almond orchards with living ground cover host more wild insect pollinators publication-title: Journal of Insect Conservation – volume: 41 start-page: 343 year: 1993 end-page: 353 ident: bib0033 article-title: Factors influencing flight activity of colonies of the stingless bee publication-title: Australian Journal of Zoology – start-page: 10 year: 2008 end-page: 26 ident: bib0040 article-title: Crop pollination services from wild bees publication-title: Bee pollination in agricultural ecosystems – volume: 6 start-page: 9 year: 2006 ident: bib0010 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – volume: 94 start-page: 295 year: 2006 end-page: 304 ident: bib0029 article-title: Floral diversity and the facilitation of pollination publication-title: Journal of Ecology – volume: 153 start-page: 101 year: 2012 end-page: 107 ident: bib0035 article-title: Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry publication-title: Biological Conservation – volume: 88 start-page: 15 year: 1991 end-page: 17 ident: bib0051 article-title: Honey bee foraging on dandelion and apple in apple orchards publication-title: Journal of the Entomological Society of British Columbia – year: 2011 ident: bib0063 article-title: (No. Ed. 2) – year: 2009 ident: bib0058 article-title: Flora of the Sydney region – volume: 23 start-page: 829 year: 2013 end-page: 839 ident: bib0053 article-title: Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields publication-title: Ecological Applications – volume: 65 start-page: 39 year: 2020 end-page: 56 ident: bib0032 article-title: Influence of nesting characteristics on health of wild bee communities publication-title: Annual Review of Entomology – volume: 253 start-page: 148 year: 2018 end-page: 156 ident: bib0067 article-title: Indirect interactions between crops and natural vegetation through flower visitors: The importance of temporal as well as spatial spillover publication-title: Agriculture, Ecosystems & Environment – volume: 315 year: 2021 ident: bib0057 article-title: Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape publication-title: Agriculture, Ecosystems & Environment – year: 2021 ident: bib0061 article-title: R: A language and environment for statistical computing – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib0005 article-title: Fitting linear mixed-effects models using lme4 publication-title: Journal of Statistical Software – volume: 14 year: 2017 ident: bib0055 article-title: The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded publication-title: Journal of the Royal Society Interface – volume: 215 start-page: 315 year: 2014 end-page: 325 ident: bib0070 article-title: Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: Implications for wild plant pollination publication-title: Plant Ecology – volume: 22 start-page: 75 year: 2020 end-page: 82 ident: bib0023 article-title: Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry publication-title: Agricultural and Forest Entomology – volume: 113 start-page: 146 year: 2016 end-page: 151 ident: bib0060 article-title: Non-bee insects are important contributors to global crop pollination publication-title: Proceedings of the National Academy of Sciences – volume: 144 start-page: 2602 year: 2011 end-page: 2606 ident: bib0064 article-title: Gardens benefit bees and enhance pollination in intensively managed farmland publication-title: Biological Conservation – volume: 5 start-page: 169 year: 1968 end-page: 178 ident: bib0026 article-title: Dandelion as a competitor to fruit trees for bee visits publication-title: Journal of Applied Ecology – volume: 17 start-page: 1389 year: 2014 end-page: 1399 ident: bib0012 article-title: The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness publication-title: Ecology Letters – volume: 49 start-page: 1373 year: 2012 end-page: 1383 ident: bib0013 article-title: Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study publication-title: Journal of Applied Ecology – volume: 239 start-page: 342 year: 2017 end-page: 348 ident: bib0019 article-title: Landscapes with high intensive fruit cultivation reduce wild pollinator services to sweet cherry publication-title: Agriculture, Ecosystems & Environment – volume: 44 start-page: 694 year: 2015 end-page: 704 ident: bib0036 article-title: The New Zealand experience of varroa invasion highlights research opportunities for Australia publication-title: Ambio – volume: 274 start-page: 303 year: 2007 end-page: 313 ident: bib0038 article-title: Importance of pollinators in changing landscapes for world crops publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 22 start-page: 1535 year: 2012 end-page: 1546 ident: bib0049 article-title: Complementary habitat use by wild bees in agro-natural landscapes publication-title: Ecological Applications – volume: 18 start-page: 68 year: 2016 end-page: 75 ident: bib0025 article-title: Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts publication-title: Agricultural and Forest Entomology – volume: 212 start-page: 376 year: 2017 end-page: 382 ident: bib0031 article-title: Spillover of managed honey bees from mass-flowering crops into natural habitats publication-title: Biological Conservation – volume: 293 year: 2020 ident: bib0004 article-title: Pollinator presence in orchards depends on landscape-scale habitats more than in-field flower resources publication-title: Agriculture, Ecosystems & Environment – volume: 18 start-page: 1 year: 2017 end-page: 12 ident: bib0046 article-title: Designing agricultural landscapes for biodiversity-based ecosystem services publication-title: Basic and Applied Ecology – volume: DAI 126 year: 1999 ident: bib0069 article-title: Honey bees in cherry and plum pollination publication-title: NSW Agriculture Agnote – volume: 14 start-page: 251 year: 2011 end-page: 259 ident: bib0014 article-title: Natural and within-farmland biodiversity enhances crop productivity publication-title: Ecology Letters – volume: 264 start-page: 34 year: 2018 end-page: 43 ident: bib0001 article-title: The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees publication-title: Agriculture, Ecosystems & Environment – volume: 18 start-page: 1572 year: 2008 end-page: 1575 ident: bib0002 article-title: Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency publication-title: Current Biology – volume: 12 start-page: 319 year: 1981 end-page: 328 ident: bib0011 article-title: The response of honey bees to variations in solar radiation and temperature publication-title: Apidologie – volume: 284 year: 2019 ident: bib0021 article-title: Pollinator diversity, floral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry publication-title: Agriculture, Ecosystems & Environment – volume: 5 start-page: eaax0121 year: 2019 ident: bib0017 article-title: A global synthesis reveals biodiversity-mediated benefits for crop production publication-title: Science Advances – volume: 282 year: 2015 ident: bib0059 article-title: Wildlife-friendly farming increases crop yield: Evidence for ecological intensification publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2011 ident: 10.1016/j.baae.2022.05.005_bib0063 – volume: 67 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.baae.2022.05.005_bib0005 article-title: Fitting linear mixed-effects models using lme4 publication-title: Journal of Statistical Software doi: 10.18637/jss.v067.i01 – volume: 6 start-page: 9 issue: 1 year: 2006 ident: 10.1016/j.baae.2022.05.005_bib0010 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology doi: 10.1186/1472-6785-6-9 – volume: 144 start-page: 2602 year: 2011 ident: 10.1016/j.baae.2022.05.005_bib0064 article-title: Gardens benefit bees and enhance pollination in intensively managed farmland publication-title: Biological Conservation doi: 10.1016/j.biocon.2011.07.008 – volume: 275 start-page: 2283 issue: 1648 year: 2008 ident: 10.1016/j.baae.2022.05.005_bib0034 article-title: Functional group diversity of bee pollinators increases crop yield publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2008.0405 – volume: 253 start-page: 148 year: 2018 ident: 10.1016/j.baae.2022.05.005_bib0067 article-title: Indirect interactions between crops and natural vegetation through flower visitors: The importance of temporal as well as spatial spillover publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2017.11.002 – volume: 82 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0045 article-title: lmerTest package: Tests in linear mixed effects models publication-title: Journal of Statistical Software – volume: 22 start-page: 75 issue: 1 year: 2020 ident: 10.1016/j.baae.2022.05.005_bib0023 article-title: Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry publication-title: Agricultural and Forest Entomology doi: 10.1111/afe.12363 – volume: 274 start-page: 303 issue: 1608 year: 2007 ident: 10.1016/j.baae.2022.05.005_bib0038 article-title: Importance of pollinators in changing landscapes for world crops publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2006.3721 – volume: 315 year: 2021 ident: 10.1016/j.baae.2022.05.005_bib0057 article-title: Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107383 – volume: 153 start-page: 101 year: 2012 ident: 10.1016/j.baae.2022.05.005_bib0035 article-title: Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry publication-title: Biological Conservation doi: 10.1016/j.biocon.2012.04.032 – volume: 46 start-page: 559 issue: 3 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0047 article-title: Wildflower plantings do not compete with neighboring almond orchards for pollinator visits publication-title: Environmental Entomology doi: 10.1093/ee/nvx052 – volume: 65 start-page: 39 year: 2020 ident: 10.1016/j.baae.2022.05.005_bib0032 article-title: Influence of nesting characteristics on health of wild bee communities publication-title: Annual Review of Entomology doi: 10.1146/annurev-ento-011019-024955 – volume: 17 start-page: 1389 issue: 11 year: 2014 ident: 10.1016/j.baae.2022.05.005_bib0012 article-title: The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness publication-title: Ecology Letters doi: 10.1111/ele.12342 – volume: 31 start-page: 49 issue: 1 year: 1986 ident: 10.1016/j.baae.2022.05.005_bib0037 article-title: Spatial management of honey bees on crops publication-title: Annual Review of Entomology doi: 10.1146/annurev.en.31.010186.000405 – volume: 41 start-page: 343 issue: 4 year: 1993 ident: 10.1016/j.baae.2022.05.005_bib0033 article-title: Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae) publication-title: Australian Journal of Zoology doi: 10.1071/ZO9930343 – volume: 14 issue: 134 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0055 article-title: The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2017.0213 – volume: 33 start-page: 257 issue: 2 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0056 article-title: Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review publication-title: Agronomy for Sustainable Development doi: 10.1007/s13593-012-0092-y – year: 2009 ident: 10.1016/j.baae.2022.05.005_bib0058 – volume: 215 start-page: 315 issue: 3 year: 2014 ident: 10.1016/j.baae.2022.05.005_bib0070 article-title: Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: Implications for wild plant pollination publication-title: Plant Ecology doi: 10.1007/s11258-014-0301-7 – volume: 284 year: 2019 ident: 10.1016/j.baae.2022.05.005_bib0021 article-title: Pollinator diversity, floral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2019.106586 – volume: 44 start-page: 694 issue: 7 year: 2015 ident: 10.1016/j.baae.2022.05.005_bib0036 article-title: The New Zealand experience of varroa invasion highlights research opportunities for Australia publication-title: Ambio doi: 10.1007/s13280-015-0679-z – volume: 56 start-page: 50 issue: 1 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0068 article-title: Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae) publication-title: Austral Entomology doi: 10.1111/aen.12206 – volume: 22 start-page: 1535 issue: 5 year: 2012 ident: 10.1016/j.baae.2022.05.005_bib0049 article-title: Complementary habitat use by wild bees in agro-natural landscapes publication-title: Ecological Applications – start-page: 1 year: 2020 ident: 10.1016/j.baae.2022.05.005_bib0074 article-title: Seasonality of bumblebee spillover between strawberry crops and adjacent pinewoods publication-title: Apidologie – volume: 23 start-page: 1938 issue: 8 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0039 article-title: Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales publication-title: Ecological Applications doi: 10.1890/12-2012.1 – volume: 264 start-page: 34 year: 2018 ident: 10.1016/j.baae.2022.05.005_bib0001 article-title: The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2018.05.004 – volume: 15 start-page: 11 issue: 1 year: 2000 ident: 10.1016/j.baae.2022.05.005_bib0071 article-title: Pollen presentation and pollination syndromes, with special reference to Penstemon publication-title: Plant Species Biology doi: 10.1046/j.1442-1984.2000.00026.x – volume: 339 start-page: 1608 issue: 6127 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0028 article-title: Wild pollinators enhance fruit set of crops regardless of honey bee abundance publication-title: Science doi: 10.1126/science.1230200 – volume: 89 start-page: 3387 issue: 12 year: 2008 ident: 10.1016/j.baae.2022.05.005_bib0009 article-title: What do interaction network metrics tell us about specialization and biological traits? publication-title: Ecology doi: 10.1890/07-2121.1 – year: 2020 ident: 10.1016/j.baae.2022.05.005_bib0003 article-title: The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis publication-title: Ecology Letters doi: 10.1111/ele.13576 – volume: 1695 year: 2006 ident: 10.1016/j.baae.2022.05.005_bib0015 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 56 start-page: 1585 issue: 7 year: 2019 ident: 10.1016/j.baae.2022.05.005_bib0073 article-title: Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees publication-title: Journal of Applied Ecology doi: 10.1111/1365-2664.13403 – volume: 36 start-page: 1377 issue: 5 year: 2021 ident: 10.1016/j.baae.2022.05.005_bib0022 article-title: Fruit orchards and woody semi-natural habitat provide complementary resources for pollinators in agricultural landscapes publication-title: Landscape Ecology doi: 10.1007/s10980-021-01220-y – volume: 31 start-page: 1523 issue: 7 year: 2016 ident: 10.1016/j.baae.2022.05.005_bib0048 article-title: Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods publication-title: Landscape Ecology doi: 10.1007/s10980-015-0332-z – volume: 18 start-page: 1 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0046 article-title: Designing agricultural landscapes for biodiversity-based ecosystem services publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2016.07.005 – year: 2021 ident: 10.1016/j.baae.2022.05.005_bib0061 – volume: 113 start-page: 146 issue: 1 year: 2016 ident: 10.1016/j.baae.2022.05.005_bib0060 article-title: Non-bee insects are important contributors to global crop pollination publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1517092112 – start-page: 10 year: 2008 ident: 10.1016/j.baae.2022.05.005_bib0040 article-title: Crop pollination services from wild bees – volume: 14 start-page: 251 issue: 3 year: 2011 ident: 10.1016/j.baae.2022.05.005_bib0014 article-title: Natural and within-farmland biodiversity enhances crop productivity publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2010.01579.x – volume: 14 start-page: 1062 issue: 10 year: 2011 ident: 10.1016/j.baae.2022.05.005_bib0027 article-title: Stability of pollination services decreases with isolation from natural areas despite honey bee visits publication-title: Ecology letters doi: 10.1111/j.1461-0248.2011.01669.x – volume: 88 start-page: 15 year: 1991 ident: 10.1016/j.baae.2022.05.005_bib0051 article-title: Honey bee foraging on dandelion and apple in apple orchards publication-title: Journal of the Entomological Society of British Columbia – volume: 21 start-page: 1821 issue: 12 year: 2018 ident: 10.1016/j.baae.2022.05.005_bib0062 article-title: Potential landscape-scale pollinator networks across Great Britain: Structure, stability and influence of agricultural land cover publication-title: Ecology Letters doi: 10.1111/ele.13157 – volume: 239 start-page: 342 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0019 article-title: Landscapes with high intensive fruit cultivation reduce wild pollinator services to sweet cherry publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2017.01.031 – volume: 281 issue: 1774 year: 2014 ident: 10.1016/j.baae.2022.05.005_bib0066 article-title: Disentangling multiple drivers of pollination in a landscape-scale experiment publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 12 start-page: 319 issue: 4 year: 1981 ident: 10.1016/j.baae.2022.05.005_bib0011 article-title: The response of honey bees to variations in solar radiation and temperature publication-title: Apidologie doi: 10.1051/apido:19810402 – volume: 282 issue: 1816 year: 2015 ident: 10.1016/j.baae.2022.05.005_bib0059 article-title: Wildlife-friendly farming increases crop yield: Evidence for ecological intensification publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 28 start-page: 1093 issue: 4 year: 2018 ident: 10.1016/j.baae.2022.05.005_bib0050 article-title: Complementary crops and landscape features sustain wild bee communities publication-title: Ecological Applications doi: 10.1002/eap.1713 – volume: 51 start-page: 890 issue: 4 year: 2014 ident: 10.1016/j.baae.2022.05.005_bib0007 article-title: Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop publication-title: Journal of Applied Ecology doi: 10.1111/1365-2664.12257 – volume: 17 start-page: 1011 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0065 article-title: Almond orchards with living ground cover host more wild insect pollinators publication-title: Journal of Insect Conservation doi: 10.1007/s10841-013-9584-6 – volume: 5 start-page: eaax0121 issue: 10 year: 2019 ident: 10.1016/j.baae.2022.05.005_bib0017 article-title: A global synthesis reveals biodiversity-mediated benefits for crop production publication-title: Science Advances doi: 10.1126/sciadv.aax0121 – volume: 23 start-page: 829 issue: 4 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0053 article-title: Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields publication-title: Ecological Applications doi: 10.1890/12-1051.1 – volume: 56 start-page: 122 year: 2021 ident: 10.1016/j.baae.2022.05.005_bib0020 article-title: Landscapes with high amounts of mass-flowering fruit crops reduce the reproduction of two solitary bees publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2021.07.005 – volume: 222 start-page: 211 year: 2000 ident: 10.1016/j.baae.2022.05.005_bib0072 article-title: The collection of pollen by bees publication-title: Plant Systematics and Evolution doi: 10.1007/BF00984103 – volume: 212 start-page: 376 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0031 article-title: Spillover of managed honey bees from mass-flowering crops into natural habitats publication-title: Biological Conservation doi: 10.1016/j.biocon.2017.06.018 – volume: 83 start-page: 2394 issue: 9 year: 2002 ident: 10.1016/j.baae.2022.05.005_fur154 article-title: Quantitative descriptors of food-web matrices publication-title: Ecology doi: 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 – volume: 7 start-page: 45296 year: 2017 ident: 10.1016/j.baae.2022.05.005_bib0030 article-title: Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops publication-title: Scientific Reports doi: 10.1038/srep45296 – volume: 5 start-page: 169 issue: 1 year: 1968 ident: 10.1016/j.baae.2022.05.005_bib0026 article-title: Dandelion as a competitor to fruit trees for bee visits publication-title: Journal of Applied Ecology doi: 10.2307/2401281 – volume: 94 start-page: 295 issue: 2 year: 2006 ident: 10.1016/j.baae.2022.05.005_bib0029 article-title: Floral diversity and the facilitation of pollination publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2006.01098.x – volume: 146 start-page: 34 issue: 1 year: 2012 ident: 10.1016/j.baae.2022.05.005_bib0008 article-title: Spillover of functionally important organisms between managed and natural habitats publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2011.09.005 – volume: DAI 126 year: 1999 ident: 10.1016/j.baae.2022.05.005_bib0069 article-title: Honey bees in cherry and plum pollination publication-title: NSW Agriculture Agnote – volume: 53 start-page: 893 issue: 8 year: 2002 ident: 10.1016/j.baae.2022.05.005_bib0016 article-title: The future of pollinators for Australian agriculture publication-title: Australian Journal of Agricultural Research doi: 10.1071/AR01186 – volume: 496 start-page: 93 year: 1976 ident: 10.1016/j.baae.2022.05.005_bib0052 article-title: Insect pollination of cultivated crop plants publication-title: USDA Agriculture Handbook – volume: 2 start-page: 7 year: 2009 ident: 10.1016/j.baae.2022.05.005_bib0018 article-title: Indices, graphs and null models: Analyzing bipartite ecological networks publication-title: The Open Ecology Journal doi: 10.2174/1874213000902010007 – volume: 293 year: 2020 ident: 10.1016/j.baae.2022.05.005_bib0004 article-title: Pollinator presence in orchards depends on landscape-scale habitats more than in-field flower resources publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2019.106806 – volume: 18 start-page: 68 issue: 1 year: 2016 ident: 10.1016/j.baae.2022.05.005_bib0025 article-title: Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts publication-title: Agricultural and Forest Entomology doi: 10.1111/afe.12135 – volume: 4 start-page: 133 issue: 2 year: 2013 ident: 10.1016/j.baae.2022.05.005_bib0054 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210x.2012.00261.x – volume: 49 start-page: 1373 issue: 6 year: 2012 ident: 10.1016/j.baae.2022.05.005_bib0013 article-title: Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study publication-title: Journal of Applied Ecology doi: 10.1111/j.1365-2664.2012.02217.x – volume: 18 start-page: 1572 issue: 20 year: 2008 ident: 10.1016/j.baae.2022.05.005_bib0002 article-title: Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency publication-title: Current Biology doi: 10.1016/j.cub.2008.08.066 |
SSID | ssj0014038 |
Score | 2.4097693 |
Snippet | Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36 |
SubjectTerms | Agricultural landscapes agroecosystems animals Apis mellifera applied ecology Australia cherries Cross habitat spill-over flowers fruits honey indigenous species Introduced honey bee landscapes Native bees orchards pollination Pollination facilitation pollinators Prunus avium Syrphidae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iLHgRXRXHH0sEb1Js0iRtjyojsoc9KXgLSSYBZegMtoPMf-97SeqPPbiXvYWStCHvpe8Lee_7CDkXQcoGHKcwVUBSbdhz1jKsRpM14JFq1viYbfFH3T2I34_y8ZPUF-aEJXrgtHCXqpU1c1aaBjyHtbVRrZVBBmENIC4fy3wh5o2HqXx_IMqoYQ1goI0EnLlcJmV2WWOQIJPzyNmJwnWfQlJk7v8Smf76R8fAc7tDtjNipFdpprtkw3c_yY-kIbmG1tTl1sH0o2gNBuRd2--R1c2iCHOUQ4M4RZdzTH2h_WqJ0JvOYmKGp8vIzo1HcGiOol49Nd2MBuMSl_eXXliVnu7x6bCg_av3A0UPeFlTlAXr98nD7fT-5q7IcguFE6IaCt4YbkNwqnKwykpI5uBPyU1tRIAlbJQyFkxbV65F4arGMWVUIy1nSnGAvdUB2ewWnT8kVKoQ2MwpG-ogTNlaYQH3-VoJW7aGlRPCxhXXLs8VJTHmekw6e9ZoJY1W0qXUYKUJuXgfs0xMHN_2vkZDvvdEFu34AHxLZ9_S__KtCZGjG-gMSBLQgFc9ffvxs9FnNOxWvIIxnV-ses3hfIYnPM6P_scEj8kWfjblvJ2QzeFl5U8BJA32V9wPb8vXDiQ priority: 102 providerName: Directory of Open Access Journals |
Title | Co-flowering plants support diverse pollinator populations and facilitate pollinator visitation to sweet cherry crops |
URI | https://dx.doi.org/10.1016/j.baae.2022.05.005 https://www.proquest.com/docview/2675576822 https://doaj.org/article/69571cb5a8794197a69b5f5f4ba81be8 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLlkIvpa-l6SOo0FtxE8mSbB-3IUv6YCltF_YmJEUqKcE2sUPZS397Z2Q5bXrYQ0-WhWTLmtHMyJr5hpDXIkhZAuNkJg8Iqg1rzlqG0WiyAHskX5c-eltcqtWV-HAtr0_IYoyFQbfKJPsHmR6ldaqZpdmctZvN7CvDoNGiYpzHY0kMNBeiQC5_--vg5oFwdDEcDhpHKM4UODP4eFljECqT84jeiSns_lJOEcP_SEf9I62jCrp4QO4n25GeD8N7SE58_YjcHbJJ3kBp6VLpbPknfA06pPXbPSb7RZOFLSZGA41F2y06wdBu36IRTtfRRcPTNuJ042YcimN6r46aek2DcQOq91ErjE8fTvRp39Dup_c9RV7Y3VBMENY9IVcXy2-LVZYSL2ROiLzPeGm4DcGp3BVGKSGZA5nJTWFEgCkslTIWiFzkrsIUVqVjyqhSWs6U4mAA52fktG5q_5RQqUJga6dsKIIw88oKCxagL5Sw88qw-YSwcca1S2PF5BhbPbqf_dBIJY1U0nOpgUoT8ubQpx0wOW5t_Q4JeWiJeNqxotl914mhtKpkwZyVpgT5xCr46srKIIOwBux6X06IHNlAH7EnPGpz68tfjTyjYd3iYYypfbPvNIedGu71OH_2n89-Tu7h3eDw9oKc9ru9fwkWUm-ncQlMyZ3zxZdPn_H6_uPqchr_N_wGSGAShA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEIIL4muiGx9GghMKrR3bSQ4cYHTq2NiFTdrN2K6NiqomalJNvfBP8Q_ynpMUymEHpN2s1HETv-f3ofze-xHyWgQpc1CcxKQBm2rDmbOWYTWazCAeSae5j2iLMzW5EJ8v5eUO-dXXwiCssrP9rU2P1rq7Mux2c1jNZsOvDItGs4JxHj9L9sjKE7--grytfn_8CYT8hvOj8fnhJOmoBRInRNokPDfchuBU6jKjlJDMgVXgJjMiwJK5UsbCa2SpK5CkKXdMGZVLy5lSHEK8FNa9RW4LMBdIm_Du5wZXgv3vYv0dPF3s_dlV6rSgMmsM9ubkPLYLRc68v7xhJA3Ycor_uIfo844ekPtdsEo_tPvxkOz4xSNyp6WvXMNo7LrR3vhPvRzc0BmM-jFZHZZJmCMTG7hIWs0RdUPrVYVRP51GTIinVWwMjtk_DHs-sZqaxZQG49o24luzsCC-hRDQpqT1lfcNReVbrikyktVPyMWNiGOP7C7KhX9KqFQhsKlTNmRBmFFhhYWQ02dK2FFh2GhAWL_j2nXPimwcc93j3X5olJJGKemR1CClAXm7uadqm4BcO_sjCnIzExt4xwvl8rvuNFirQmbMWWlyMIisgLcurAwyCGsgkfD5gMheDfTWeYClZtf--ateZzQYCvz6Yxa-XNWaQ2qIySXn-_-59ktyd3L-5VSfHp-dHJB7-EuLtntGdpvlyj-H8KyxL-JxoOTbTZ-_360pSZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-flowering+plants+support+diverse+pollinator+populations+and+facilitate+pollinator+visitation+to+sweet+cherry+crops&rft.jtitle=Basic+and+applied+ecology&rft.au=Gilpin%2C+Amy-Marie&rft.au=O%27Brien%2C+Corey&rft.au=Kobel%2C+Conrad&rft.au=Brettell%2C+Laura+E.&rft.date=2022-09-01&rft.issn=1439-1791&rft.volume=63&rft.spage=36&rft.epage=48&rft_id=info:doi/10.1016%2Fj.baae.2022.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_baae_2022_05_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon |