Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC
In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. The LINAC was converted to deliver UHDR beam...
Saved in:
Published in | International journal of radiation oncology, biology, physics Vol. 110; no. 3; pp. 872 - 882 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-3016 1879-355X 1879-355X |
DOI | 10.1016/j.ijrobp.2021.01.011 |
Cover
Loading…
Abstract | In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.
The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube–based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.
The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.
At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance. |
---|---|
AbstractList | In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.
The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube–based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.
The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.
At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance. In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.PURPOSEIn this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.METHODS AND MATERIALSThe LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.RESULTSThe surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.CONCLUSIONSAt the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance. |
Author | Zhang, Rongxiao Rahman, Mahbubur Williams, Benjamin B. Thompson, Lawrence Hoopes, P. Jack Bruza, Petr Pogue, Brian W. Ashraf, M. Ramish Cao, Xu Dexter, Chad A. Gladstone, David J. |
Author_xml | – sequence: 1 givenname: Mahbubur surname: Rahman fullname: Rahman, Mahbubur email: Mahbubur.Rahman.th@dartmouth.edu organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 2 givenname: M. Ramish surname: Ashraf fullname: Ashraf, M. Ramish organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 3 givenname: Rongxiao surname: Zhang fullname: Zhang, Rongxiao organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 4 givenname: Petr surname: Bruza fullname: Bruza, Petr organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 5 givenname: Chad A. surname: Dexter fullname: Dexter, Chad A. organization: Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire – sequence: 6 givenname: Lawrence surname: Thompson fullname: Thompson, Lawrence organization: Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire – sequence: 7 givenname: Xu surname: Cao fullname: Cao, Xu organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 8 givenname: Benjamin B. surname: Williams fullname: Williams, Benjamin B. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 9 givenname: P. Jack surname: Hoopes fullname: Hoopes, P. Jack organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 10 givenname: Brian W. surname: Pogue fullname: Pogue, Brian W. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 11 givenname: David J. surname: Gladstone fullname: Gladstone, David J. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33444695$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/23198550$$D View this record in Osti.gov |
BookMark | eNqFkU9rGzEQxUVIaZy036AUQS-9rCutpP1TSsFsncZgWmgSyE1o5VkqZ1dyJTngb19t1rnkYhjQCP3eE_PmEp1bZwGhD5TMKaHFl-3cbL1rd_Oc5HROxqJnaEarss6YEA_naEZYQTKW4At0GcKWkISU_C26YIxzXtRihh6XPejoncXX68XtDf4BvXkCf8Aq4jsPKg5gI_7j3IBXwel0AY875_Gy64w2z4-QBMG0PeDG2ec-2bkOK9z0xhqterxe_Vo079CbTvUB3h_PK3R_vbxrbrL175-rZrHONOcsZjnXCtq2FRQKATXQoiI1y4XmJSkJL1uxqRkvVdHmZUVrDTnkBU89Y0laVewKfZp8XYhGBm0i6L_aWZsmlTmjdSUESdTnidp5928PIcrBBA19ryy4fZA5LytRVym0hH48ovt2gI3ceTMof5AvMSbg6wRo70Lw0Mn0qYoph-iV6SUlctyZ3MppZ3LcmSRj0STmr8Qv_idk3ycZpCifDPhxUrAaNsaPg26cOWXw7ZWBPq7rEQ6n5f8BpJTEUg |
CitedBy_id | crossref_primary_10_37549_ARO1280 crossref_primary_10_1088_1742_6596_2630_1_012011 crossref_primary_10_1002_mp_16474 crossref_primary_10_1002_mp_17121 crossref_primary_10_1002_mp_15222 crossref_primary_10_1002_mp_15662 crossref_primary_10_1002_mp_15105 crossref_primary_10_1002_mp_16832 crossref_primary_10_1016_j_ijrobp_2021_10_148 crossref_primary_10_1016_j_radonc_2024_110507 crossref_primary_10_1088_1748_0221_17_02_T02002 crossref_primary_10_1002_mp_15659 crossref_primary_10_1038_s41598_022_19211_7 crossref_primary_10_1002_mp_16909 crossref_primary_10_3390_ijms252312506 crossref_primary_10_1016_j_radphyschem_2023_110760 crossref_primary_10_1109_TRPMS_2021_3091406 crossref_primary_10_1088_1361_6560_ac0390 crossref_primary_10_1002_mp_17031 crossref_primary_10_1002_mp_17398 crossref_primary_10_1002_mp_17553 crossref_primary_10_1002_acm2_14159 crossref_primary_10_1088_1361_6560_ace877 crossref_primary_10_1016_j_prro_2022_10_011 crossref_primary_10_1002_mp_15579 crossref_primary_10_1016_j_ijrobp_2024_01_215 crossref_primary_10_1016_j_canrad_2024_07_001 crossref_primary_10_1016_j_radonc_2022_08_005 crossref_primary_10_1667_RADE_23_00057 crossref_primary_10_1002_mp_15649 crossref_primary_10_1016_j_ijrobp_2023_04_018 crossref_primary_10_1016_j_radonc_2022_08_009 crossref_primary_10_1016_j_radonc_2024_110576 crossref_primary_10_1038_s41571_022_00697_z crossref_primary_10_3389_fphy_2024_1401834 crossref_primary_10_1016_j_ijrobp_2023_07_042 crossref_primary_10_1371_journal_pone_0293191 crossref_primary_10_1002_acm2_70051 crossref_primary_10_1016_j_canrad_2024_07_003 crossref_primary_10_3389_fonc_2021_658004 crossref_primary_10_1002_mp_15442 crossref_primary_10_1016_j_ijrobp_2023_04_011 crossref_primary_10_1002_mp_17425 crossref_primary_10_3390_app13085021 crossref_primary_10_1002_mp_16925 crossref_primary_10_1088_1361_6560_abf2fa crossref_primary_10_1016_j_ijrobp_2024_03_017 crossref_primary_10_1088_1361_6560_ad69fc crossref_primary_10_1088_1361_6560_ad6e50 crossref_primary_10_1002_mp_17573 crossref_primary_10_1002_mp_15671 crossref_primary_10_1002_mp_15276 crossref_primary_10_1016_j_radonc_2023_109822 crossref_primary_10_1088_1361_6560_ac5f6f crossref_primary_10_1016_j_ijrobp_2024_04_068 crossref_primary_10_1103_RevModPhys_96_035002 crossref_primary_10_1016_j_semradonc_2024_02_001 crossref_primary_10_1016_j_radmeas_2024_107330 crossref_primary_10_1667_RADE_23_00177_1 crossref_primary_10_1016_j_ijrobp_2021_03_046 crossref_primary_10_1016_j_ijrobp_2021_03_045 |
Cites_doi | 10.1118/1.3700400 10.1002/mp.12713 10.1002/mp.13311 10.1088/1361-6560/aab1ee 10.1002/mp.13858 10.1120/jacmp.v16i3.5139 10.1016/j.radonc.2018.08.016 10.1002/mp.12066 10.1016/j.meddos.2007.12.003 10.1016/j.ijrobp.2019.10.049 10.1118/1.3190392 10.1073/pnas.1901777116 10.1126/scitranslmed.3008973 10.1038/210212a0 10.1118/1.4939226 10.1016/j.radonc.2019.02.009 10.1118/1.4754797 10.1118/1.595664 10.1002/acm2.13078 10.1080/09553007114550611 10.1002/mp.13708 10.1016/j.radonc.2017.05.003 10.1016/j.radonc.2019.06.006 10.1016/j.ijrobp.2018.06.403 10.1016/j.radonc.2019.01.031 10.1016/j.radonc.2019.04.008 10.1158/1078-0432.CCR-17-3375 10.1002/mp.14253 10.1088/0031-9155/46/5/305 10.1088/0031-9155/32/6/008 10.1016/j.radonc.2019.06.030 10.1016/j.canrad.2015.04.006 10.1016/j.ijrobp.2016.09.018 10.3389/fonc.2019.01563 10.4103/0971-6203.83464 10.1016/j.radonc.2019.06.019 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1016/j.ijrobp.2021.01.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-355X |
EndPage | 882 |
ExternalDocumentID | 23198550 33444695 10_1016_j_ijrobp_2021_01_011 S0360301621000249 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Norris Cotton Cancer Center grantid: P30 CA023108 funderid: https://doi.org/10.13039/100009230 – fundername: Thayer School of Engineering grantid: R01 EB024498 – fundername: NCI NIH HHS grantid: P30 CA023108 – fundername: NIBIB NIH HHS grantid: R01 EB024498 |
GroupedDBID | --- --K .1- .FO 0R~ 1B1 1P~ 1RT 1~5 4.4 457 4G. 53G 5RE 7-5 AAEDT AAEDW AALRI AAWTL AAXUO ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ADBBV AENEX AEVXI AFRHN AFTJW AGCQF AHHHB AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY DU5 EBS EFKBS F5P FDB GBLVA HED HMO IHE J1W KOM LX3 M41 MO0 O9- OC~ OO- RNS ROL RPZ SDG SEL SES SSZ UV1 XH2 Z5R ~S- AAIAV AFCTW AGZHU ALXNB EFJIC ZA5 .55 .GJ 29J 5VS AAQFI AAQQT AAQXK AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFJKZ AFPUW AGQPQ AGRDE AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB FIRID G-2 HMK HVGLF HX~ HZ~ NQ- R2- RIG SAE SEW UDS X7M XPP ZGI CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
ID | FETCH-LOGICAL-c443t-24caebbb51e65e9e16809325c4707047b5d9347a6b27819ce2e2642783324c883 |
ISSN | 0360-3016 1879-355X |
IngestDate | Mon Aug 19 05:39:53 EDT 2024 Thu Jul 10 19:06:22 EDT 2025 Wed Feb 19 02:09:06 EST 2025 Tue Jul 01 01:11:27 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Fri Feb 23 02:44:10 EST 2024 Tue Aug 26 16:33:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-24caebbb51e65e9e16809325c4707047b5d9347a6b27819ce2e2642783324c883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33444695 |
PQID | 2478598000 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_23198550 proquest_miscellaneous_2478598000 pubmed_primary_33444695 crossref_citationtrail_10_1016_j_ijrobp_2021_01_011 crossref_primary_10_1016_j_ijrobp_2021_01_011 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2021_01_011 elsevier_clinicalkey_doi_10_1016_j_ijrobp_2021_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | International journal of radiation oncology, biology, physics |
PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Klein, Hanley, Bayouth (bib43) 2009; 36 Arcovito, Piermattei, D’Abramo, Bassi (bib40) 1985; 12 Bourhis, Montay-Gruel, Gonçalves Jorge (bib42) 2019; 139 Buonanno, Grilj, Brenner (bib13) 2019; 139 Jaccard, Durán, Petersson (bib10) 2018; 45 Jaccard, Petersson, Buchillier (bib29) 2017; 44 Anderson, Lamey, MacPherson, Carlone (bib41) 2015; 16 Montay-Gruel, Acharya, Petersson (bib5) 2019; 116 Meigooni, Das (bib37) 1987; 32 Wilson, Hammond, Higgins, Petersson (bib1) 2020; 9 Montay-Gruel, Petersson, Jaccard (bib6) 2017; 124 Schüler, Trovati, King (bib18) 2017; 97 Podgorsak (bib38) 2005 Diffenderfer, Verginadis, Kim (bib15) 2020; 106 Eling, Bouchet, Nemoz (bib16) 2019; 139 Lewis, Micke, Yu, Chan (bib32) 2012; 39 Ashraf, Bruza, Krishnaswamy, Gladstone, Pogue (bib27) 2019; 46 Karzmark (bib24) 2017 Darafsheh, Hao, Zwart (bib14) 2020; 47 Vozenin, De Fornel, Petersson (bib8) 2019; 25 Patriarca, Fouillade, Auger (bib12) 2018; 102 (bib25) 1999 Khan, Gibbons (bib21) 2014 Bourhis, Sozzi, Jorge (bib9) 2019; 139 Montay-Gruel, Bouchet, Jaccard (bib17) 2018; 129 Suchowerska, Hoban, Butson, Davison, Metcalfe (bib35) 2001; 46 Hornsey, Alper (bib2) 1966; 210 Zhang, Rahman, Ashraf (bib23) 2020, Radiation Research Society; Bozeman, MT León-Marroquín, Mulrow, Darafsheh, Khan (bib30) 2019; 46 Favaudon, Caplier, Monceau (bib7) 2014; 6 Simmons, Lartey, Schüler (bib19) 2019; 139 Lempart, Blad, Adrian (bib20) 2019; 139 Ashraf, Rahman, Zhang (bib28) 2020;8:328 Attix (bib26) 1986 Bazalova-Carter, Esplen (bib11) 2019; 46 Robinson, Esplen, Wells, Bazalova-Carter (bib36) 2020; 21 Hornsey, Bewley (bib3) 1971; 19 Favaudon, Fouillade, Vozenin (bib4) 2015; 19 Xu, Sethi, Glasgow (bib39) 2009; 34 Sharma (bib22) 2011; 36 Khachonkham, Dreindl, Heilemann (bib33) 2018; 63 Karsch, Beyreuther, Burris-Mog (bib31) 2012; 39 Lewis, Chan (bib34) 2016; 43 Jaccard (10.1016/j.ijrobp.2021.01.011_bib10) 2018; 45 Darafsheh (10.1016/j.ijrobp.2021.01.011_bib14) 2020; 47 Arcovito (10.1016/j.ijrobp.2021.01.011_bib40) 1985; 12 Schüler (10.1016/j.ijrobp.2021.01.011_bib18) 2017; 97 Anderson (10.1016/j.ijrobp.2021.01.011_bib41) 2015; 16 Meigooni (10.1016/j.ijrobp.2021.01.011_bib37) 1987; 32 Suchowerska (10.1016/j.ijrobp.2021.01.011_bib35) 2001; 46 Favaudon (10.1016/j.ijrobp.2021.01.011_bib7) 2014; 6 Attix (10.1016/j.ijrobp.2021.01.011_bib26) 1986 Wilson (10.1016/j.ijrobp.2021.01.011_bib1) 2020; 9 Lempart (10.1016/j.ijrobp.2021.01.011_bib20) 2019; 139 (10.1016/j.ijrobp.2021.01.011_bib25) 1999 Bourhis (10.1016/j.ijrobp.2021.01.011_bib42) 2019; 139 Lewis (10.1016/j.ijrobp.2021.01.011_bib32) 2012; 39 Karzmark (10.1016/j.ijrobp.2021.01.011_bib24) 2017 Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib6) 2017; 124 Vozenin (10.1016/j.ijrobp.2021.01.011_bib8) 2019; 25 Karsch (10.1016/j.ijrobp.2021.01.011_bib31) 2012; 39 Favaudon (10.1016/j.ijrobp.2021.01.011_bib4) 2015; 19 Diffenderfer (10.1016/j.ijrobp.2021.01.011_bib15) 2020; 106 Ashraf (10.1016/j.ijrobp.2021.01.011_bib28) 20208328 Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib17) 2018; 129 Hornsey (10.1016/j.ijrobp.2021.01.011_bib2) 1966; 210 Khan (10.1016/j.ijrobp.2021.01.011_bib21) 2014 Khachonkham (10.1016/j.ijrobp.2021.01.011_bib33) 2018; 63 Robinson (10.1016/j.ijrobp.2021.01.011_bib36) 2020; 21 Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib5) 2019; 116 Patriarca (10.1016/j.ijrobp.2021.01.011_bib12) 2018; 102 León-Marroquín (10.1016/j.ijrobp.2021.01.011_bib30) 2019; 46 Hornsey (10.1016/j.ijrobp.2021.01.011_bib3) 1971; 19 Simmons (10.1016/j.ijrobp.2021.01.011_bib19) 2019; 139 Ashraf (10.1016/j.ijrobp.2021.01.011_bib27) 2019; 46 Lewis (10.1016/j.ijrobp.2021.01.011_bib34) 2016; 43 Bourhis (10.1016/j.ijrobp.2021.01.011_bib9) 2019; 139 Buonanno (10.1016/j.ijrobp.2021.01.011_bib13) 2019; 139 Xu (10.1016/j.ijrobp.2021.01.011_bib39) 2009; 34 Sharma (10.1016/j.ijrobp.2021.01.011_bib22) 2011; 36 Zhang (10.1016/j.ijrobp.2021.01.011_bib23) 2020 Jaccard (10.1016/j.ijrobp.2021.01.011_bib29) 2017; 44 Klein (10.1016/j.ijrobp.2021.01.011_bib43) 2009; 36 Podgorsak (10.1016/j.ijrobp.2021.01.011_bib38) 2005 Bazalova-Carter (10.1016/j.ijrobp.2021.01.011_bib11) 2019; 46 Eling (10.1016/j.ijrobp.2021.01.011_bib16) 2019; 139 33811975 - Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):908-909. doi: 10.1016/j.ijrobp.2021.03.046 |
References_xml | – volume: 43 start-page: 643 year: 2016 end-page: 649 ident: bib34 article-title: Technical note: On Gafchromic EBT-XD film and the lateral response artifact: Lateral response corrections for Gafchromic EBT-XD film publication-title: Med Phys – volume: 44 start-page: 725 year: 2017 end-page: 735 ident: bib29 article-title: High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films publication-title: Med Phys – volume: 116 start-page: 10943 year: 2019 end-page: 10951 ident: bib5 article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species publication-title: Proc Natl Acad Sci – volume: 25 start-page: 35 year: 2019 end-page: 42 ident: bib8 article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients publication-title: Clin Cancer Res – volume: 19 start-page: 526 year: 2015 end-page: 531 ident: bib4 article-title: Radiothérapie « flash » à très haut débit de dose: Un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains? publication-title: Cancer/Radiothérapie – year: 2020;8:328 ident: bib28 article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and Cherenkov emission publication-title: Front Phys – volume: 9 start-page: 1563 year: 2020 ident: bib1 article-title: Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold? publication-title: Front Oncol – year: 2020, Radiation Research Society; Bozeman, MT ident: bib23 article-title: Commissioning of the first treatment planning system for electron flash radiation therapy in a clinical setting – volume: 106 start-page: 440 year: 2020 end-page: 448 ident: bib15 article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system publication-title: Int J Radiat Oncol – volume: 21 start-page: 314 year: 2020 end-page: 324 ident: bib36 article-title: Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation publication-title: J Appl Clin Med Phys – volume: 32 start-page: 761 year: 1987 end-page: 768 ident: bib37 article-title: Parametrisation of depth dose for electron beams publication-title: Phys Med Biol – volume: 39 start-page: 6339 year: 2012 end-page: 6350 ident: bib32 article-title: An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan publication-title: Med Phys – volume: 129 start-page: 582 year: 2018 end-page: 588 ident: bib17 article-title: X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice publication-title: Radiother Oncol – volume: 47 start-page: 4348 year: 2020 end-page: 4355 ident: bib14 article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies publication-title: Med Phys – volume: 139 start-page: 40 year: 2019 end-page: 45 ident: bib20 article-title: Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation publication-title: Radiother Oncol – volume: 16 start-page: 359 year: 2015 end-page: 377 ident: bib41 article-title: Simulation of a medical linear accelerator for teaching purposes publication-title: J Appl Clin Med Phys – volume: 46 start-page: 5690 year: 2019 end-page: 5695 ident: bib11 article-title: On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates publication-title: Med Phys – volume: 102 start-page: 619 year: 2018 end-page: 626 ident: bib12 article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system publication-title: Int J Radiat Oncol – year: 2017 ident: bib24 article-title: A Primer on Theory and Operation of Linear Accelerators in Radiation Therapy – volume: 36 start-page: 4197 year: 2009 end-page: 4212 ident: bib43 article-title: Task Group 142 report: Quality assurance of medical accelerators publication-title: Med Phys – volume: 46 start-page: 1044 year: 2019 end-page: 1048 ident: bib27 article-title: Technical note: Time-gating to medical linear accelerator pulses: Stray radiation detector publication-title: Med Phys – volume: 34 start-page: 51 year: 2009 end-page: 56 ident: bib39 article-title: Dosimetry of small circular fields for 6-MeV electron beams publication-title: Med Dosim – year: 1986 ident: bib26 article-title: Introduction to Radiological Physics and Radiation Dosimetry – volume: 139 start-page: 56 year: 2019 end-page: 61 ident: bib16 article-title: Ultra high dose rate synchrotron microbeam radiation therapy. Preclinical evidence in view of a clinical transfer publication-title: Radiother Oncol – volume: 97 start-page: 195 year: 2017 end-page: 203 ident: bib18 article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator publication-title: Int J Radiat Oncol – volume: 210 start-page: 212 year: 1966 end-page: 213 ident: bib2 article-title: Unexpected dose-rate effect in the killing of mice by radiation publication-title: Nature – volume: 63 year: 2018 ident: bib33 article-title: Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams publication-title: Phys Med Biol – volume: 139 start-page: 11 year: 2019 end-page: 17 ident: bib42 article-title: Clinical translation of FLASH radiotherapy: Why and how? publication-title: Radiother Oncol – volume: 19 start-page: 479 year: 1971 end-page: 483 ident: bib3 article-title: Hypoxia in mouse intestine induced by electron irradiation at high dose-rates publication-title: Int J Radiat Biol Relat Stud Phys Chem Med – year: 1999 ident: bib25 publication-title: The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists – volume: 46 start-page: 1391 year: 2001 end-page: 1397 ident: bib35 article-title: Directional dependence in film dosimetry: Radiographic and radiochromic film publication-title: Phys Med Biol – volume: 39 start-page: 2447 year: 2012 end-page: 2455 ident: bib31 article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors: Dose rate dependence for different dosimeters and detectors publication-title: Med Phys – volume: 45 start-page: 863 year: 2018 end-page: 874 ident: bib10 article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use publication-title: Med Phys – volume: 139 start-page: 4 year: 2019 end-page: 10 ident: bib19 article-title: Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation publication-title: Radiother Oncol – year: 2014 ident: bib21 article-title: Khan’s the Physics of Radiation Therapy – year: 2005 ident: bib38 article-title: Radiation Oncology Physics: A Handbook for Teachers and Students – volume: 6 year: 2014 ident: bib7 article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice publication-title: Sci Transl Med – volume: 12 start-page: 779 year: 1985 end-page: 784 ident: bib40 article-title: Dose measurements and calculations of small radiation fields for 9-MV x rays publication-title: Med Phys – volume: 139 start-page: 51 year: 2019 end-page: 55 ident: bib13 article-title: Biological effects in normal cells exposed to FLASH dose rate protons publication-title: Radiother Oncol – volume: 139 start-page: 18 year: 2019 end-page: 22 ident: bib9 article-title: Treatment of a first patient with FLASH-radiotherapy publication-title: Radiother Oncol – volume: 124 start-page: 365 year: 2017 end-page: 369 ident: bib6 article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s publication-title: Radiother Oncol – volume: 36 start-page: 123 year: 2011 end-page: 125 ident: bib22 article-title: Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges publication-title: J Med Phys – volume: 46 start-page: 4246 year: 2019 end-page: 4256 ident: bib30 article-title: Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams publication-title: Med Phys – volume: 39 start-page: 2447 year: 2012 ident: 10.1016/j.ijrobp.2021.01.011_bib31 article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors: Dose rate dependence for different dosimeters and detectors publication-title: Med Phys doi: 10.1118/1.3700400 – volume: 45 start-page: 863 year: 2018 ident: 10.1016/j.ijrobp.2021.01.011_bib10 article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use publication-title: Med Phys doi: 10.1002/mp.12713 – volume: 46 start-page: 1044 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib27 article-title: Technical note: Time-gating to medical linear accelerator pulses: Stray radiation detector publication-title: Med Phys doi: 10.1002/mp.13311 – volume: 63 year: 2018 ident: 10.1016/j.ijrobp.2021.01.011_bib33 article-title: Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams publication-title: Phys Med Biol doi: 10.1088/1361-6560/aab1ee – year: 20208328 ident: 10.1016/j.ijrobp.2021.01.011_bib28 article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and Cherenkov emission publication-title: Front Phys – volume: 46 start-page: 5690 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib11 article-title: On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates publication-title: Med Phys doi: 10.1002/mp.13858 – volume: 16 start-page: 359 year: 2015 ident: 10.1016/j.ijrobp.2021.01.011_bib41 article-title: Simulation of a medical linear accelerator for teaching purposes publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v16i3.5139 – volume: 129 start-page: 582 year: 2018 ident: 10.1016/j.ijrobp.2021.01.011_bib17 article-title: X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.08.016 – year: 2017 ident: 10.1016/j.ijrobp.2021.01.011_bib24 – volume: 44 start-page: 725 year: 2017 ident: 10.1016/j.ijrobp.2021.01.011_bib29 article-title: High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films publication-title: Med Phys doi: 10.1002/mp.12066 – volume: 34 start-page: 51 year: 2009 ident: 10.1016/j.ijrobp.2021.01.011_bib39 article-title: Dosimetry of small circular fields for 6-MeV electron beams publication-title: Med Dosim doi: 10.1016/j.meddos.2007.12.003 – volume: 106 start-page: 440 year: 2020 ident: 10.1016/j.ijrobp.2021.01.011_bib15 article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2019.10.049 – volume: 36 start-page: 4197 year: 2009 ident: 10.1016/j.ijrobp.2021.01.011_bib43 article-title: Task Group 142 report: Quality assurance of medical accelerators publication-title: Med Phys doi: 10.1118/1.3190392 – volume: 116 start-page: 10943 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib5 article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1901777116 – volume: 6 year: 2014 ident: 10.1016/j.ijrobp.2021.01.011_bib7 article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3008973 – volume: 210 start-page: 212 year: 1966 ident: 10.1016/j.ijrobp.2021.01.011_bib2 article-title: Unexpected dose-rate effect in the killing of mice by radiation publication-title: Nature doi: 10.1038/210212a0 – year: 2014 ident: 10.1016/j.ijrobp.2021.01.011_bib21 – volume: 43 start-page: 643 year: 2016 ident: 10.1016/j.ijrobp.2021.01.011_bib34 article-title: Technical note: On Gafchromic EBT-XD film and the lateral response artifact: Lateral response corrections for Gafchromic EBT-XD film publication-title: Med Phys doi: 10.1118/1.4939226 – volume: 139 start-page: 51 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib13 article-title: Biological effects in normal cells exposed to FLASH dose rate protons publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.02.009 – volume: 39 start-page: 6339 year: 2012 ident: 10.1016/j.ijrobp.2021.01.011_bib32 article-title: An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan publication-title: Med Phys doi: 10.1118/1.4754797 – year: 1986 ident: 10.1016/j.ijrobp.2021.01.011_bib26 – volume: 12 start-page: 779 year: 1985 ident: 10.1016/j.ijrobp.2021.01.011_bib40 article-title: Dose measurements and calculations of small radiation fields for 9-MV x rays publication-title: Med Phys doi: 10.1118/1.595664 – year: 2020 ident: 10.1016/j.ijrobp.2021.01.011_bib23 – volume: 21 start-page: 314 year: 2020 ident: 10.1016/j.ijrobp.2021.01.011_bib36 article-title: Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13078 – volume: 19 start-page: 479 year: 1971 ident: 10.1016/j.ijrobp.2021.01.011_bib3 article-title: Hypoxia in mouse intestine induced by electron irradiation at high dose-rates publication-title: Int J Radiat Biol Relat Stud Phys Chem Med doi: 10.1080/09553007114550611 – volume: 46 start-page: 4246 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib30 article-title: Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams publication-title: Med Phys doi: 10.1002/mp.13708 – volume: 124 start-page: 365 year: 2017 ident: 10.1016/j.ijrobp.2021.01.011_bib6 article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.05.003 – volume: 139 start-page: 4 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib19 article-title: Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.06.006 – volume: 102 start-page: 619 year: 2018 ident: 10.1016/j.ijrobp.2021.01.011_bib12 article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2018.06.403 – volume: 139 start-page: 40 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib20 article-title: Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.01.031 – year: 2005 ident: 10.1016/j.ijrobp.2021.01.011_bib38 – volume: 139 start-page: 11 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib42 article-title: Clinical translation of FLASH radiotherapy: Why and how? publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.04.008 – volume: 25 start-page: 35 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib8 article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-3375 – volume: 47 start-page: 4348 year: 2020 ident: 10.1016/j.ijrobp.2021.01.011_bib14 article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies publication-title: Med Phys doi: 10.1002/mp.14253 – volume: 46 start-page: 1391 year: 2001 ident: 10.1016/j.ijrobp.2021.01.011_bib35 article-title: Directional dependence in film dosimetry: Radiographic and radiochromic film publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/5/305 – year: 1999 ident: 10.1016/j.ijrobp.2021.01.011_bib25 – volume: 32 start-page: 761 year: 1987 ident: 10.1016/j.ijrobp.2021.01.011_bib37 article-title: Parametrisation of depth dose for electron beams publication-title: Phys Med Biol doi: 10.1088/0031-9155/32/6/008 – volume: 139 start-page: 56 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib16 article-title: Ultra high dose rate synchrotron microbeam radiation therapy. Preclinical evidence in view of a clinical transfer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.06.030 – volume: 19 start-page: 526 year: 2015 ident: 10.1016/j.ijrobp.2021.01.011_bib4 article-title: Radiothérapie « flash » à très haut débit de dose: Un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains? publication-title: Cancer/Radiothérapie doi: 10.1016/j.canrad.2015.04.006 – volume: 97 start-page: 195 year: 2017 ident: 10.1016/j.ijrobp.2021.01.011_bib18 article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2016.09.018 – volume: 9 start-page: 1563 year: 2020 ident: 10.1016/j.ijrobp.2021.01.011_bib1 article-title: Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold? publication-title: Front Oncol doi: 10.3389/fonc.2019.01563 – volume: 36 start-page: 123 year: 2011 ident: 10.1016/j.ijrobp.2021.01.011_bib22 article-title: Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges publication-title: J Med Phys doi: 10.4103/0971-6203.83464 – volume: 139 start-page: 18 year: 2019 ident: 10.1016/j.ijrobp.2021.01.011_bib9 article-title: Treatment of a first patient with FLASH-radiotherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.06.019 – reference: 33811975 - Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):908-909. doi: 10.1016/j.ijrobp.2021.03.046 |
SSID | ssj0001174 |
Score | 2.5651257 |
Snippet | In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 872 |
SubjectTerms | BEAMS DOSE RATES Electrons - therapeutic use Film Dosimetry - instrumentation Film Dosimetry - methods Humans LINEAR ACCELERATORS Optically Stimulated Luminescence Dosimetry - instrumentation Optically Stimulated Luminescence Dosimetry - methods Particle Accelerators - instrumentation Phantoms, Imaging Photons - therapeutic use RADIOLOGY AND NUCLEAR MEDICINE RADIOTHERAPY Radiotherapy Dosage Radiotherapy, High-Energy - instrumentation Radiotherapy, High-Energy - methods Time Factors |
Title | Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0360301621000249 https://dx.doi.org/10.1016/j.ijrobp.2021.01.011 https://www.ncbi.nlm.nih.gov/pubmed/33444695 https://www.proquest.com/docview/2478598000 https://www.osti.gov/biblio/23198550 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9owFLUYlaq-TPtet27ypL2hVCSx4_CIKiq6lj4wqvEWOY4Z0C6pUpC2_pz90l1_hm1F7SahCMW5QXBP7Hsv5x4j9DHnnBVK6DYsQhEQRpMgTYpuwFMuWRqHxazQbIvzZHhBPk3ptNX6ucFaWq_yQ3F7Z1_J_3gVzoFfVZfsP3jW3xROwHvwLxzBw3B8kI8Hdg-bzvFZ__MQ5o4rxbL4oRoUJ55APobQuHMCTlDqm7WmFQ60boQelJqWodqnjhT_XBfPTM_kkeuZPDs5twKNy4b23lQRN7QnaiV0YELQUvg2mLzpiDF1lIZez-e2ADvi83wN_vX4u5nXXOtFjjpjDlj0VWtf4R5X5dfvC141BYX1LbeU43qzmBGFnvgKa5GZgFPWCyAGmv42Q1vm62Izg7eLdXTnOmBKEsvDxbKuciVLGoVandVM7BvQuP6msRHHBPJis93nH_rbbugR2okgFYHJf6d_Ov5y6tf7EJI615SpmYN_f-ge2nW32Rb_tCuY0renOTrcmTxBj22egvsGdE9RS5bP0O7IMjGeo0uHPayxhx32MF9hjz2ssIc99jBgD3vs4QZ7uMEermaYY4c9rLH3Al0cDyZHw8Bu3BEIQuJVEBHBZZ7nNJQJlT0ZJmkX8gQqCIMVhrCcFr2YMJ7kEYOIVMhIQlyu9nyB8F6kafwStcuqlK8RpjMq4qQnRcEIoQwCWBqlySwnTEYF4-E-it3PmQmraq82V7nKHH1xmRl_ZMofWVe9wCrwVtdG1eWe66nzVOY6lmGNzQBu99gxb2cjWhOpPsDyQAFCWSkxZ6FYb2AG2VhPSRDuow8OKBk8g-pPPl7Kan2TRYSltAdpIFzzyiDIf0WHwTdbR96iveaxPEDtVb2W7yDqXuXvLex_AVQO13o |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+FLASH+Delivery+at+Treatment+Room+Isocenter+for+Efficient+Reversible+Conversion+of+a+Clinical+LINAC&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Rahman%2C+Mahbubur&rft.au=Ashraf%2C+M+Ramish&rft.au=Zhang%2C+Rongxiao&rft.au=Bruza%2C+Petr&rft.date=2021-07-01&rft.eissn=1879-355X&rft.volume=110&rft.issue=3&rft.spage=872&rft_id=info:doi/10.1016%2Fj.ijrobp.2021.01.011&rft_id=info%3Apmid%2F33444695&rft.externalDocID=33444695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon |