Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC

In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. The LINAC was converted to deliver UHDR beam...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 110; no. 3; pp. 872 - 882
Main Authors Rahman, Mahbubur, Ashraf, M. Ramish, Zhang, Rongxiao, Bruza, Petr, Dexter, Chad A., Thompson, Lawrence, Cao, Xu, Williams, Benjamin B., Hoopes, P. Jack, Pogue, Brian W., Gladstone, David J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN0360-3016
1879-355X
1879-355X
DOI10.1016/j.ijrobp.2021.01.011

Cover

Loading…
Abstract In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube–based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies. The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%. At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.
AbstractList In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube–based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies. The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%. At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.
In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.
In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.PURPOSEIn this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy.The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.METHODS AND MATERIALSThe LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies.The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.RESULTSThe surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%.At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.CONCLUSIONSAt the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.
Author Zhang, Rongxiao
Rahman, Mahbubur
Williams, Benjamin B.
Thompson, Lawrence
Hoopes, P. Jack
Bruza, Petr
Pogue, Brian W.
Ashraf, M. Ramish
Cao, Xu
Dexter, Chad A.
Gladstone, David J.
Author_xml – sequence: 1
  givenname: Mahbubur
  surname: Rahman
  fullname: Rahman, Mahbubur
  email: Mahbubur.Rahman.th@dartmouth.edu
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 2
  givenname: M. Ramish
  surname: Ashraf
  fullname: Ashraf, M. Ramish
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 3
  givenname: Rongxiao
  surname: Zhang
  fullname: Zhang, Rongxiao
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 4
  givenname: Petr
  surname: Bruza
  fullname: Bruza, Petr
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 5
  givenname: Chad A.
  surname: Dexter
  fullname: Dexter, Chad A.
  organization: Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
– sequence: 6
  givenname: Lawrence
  surname: Thompson
  fullname: Thompson, Lawrence
  organization: Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
– sequence: 7
  givenname: Xu
  surname: Cao
  fullname: Cao, Xu
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 8
  givenname: Benjamin B.
  surname: Williams
  fullname: Williams, Benjamin B.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 9
  givenname: P. Jack
  surname: Hoopes
  fullname: Hoopes, P. Jack
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 10
  givenname: Brian W.
  surname: Pogue
  fullname: Pogue, Brian W.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 11
  givenname: David J.
  surname: Gladstone
  fullname: Gladstone, David J.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33444695$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/23198550$$D View this record in Osti.gov
BookMark eNqFkU9rGzEQxUVIaZy036AUQS-9rCutpP1TSsFsncZgWmgSyE1o5VkqZ1dyJTngb19t1rnkYhjQCP3eE_PmEp1bZwGhD5TMKaHFl-3cbL1rd_Oc5HROxqJnaEarss6YEA_naEZYQTKW4At0GcKWkISU_C26YIxzXtRihh6XPejoncXX68XtDf4BvXkCf8Aq4jsPKg5gI_7j3IBXwel0AY875_Gy64w2z4-QBMG0PeDG2ec-2bkOK9z0xhqterxe_Vo079CbTvUB3h_PK3R_vbxrbrL175-rZrHONOcsZjnXCtq2FRQKATXQoiI1y4XmJSkJL1uxqRkvVdHmZUVrDTnkBU89Y0laVewKfZp8XYhGBm0i6L_aWZsmlTmjdSUESdTnidp5928PIcrBBA19ryy4fZA5LytRVym0hH48ovt2gI3ceTMof5AvMSbg6wRo70Lw0Mn0qYoph-iV6SUlctyZ3MppZ3LcmSRj0STmr8Qv_idk3ycZpCifDPhxUrAaNsaPg26cOWXw7ZWBPq7rEQ6n5f8BpJTEUg
CitedBy_id crossref_primary_10_37549_ARO1280
crossref_primary_10_1088_1742_6596_2630_1_012011
crossref_primary_10_1002_mp_16474
crossref_primary_10_1002_mp_17121
crossref_primary_10_1002_mp_15222
crossref_primary_10_1002_mp_15662
crossref_primary_10_1002_mp_15105
crossref_primary_10_1002_mp_16832
crossref_primary_10_1016_j_ijrobp_2021_10_148
crossref_primary_10_1016_j_radonc_2024_110507
crossref_primary_10_1088_1748_0221_17_02_T02002
crossref_primary_10_1002_mp_15659
crossref_primary_10_1038_s41598_022_19211_7
crossref_primary_10_1002_mp_16909
crossref_primary_10_3390_ijms252312506
crossref_primary_10_1016_j_radphyschem_2023_110760
crossref_primary_10_1109_TRPMS_2021_3091406
crossref_primary_10_1088_1361_6560_ac0390
crossref_primary_10_1002_mp_17031
crossref_primary_10_1002_mp_17398
crossref_primary_10_1002_mp_17553
crossref_primary_10_1002_acm2_14159
crossref_primary_10_1088_1361_6560_ace877
crossref_primary_10_1016_j_prro_2022_10_011
crossref_primary_10_1002_mp_15579
crossref_primary_10_1016_j_ijrobp_2024_01_215
crossref_primary_10_1016_j_canrad_2024_07_001
crossref_primary_10_1016_j_radonc_2022_08_005
crossref_primary_10_1667_RADE_23_00057
crossref_primary_10_1002_mp_15649
crossref_primary_10_1016_j_ijrobp_2023_04_018
crossref_primary_10_1016_j_radonc_2022_08_009
crossref_primary_10_1016_j_radonc_2024_110576
crossref_primary_10_1038_s41571_022_00697_z
crossref_primary_10_3389_fphy_2024_1401834
crossref_primary_10_1016_j_ijrobp_2023_07_042
crossref_primary_10_1371_journal_pone_0293191
crossref_primary_10_1002_acm2_70051
crossref_primary_10_1016_j_canrad_2024_07_003
crossref_primary_10_3389_fonc_2021_658004
crossref_primary_10_1002_mp_15442
crossref_primary_10_1016_j_ijrobp_2023_04_011
crossref_primary_10_1002_mp_17425
crossref_primary_10_3390_app13085021
crossref_primary_10_1002_mp_16925
crossref_primary_10_1088_1361_6560_abf2fa
crossref_primary_10_1016_j_ijrobp_2024_03_017
crossref_primary_10_1088_1361_6560_ad69fc
crossref_primary_10_1088_1361_6560_ad6e50
crossref_primary_10_1002_mp_17573
crossref_primary_10_1002_mp_15671
crossref_primary_10_1002_mp_15276
crossref_primary_10_1016_j_radonc_2023_109822
crossref_primary_10_1088_1361_6560_ac5f6f
crossref_primary_10_1016_j_ijrobp_2024_04_068
crossref_primary_10_1103_RevModPhys_96_035002
crossref_primary_10_1016_j_semradonc_2024_02_001
crossref_primary_10_1016_j_radmeas_2024_107330
crossref_primary_10_1667_RADE_23_00177_1
crossref_primary_10_1016_j_ijrobp_2021_03_046
crossref_primary_10_1016_j_ijrobp_2021_03_045
Cites_doi 10.1118/1.3700400
10.1002/mp.12713
10.1002/mp.13311
10.1088/1361-6560/aab1ee
10.1002/mp.13858
10.1120/jacmp.v16i3.5139
10.1016/j.radonc.2018.08.016
10.1002/mp.12066
10.1016/j.meddos.2007.12.003
10.1016/j.ijrobp.2019.10.049
10.1118/1.3190392
10.1073/pnas.1901777116
10.1126/scitranslmed.3008973
10.1038/210212a0
10.1118/1.4939226
10.1016/j.radonc.2019.02.009
10.1118/1.4754797
10.1118/1.595664
10.1002/acm2.13078
10.1080/09553007114550611
10.1002/mp.13708
10.1016/j.radonc.2017.05.003
10.1016/j.radonc.2019.06.006
10.1016/j.ijrobp.2018.06.403
10.1016/j.radonc.2019.01.031
10.1016/j.radonc.2019.04.008
10.1158/1078-0432.CCR-17-3375
10.1002/mp.14253
10.1088/0031-9155/46/5/305
10.1088/0031-9155/32/6/008
10.1016/j.radonc.2019.06.030
10.1016/j.canrad.2015.04.006
10.1016/j.ijrobp.2016.09.018
10.3389/fonc.2019.01563
10.4103/0971-6203.83464
10.1016/j.radonc.2019.06.019
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1016/j.ijrobp.2021.01.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage 882
ExternalDocumentID 23198550
33444695
10_1016_j_ijrobp_2021_01_011
S0360301621000249
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Norris Cotton Cancer Center
  grantid: P30 CA023108
  funderid: https://doi.org/10.13039/100009230
– fundername: Thayer School of Engineering
  grantid: R01 EB024498
– fundername: NCI NIH HHS
  grantid: P30 CA023108
– fundername: NIBIB NIH HHS
  grantid: R01 EB024498
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
1RT
1~5
4.4
457
4G.
53G
5RE
7-5
AAEDT
AAEDW
AALRI
AAWTL
AAXUO
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ADBBV
AENEX
AEVXI
AFRHN
AFTJW
AGCQF
AHHHB
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
DU5
EBS
EFKBS
F5P
FDB
GBLVA
HED
HMO
IHE
J1W
KOM
LX3
M41
MO0
O9-
OC~
OO-
RNS
ROL
RPZ
SDG
SEL
SES
SSZ
UV1
XH2
Z5R
~S-
AAIAV
AFCTW
AGZHU
ALXNB
EFJIC
ZA5
.55
.GJ
29J
5VS
AAQFI
AAQQT
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AGRDE
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
FIRID
G-2
HMK
HVGLF
HX~
HZ~
NQ-
R2-
RIG
SAE
SEW
UDS
X7M
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
ID FETCH-LOGICAL-c443t-24caebbb51e65e9e16809325c4707047b5d9347a6b27819ce2e2642783324c883
ISSN 0360-3016
1879-355X
IngestDate Mon Aug 19 05:39:53 EDT 2024
Thu Jul 10 19:06:22 EDT 2025
Wed Feb 19 02:09:06 EST 2025
Tue Jul 01 01:11:27 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Fri Feb 23 02:44:10 EST 2024
Tue Aug 26 16:33:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-24caebbb51e65e9e16809325c4707047b5d9347a6b27819ce2e2642783324c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33444695
PQID 2478598000
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_23198550
proquest_miscellaneous_2478598000
pubmed_primary_33444695
crossref_citationtrail_10_1016_j_ijrobp_2021_01_011
crossref_primary_10_1016_j_ijrobp_2021_01_011
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2021_01_011
elsevier_clinicalkey_doi_10_1016_j_ijrobp_2021_01_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Klein, Hanley, Bayouth (bib43) 2009; 36
Arcovito, Piermattei, D’Abramo, Bassi (bib40) 1985; 12
Bourhis, Montay-Gruel, Gonçalves Jorge (bib42) 2019; 139
Buonanno, Grilj, Brenner (bib13) 2019; 139
Jaccard, Durán, Petersson (bib10) 2018; 45
Jaccard, Petersson, Buchillier (bib29) 2017; 44
Anderson, Lamey, MacPherson, Carlone (bib41) 2015; 16
Montay-Gruel, Acharya, Petersson (bib5) 2019; 116
Meigooni, Das (bib37) 1987; 32
Wilson, Hammond, Higgins, Petersson (bib1) 2020; 9
Montay-Gruel, Petersson, Jaccard (bib6) 2017; 124
Schüler, Trovati, King (bib18) 2017; 97
Podgorsak (bib38) 2005
Diffenderfer, Verginadis, Kim (bib15) 2020; 106
Eling, Bouchet, Nemoz (bib16) 2019; 139
Lewis, Micke, Yu, Chan (bib32) 2012; 39
Ashraf, Bruza, Krishnaswamy, Gladstone, Pogue (bib27) 2019; 46
Karzmark (bib24) 2017
Darafsheh, Hao, Zwart (bib14) 2020; 47
Vozenin, De Fornel, Petersson (bib8) 2019; 25
Patriarca, Fouillade, Auger (bib12) 2018; 102
(bib25) 1999
Khan, Gibbons (bib21) 2014
Bourhis, Sozzi, Jorge (bib9) 2019; 139
Montay-Gruel, Bouchet, Jaccard (bib17) 2018; 129
Suchowerska, Hoban, Butson, Davison, Metcalfe (bib35) 2001; 46
Hornsey, Alper (bib2) 1966; 210
Zhang, Rahman, Ashraf (bib23) 2020, Radiation Research Society; Bozeman, MT
León-Marroquín, Mulrow, Darafsheh, Khan (bib30) 2019; 46
Favaudon, Caplier, Monceau (bib7) 2014; 6
Simmons, Lartey, Schüler (bib19) 2019; 139
Lempart, Blad, Adrian (bib20) 2019; 139
Ashraf, Rahman, Zhang (bib28) 2020;8:328
Attix (bib26) 1986
Bazalova-Carter, Esplen (bib11) 2019; 46
Robinson, Esplen, Wells, Bazalova-Carter (bib36) 2020; 21
Hornsey, Bewley (bib3) 1971; 19
Favaudon, Fouillade, Vozenin (bib4) 2015; 19
Xu, Sethi, Glasgow (bib39) 2009; 34
Sharma (bib22) 2011; 36
Khachonkham, Dreindl, Heilemann (bib33) 2018; 63
Karsch, Beyreuther, Burris-Mog (bib31) 2012; 39
Lewis, Chan (bib34) 2016; 43
Jaccard (10.1016/j.ijrobp.2021.01.011_bib10) 2018; 45
Darafsheh (10.1016/j.ijrobp.2021.01.011_bib14) 2020; 47
Arcovito (10.1016/j.ijrobp.2021.01.011_bib40) 1985; 12
Schüler (10.1016/j.ijrobp.2021.01.011_bib18) 2017; 97
Anderson (10.1016/j.ijrobp.2021.01.011_bib41) 2015; 16
Meigooni (10.1016/j.ijrobp.2021.01.011_bib37) 1987; 32
Suchowerska (10.1016/j.ijrobp.2021.01.011_bib35) 2001; 46
Favaudon (10.1016/j.ijrobp.2021.01.011_bib7) 2014; 6
Attix (10.1016/j.ijrobp.2021.01.011_bib26) 1986
Wilson (10.1016/j.ijrobp.2021.01.011_bib1) 2020; 9
Lempart (10.1016/j.ijrobp.2021.01.011_bib20) 2019; 139
(10.1016/j.ijrobp.2021.01.011_bib25) 1999
Bourhis (10.1016/j.ijrobp.2021.01.011_bib42) 2019; 139
Lewis (10.1016/j.ijrobp.2021.01.011_bib32) 2012; 39
Karzmark (10.1016/j.ijrobp.2021.01.011_bib24) 2017
Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib6) 2017; 124
Vozenin (10.1016/j.ijrobp.2021.01.011_bib8) 2019; 25
Karsch (10.1016/j.ijrobp.2021.01.011_bib31) 2012; 39
Favaudon (10.1016/j.ijrobp.2021.01.011_bib4) 2015; 19
Diffenderfer (10.1016/j.ijrobp.2021.01.011_bib15) 2020; 106
Ashraf (10.1016/j.ijrobp.2021.01.011_bib28) 20208328
Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib17) 2018; 129
Hornsey (10.1016/j.ijrobp.2021.01.011_bib2) 1966; 210
Khan (10.1016/j.ijrobp.2021.01.011_bib21) 2014
Khachonkham (10.1016/j.ijrobp.2021.01.011_bib33) 2018; 63
Robinson (10.1016/j.ijrobp.2021.01.011_bib36) 2020; 21
Montay-Gruel (10.1016/j.ijrobp.2021.01.011_bib5) 2019; 116
Patriarca (10.1016/j.ijrobp.2021.01.011_bib12) 2018; 102
León-Marroquín (10.1016/j.ijrobp.2021.01.011_bib30) 2019; 46
Hornsey (10.1016/j.ijrobp.2021.01.011_bib3) 1971; 19
Simmons (10.1016/j.ijrobp.2021.01.011_bib19) 2019; 139
Ashraf (10.1016/j.ijrobp.2021.01.011_bib27) 2019; 46
Lewis (10.1016/j.ijrobp.2021.01.011_bib34) 2016; 43
Bourhis (10.1016/j.ijrobp.2021.01.011_bib9) 2019; 139
Buonanno (10.1016/j.ijrobp.2021.01.011_bib13) 2019; 139
Xu (10.1016/j.ijrobp.2021.01.011_bib39) 2009; 34
Sharma (10.1016/j.ijrobp.2021.01.011_bib22) 2011; 36
Zhang (10.1016/j.ijrobp.2021.01.011_bib23) 2020
Jaccard (10.1016/j.ijrobp.2021.01.011_bib29) 2017; 44
Klein (10.1016/j.ijrobp.2021.01.011_bib43) 2009; 36
Podgorsak (10.1016/j.ijrobp.2021.01.011_bib38) 2005
Bazalova-Carter (10.1016/j.ijrobp.2021.01.011_bib11) 2019; 46
Eling (10.1016/j.ijrobp.2021.01.011_bib16) 2019; 139
33811975 - Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):908-909. doi: 10.1016/j.ijrobp.2021.03.046
References_xml – volume: 43
  start-page: 643
  year: 2016
  end-page: 649
  ident: bib34
  article-title: Technical note: On Gafchromic EBT-XD film and the lateral response artifact: Lateral response corrections for Gafchromic EBT-XD film
  publication-title: Med Phys
– volume: 44
  start-page: 725
  year: 2017
  end-page: 735
  ident: bib29
  article-title: High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films
  publication-title: Med Phys
– volume: 116
  start-page: 10943
  year: 2019
  end-page: 10951
  ident: bib5
  article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species
  publication-title: Proc Natl Acad Sci
– volume: 25
  start-page: 35
  year: 2019
  end-page: 42
  ident: bib8
  article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients
  publication-title: Clin Cancer Res
– volume: 19
  start-page: 526
  year: 2015
  end-page: 531
  ident: bib4
  article-title: Radiothérapie « flash » à très haut débit de dose: Un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains?
  publication-title: Cancer/Radiothérapie
– year: 2020;8:328
  ident: bib28
  article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and Cherenkov emission
  publication-title: Front Phys
– volume: 9
  start-page: 1563
  year: 2020
  ident: bib1
  article-title: Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold?
  publication-title: Front Oncol
– year: 2020, Radiation Research Society; Bozeman, MT
  ident: bib23
  article-title: Commissioning of the first treatment planning system for electron flash radiation therapy in a clinical setting
– volume: 106
  start-page: 440
  year: 2020
  end-page: 448
  ident: bib15
  article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system
  publication-title: Int J Radiat Oncol
– volume: 21
  start-page: 314
  year: 2020
  end-page: 324
  ident: bib36
  article-title: Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation
  publication-title: J Appl Clin Med Phys
– volume: 32
  start-page: 761
  year: 1987
  end-page: 768
  ident: bib37
  article-title: Parametrisation of depth dose for electron beams
  publication-title: Phys Med Biol
– volume: 39
  start-page: 6339
  year: 2012
  end-page: 6350
  ident: bib32
  article-title: An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan
  publication-title: Med Phys
– volume: 129
  start-page: 582
  year: 2018
  end-page: 588
  ident: bib17
  article-title: X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice
  publication-title: Radiother Oncol
– volume: 47
  start-page: 4348
  year: 2020
  end-page: 4355
  ident: bib14
  article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies
  publication-title: Med Phys
– volume: 139
  start-page: 40
  year: 2019
  end-page: 45
  ident: bib20
  article-title: Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation
  publication-title: Radiother Oncol
– volume: 16
  start-page: 359
  year: 2015
  end-page: 377
  ident: bib41
  article-title: Simulation of a medical linear accelerator for teaching purposes
  publication-title: J Appl Clin Med Phys
– volume: 46
  start-page: 5690
  year: 2019
  end-page: 5695
  ident: bib11
  article-title: On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates
  publication-title: Med Phys
– volume: 102
  start-page: 619
  year: 2018
  end-page: 626
  ident: bib12
  article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system
  publication-title: Int J Radiat Oncol
– year: 2017
  ident: bib24
  article-title: A Primer on Theory and Operation of Linear Accelerators in Radiation Therapy
– volume: 36
  start-page: 4197
  year: 2009
  end-page: 4212
  ident: bib43
  article-title: Task Group 142 report: Quality assurance of medical accelerators
  publication-title: Med Phys
– volume: 46
  start-page: 1044
  year: 2019
  end-page: 1048
  ident: bib27
  article-title: Technical note: Time-gating to medical linear accelerator pulses: Stray radiation detector
  publication-title: Med Phys
– volume: 34
  start-page: 51
  year: 2009
  end-page: 56
  ident: bib39
  article-title: Dosimetry of small circular fields for 6-MeV electron beams
  publication-title: Med Dosim
– year: 1986
  ident: bib26
  article-title: Introduction to Radiological Physics and Radiation Dosimetry
– volume: 139
  start-page: 56
  year: 2019
  end-page: 61
  ident: bib16
  article-title: Ultra high dose rate synchrotron microbeam radiation therapy. Preclinical evidence in view of a clinical transfer
  publication-title: Radiother Oncol
– volume: 97
  start-page: 195
  year: 2017
  end-page: 203
  ident: bib18
  article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator
  publication-title: Int J Radiat Oncol
– volume: 210
  start-page: 212
  year: 1966
  end-page: 213
  ident: bib2
  article-title: Unexpected dose-rate effect in the killing of mice by radiation
  publication-title: Nature
– volume: 63
  year: 2018
  ident: bib33
  article-title: Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams
  publication-title: Phys Med Biol
– volume: 139
  start-page: 11
  year: 2019
  end-page: 17
  ident: bib42
  article-title: Clinical translation of FLASH radiotherapy: Why and how?
  publication-title: Radiother Oncol
– volume: 19
  start-page: 479
  year: 1971
  end-page: 483
  ident: bib3
  article-title: Hypoxia in mouse intestine induced by electron irradiation at high dose-rates
  publication-title: Int J Radiat Biol Relat Stud Phys Chem Med
– year: 1999
  ident: bib25
  publication-title: The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists
– volume: 46
  start-page: 1391
  year: 2001
  end-page: 1397
  ident: bib35
  article-title: Directional dependence in film dosimetry: Radiographic and radiochromic film
  publication-title: Phys Med Biol
– volume: 39
  start-page: 2447
  year: 2012
  end-page: 2455
  ident: bib31
  article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors: Dose rate dependence for different dosimeters and detectors
  publication-title: Med Phys
– volume: 45
  start-page: 863
  year: 2018
  end-page: 874
  ident: bib10
  article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use
  publication-title: Med Phys
– volume: 139
  start-page: 4
  year: 2019
  end-page: 10
  ident: bib19
  article-title: Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation
  publication-title: Radiother Oncol
– year: 2014
  ident: bib21
  article-title: Khan’s the Physics of Radiation Therapy
– year: 2005
  ident: bib38
  article-title: Radiation Oncology Physics: A Handbook for Teachers and Students
– volume: 6
  year: 2014
  ident: bib7
  article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice
  publication-title: Sci Transl Med
– volume: 12
  start-page: 779
  year: 1985
  end-page: 784
  ident: bib40
  article-title: Dose measurements and calculations of small radiation fields for 9-MV x rays
  publication-title: Med Phys
– volume: 139
  start-page: 51
  year: 2019
  end-page: 55
  ident: bib13
  article-title: Biological effects in normal cells exposed to FLASH dose rate protons
  publication-title: Radiother Oncol
– volume: 139
  start-page: 18
  year: 2019
  end-page: 22
  ident: bib9
  article-title: Treatment of a first patient with FLASH-radiotherapy
  publication-title: Radiother Oncol
– volume: 124
  start-page: 365
  year: 2017
  end-page: 369
  ident: bib6
  article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s
  publication-title: Radiother Oncol
– volume: 36
  start-page: 123
  year: 2011
  end-page: 125
  ident: bib22
  article-title: Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges
  publication-title: J Med Phys
– volume: 46
  start-page: 4246
  year: 2019
  end-page: 4256
  ident: bib30
  article-title: Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams
  publication-title: Med Phys
– volume: 39
  start-page: 2447
  year: 2012
  ident: 10.1016/j.ijrobp.2021.01.011_bib31
  article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors: Dose rate dependence for different dosimeters and detectors
  publication-title: Med Phys
  doi: 10.1118/1.3700400
– volume: 45
  start-page: 863
  year: 2018
  ident: 10.1016/j.ijrobp.2021.01.011_bib10
  article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use
  publication-title: Med Phys
  doi: 10.1002/mp.12713
– volume: 46
  start-page: 1044
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib27
  article-title: Technical note: Time-gating to medical linear accelerator pulses: Stray radiation detector
  publication-title: Med Phys
  doi: 10.1002/mp.13311
– volume: 63
  year: 2018
  ident: 10.1016/j.ijrobp.2021.01.011_bib33
  article-title: Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aab1ee
– year: 20208328
  ident: 10.1016/j.ijrobp.2021.01.011_bib28
  article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and Cherenkov emission
  publication-title: Front Phys
– volume: 46
  start-page: 5690
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib11
  article-title: On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates
  publication-title: Med Phys
  doi: 10.1002/mp.13858
– volume: 16
  start-page: 359
  year: 2015
  ident: 10.1016/j.ijrobp.2021.01.011_bib41
  article-title: Simulation of a medical linear accelerator for teaching purposes
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v16i3.5139
– volume: 129
  start-page: 582
  year: 2018
  ident: 10.1016/j.ijrobp.2021.01.011_bib17
  article-title: X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.08.016
– year: 2017
  ident: 10.1016/j.ijrobp.2021.01.011_bib24
– volume: 44
  start-page: 725
  year: 2017
  ident: 10.1016/j.ijrobp.2021.01.011_bib29
  article-title: High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films
  publication-title: Med Phys
  doi: 10.1002/mp.12066
– volume: 34
  start-page: 51
  year: 2009
  ident: 10.1016/j.ijrobp.2021.01.011_bib39
  article-title: Dosimetry of small circular fields for 6-MeV electron beams
  publication-title: Med Dosim
  doi: 10.1016/j.meddos.2007.12.003
– volume: 106
  start-page: 440
  year: 2020
  ident: 10.1016/j.ijrobp.2021.01.011_bib15
  article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2019.10.049
– volume: 36
  start-page: 4197
  year: 2009
  ident: 10.1016/j.ijrobp.2021.01.011_bib43
  article-title: Task Group 142 report: Quality assurance of medical accelerators
  publication-title: Med Phys
  doi: 10.1118/1.3190392
– volume: 116
  start-page: 10943
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib5
  article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1901777116
– volume: 6
  year: 2014
  ident: 10.1016/j.ijrobp.2021.01.011_bib7
  article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008973
– volume: 210
  start-page: 212
  year: 1966
  ident: 10.1016/j.ijrobp.2021.01.011_bib2
  article-title: Unexpected dose-rate effect in the killing of mice by radiation
  publication-title: Nature
  doi: 10.1038/210212a0
– year: 2014
  ident: 10.1016/j.ijrobp.2021.01.011_bib21
– volume: 43
  start-page: 643
  year: 2016
  ident: 10.1016/j.ijrobp.2021.01.011_bib34
  article-title: Technical note: On Gafchromic EBT-XD film and the lateral response artifact: Lateral response corrections for Gafchromic EBT-XD film
  publication-title: Med Phys
  doi: 10.1118/1.4939226
– volume: 139
  start-page: 51
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib13
  article-title: Biological effects in normal cells exposed to FLASH dose rate protons
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.02.009
– volume: 39
  start-page: 6339
  year: 2012
  ident: 10.1016/j.ijrobp.2021.01.011_bib32
  article-title: An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan
  publication-title: Med Phys
  doi: 10.1118/1.4754797
– year: 1986
  ident: 10.1016/j.ijrobp.2021.01.011_bib26
– volume: 12
  start-page: 779
  year: 1985
  ident: 10.1016/j.ijrobp.2021.01.011_bib40
  article-title: Dose measurements and calculations of small radiation fields for 9-MV x rays
  publication-title: Med Phys
  doi: 10.1118/1.595664
– year: 2020
  ident: 10.1016/j.ijrobp.2021.01.011_bib23
– volume: 21
  start-page: 314
  year: 2020
  ident: 10.1016/j.ijrobp.2021.01.011_bib36
  article-title: Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13078
– volume: 19
  start-page: 479
  year: 1971
  ident: 10.1016/j.ijrobp.2021.01.011_bib3
  article-title: Hypoxia in mouse intestine induced by electron irradiation at high dose-rates
  publication-title: Int J Radiat Biol Relat Stud Phys Chem Med
  doi: 10.1080/09553007114550611
– volume: 46
  start-page: 4246
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib30
  article-title: Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams
  publication-title: Med Phys
  doi: 10.1002/mp.13708
– volume: 124
  start-page: 365
  year: 2017
  ident: 10.1016/j.ijrobp.2021.01.011_bib6
  article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.05.003
– volume: 139
  start-page: 4
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib19
  article-title: Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.06.006
– volume: 102
  start-page: 619
  year: 2018
  ident: 10.1016/j.ijrobp.2021.01.011_bib12
  article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2018.06.403
– volume: 139
  start-page: 40
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib20
  article-title: Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.01.031
– year: 2005
  ident: 10.1016/j.ijrobp.2021.01.011_bib38
– volume: 139
  start-page: 11
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib42
  article-title: Clinical translation of FLASH radiotherapy: Why and how?
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.04.008
– volume: 25
  start-page: 35
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib8
  article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3375
– volume: 47
  start-page: 4348
  year: 2020
  ident: 10.1016/j.ijrobp.2021.01.011_bib14
  article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies
  publication-title: Med Phys
  doi: 10.1002/mp.14253
– volume: 46
  start-page: 1391
  year: 2001
  ident: 10.1016/j.ijrobp.2021.01.011_bib35
  article-title: Directional dependence in film dosimetry: Radiographic and radiochromic film
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/46/5/305
– year: 1999
  ident: 10.1016/j.ijrobp.2021.01.011_bib25
– volume: 32
  start-page: 761
  year: 1987
  ident: 10.1016/j.ijrobp.2021.01.011_bib37
  article-title: Parametrisation of depth dose for electron beams
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/32/6/008
– volume: 139
  start-page: 56
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib16
  article-title: Ultra high dose rate synchrotron microbeam radiation therapy. Preclinical evidence in view of a clinical transfer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.06.030
– volume: 19
  start-page: 526
  year: 2015
  ident: 10.1016/j.ijrobp.2021.01.011_bib4
  article-title: Radiothérapie « flash » à très haut débit de dose: Un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains?
  publication-title: Cancer/Radiothérapie
  doi: 10.1016/j.canrad.2015.04.006
– volume: 97
  start-page: 195
  year: 2017
  ident: 10.1016/j.ijrobp.2021.01.011_bib18
  article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2016.09.018
– volume: 9
  start-page: 1563
  year: 2020
  ident: 10.1016/j.ijrobp.2021.01.011_bib1
  article-title: Ultra-high dose rate (FLASH) radiotherapy: Silver bullet or fool’s gold?
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01563
– volume: 36
  start-page: 123
  year: 2011
  ident: 10.1016/j.ijrobp.2021.01.011_bib22
  article-title: Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.83464
– volume: 139
  start-page: 18
  year: 2019
  ident: 10.1016/j.ijrobp.2021.01.011_bib9
  article-title: Treatment of a first patient with FLASH-radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.06.019
– reference: 33811975 - Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):908-909. doi: 10.1016/j.ijrobp.2021.03.046
SSID ssj0001174
Score 2.5651257
Snippet In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 872
SubjectTerms BEAMS
DOSE RATES
Electrons - therapeutic use
Film Dosimetry - instrumentation
Film Dosimetry - methods
Humans
LINEAR ACCELERATORS
Optically Stimulated Luminescence Dosimetry - instrumentation
Optically Stimulated Luminescence Dosimetry - methods
Particle Accelerators - instrumentation
Phantoms, Imaging
Photons - therapeutic use
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy Dosage
Radiotherapy, High-Energy - instrumentation
Radiotherapy, High-Energy - methods
Time Factors
Title Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0360301621000249
https://dx.doi.org/10.1016/j.ijrobp.2021.01.011
https://www.ncbi.nlm.nih.gov/pubmed/33444695
https://www.proquest.com/docview/2478598000
https://www.osti.gov/biblio/23198550
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9owFLUYlaq-TPtet27ypL2hVCSx4_CIKiq6lj4wqvEWOY4Z0C6pUpC2_pz90l1_hm1F7SahCMW5QXBP7Hsv5x4j9DHnnBVK6DYsQhEQRpMgTYpuwFMuWRqHxazQbIvzZHhBPk3ptNX6ucFaWq_yQ3F7Z1_J_3gVzoFfVZfsP3jW3xROwHvwLxzBw3B8kI8Hdg-bzvFZ__MQ5o4rxbL4oRoUJ55APobQuHMCTlDqm7WmFQ60boQelJqWodqnjhT_XBfPTM_kkeuZPDs5twKNy4b23lQRN7QnaiV0YELQUvg2mLzpiDF1lIZez-e2ADvi83wN_vX4u5nXXOtFjjpjDlj0VWtf4R5X5dfvC141BYX1LbeU43qzmBGFnvgKa5GZgFPWCyAGmv42Q1vm62Izg7eLdXTnOmBKEsvDxbKuciVLGoVandVM7BvQuP6msRHHBPJis93nH_rbbugR2okgFYHJf6d_Ov5y6tf7EJI615SpmYN_f-ge2nW32Rb_tCuY0renOTrcmTxBj22egvsGdE9RS5bP0O7IMjGeo0uHPayxhx32MF9hjz2ssIc99jBgD3vs4QZ7uMEermaYY4c9rLH3Al0cDyZHw8Bu3BEIQuJVEBHBZZ7nNJQJlT0ZJmkX8gQqCIMVhrCcFr2YMJ7kEYOIVMhIQlyu9nyB8F6kafwStcuqlK8RpjMq4qQnRcEIoQwCWBqlySwnTEYF4-E-it3PmQmraq82V7nKHH1xmRl_ZMofWVe9wCrwVtdG1eWe66nzVOY6lmGNzQBu99gxb2cjWhOpPsDyQAFCWSkxZ6FYb2AG2VhPSRDuow8OKBk8g-pPPl7Kan2TRYSltAdpIFzzyiDIf0WHwTdbR96iveaxPEDtVb2W7yDqXuXvLex_AVQO13o
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+FLASH+Delivery+at+Treatment+Room+Isocenter+for+Efficient+Reversible+Conversion+of+a+Clinical+LINAC&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Rahman%2C+Mahbubur&rft.au=Ashraf%2C+M+Ramish&rft.au=Zhang%2C+Rongxiao&rft.au=Bruza%2C+Petr&rft.date=2021-07-01&rft.eissn=1879-355X&rft.volume=110&rft.issue=3&rft.spage=872&rft_id=info:doi/10.1016%2Fj.ijrobp.2021.01.011&rft_id=info%3Apmid%2F33444695&rft.externalDocID=33444695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon