Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that...
Saved in:
Published in | Frontiers in medicine Vol. 10; p. 1209782 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
19.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages
in vivo
. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections
in vivo
. Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes. |
---|---|
AbstractList | The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes. The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo . However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo . Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes. The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes. |
Author | Nath, Gopal Bhartiya, Satyanam Kumar Karn, Subhash Lal Gangwar, Mayank Kumar, Rajesh |
AuthorAffiliation | 1 Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India 2 Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India |
AuthorAffiliation_xml | – name: 2 Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India – name: 1 Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India |
Author_xml | – sequence: 1 givenname: Subhash Lal surname: Karn fullname: Karn, Subhash Lal – sequence: 2 givenname: Mayank surname: Gangwar fullname: Gangwar, Mayank – sequence: 3 givenname: Rajesh surname: Kumar fullname: Kumar, Rajesh – sequence: 4 givenname: Satyanam Kumar surname: Bhartiya fullname: Bhartiya, Satyanam Kumar – sequence: 5 givenname: Gopal surname: Nath fullname: Nath, Gopal |
BookMark | eNp1kk1v1DAQhiNUJErpD-DmI4fu4o98OFwQqvioVAkOIHGzJt5x4iqxg50tWv4X_48Ju0gUiZMtz_s-M56Zp8VZiAGL4rngW6V0-9JNuNtKLtVWSN42Wj4qzqVs642u9Nezv-5Pisuc7zjnQsmqFOq8-PlpgB7ZMmCC-fCKAUt4H8f94mOAdGB58G5hPqwKNkEg8YRhYdGxDuyCycNIYYd2deQrNtOB9Bx6FvA7G2LyPyiwIuzog7eknxNZvcUrBmFHCf0EPYXIsmaBlDGQCnrwIS9s8jbFbs0zwzLEHkN-Vjx2MGa8PJ0XxZd3bz9ff9jcfnx_c_3mdmPLUi0bybEGp10rLZS2UoCKu9Y5VJ1QCHVTUb9K12kLotLc1pXegQJXt61tdNmpi-LmyN1FuDNzokLTwUTw5vdDTL2BRD8Z0TRYdpajEoCylBV1vBQ1VLUQulmnQqzXR9a872helrqYYHwAfRgJfjB9vDeC15JrIYjw4kRI8dse82Imny2OIwSM-2yk1nVNoy1rkjZHKbUu54TOWL_AOiJC-5GYZt0cs26OWTfHnDaHnOIf558K_-_5BU8czs4 |
CitedBy_id | crossref_primary_10_3390_biomedicines13010100 crossref_primary_10_3389_fmicb_2024_1479700 crossref_primary_10_1016_j_heliyon_2024_e40076 crossref_primary_10_1007_s13205_024_04101_8 crossref_primary_10_1016_j_heliyon_2024_e34333 crossref_primary_10_1002_cbf_4022 crossref_primary_10_1016_j_micpath_2024_107088 crossref_primary_10_3390_antibiotics14030296 |
Cites_doi | 10.3389/fmicb.2020.506068 10.1016/s0163-4453(98)92874-2 10.2217/fmb-2022-0054 10.1093/cid/ciaa705 10.1001/jama.1941.62820200013011 10.12968/jowc.2009.18.6.42801 10.3389/fphar.2021.692614 10.1016/j.cmi.2023.01.021 10.1111/ajt.15503 10.1093/INFDIS/JIU059 10.1007/978-1-4939-7395-8_14 10.1155/2015/752930 10.33314/jnhrc.v19i1.3282 10.1186/s13063-022-07047-5 10.3390/antibiotics9050241 10.3390/antibiotics9110827 10.1186/s12941-020-00389-5 10.1111/tid.13391 10.1128/AAC.41.3.497 10.1371/journal.pone.0056022 10.3390/V10040177 10.1128/AAC.01123-10 10.2174/1874364101509010167 10.3390/v13122348 10.1038/S41591-019-0437-Z 10.1007/s13337-021-00673-8 10.1111/1462-2920.13284 10.1016/j.micpath.2018.10.042 10.1016/j.jddst.2020.101754 10.3389/fmicb.2017.00837 10.1128/JB.186.14.4808-4812.2004 10.1371/journal.pone.0047742 10.1016/j.resmic.2008.04.003 10.1128/AEM.01979-20 10.1186/S13054-017-1709-Y 10.1007/s00134-017-4878-x 10.3389/fmic,b.2015.01471 10.1089/mdr.2014.0120 10.1093/INFDIS/JIW632 10.1007/978-3-030-26736-0_15 10.3390/ph14040359 10.1128/AAC.01714-17 10.3389/FCIMB.2020.608402 10.1128/AAC.00602-12 10.1080/22221751.2021.1902754 10.1128/MBIO.00034-21 10.1146/annurev-food-030713-092415 10.1371/journal.pone.0175256 10.1038/nbt0396-309 10.3390/V13020257 10.1038/S41591-021-01403-9 10.1002/ppul.24945 10.1093/cid/ciz782 10.1007/S15010-019-01319-0 10.1007/s12250-019-00192-3 10.3390/v10040205 10.3389/FCIMB.2017.00049 10.1001/jama.2013.281053 10.1111/LAM.13744 10.1007/s11095-016-1892-6 10.2174/138920110790725410 10.3390/V10020064 10.4172/1747-0862.1000050 10.1002/jobm.201800412 10.3390/IJMS21124390 10.3390/v11020096 10.1001/jama.1934.72750490003007 10.1016/S0966-842X(97)01054-8 10.4161/bact.1.2.14590 10.1111/WRR.12056 10.1093/ofid/ofy269 10.1099/JMM.0.029744-0 10.1016/J.MIB.2017.09.004 10.1007/s10529-007-9346-1 10.1002/med.21593 10.1128/MBIO.00019-20 10.3389/FCIMB.2017.00049/BIBTEX 10.1001/jamaoto.2019.1191 10.3389/fcimb.2021.631585 10.1080/21597081.2015.1088124 10.1016/J.EJPB.2017.09.002 10.3389/fimmu.2018.02252 10.4102/AJLM.V5I1.435 10.1016/S1473-3099(18)30482-1 10.1016/j.ijmm.2005.09.002 10.1177/15347346211072779 10.1016/j.healun.2019.01.001 10.1093/emph/eoy005 10.1128/AAC.01870-19 10.1590/s2175-97902018000117093 10.1016/S0065-2164(10)70007-1 10.3390/V13010060 10.2174/138920110790725401 10.1086/648478 10.3390/pharmaceutics8020018 10.3390/v11010018 10.1016/j.burns.2006.02.012 10.1016/j.tim.2018.09.006 10.1007/s00253-015-7247-0 10.1371/journal.pone.0016963 10.1016/J.TRSL.2018.12.002 10.1093/jpids/pix056 10.1016/j.tim.2005.08.007 10.1016/j.resmic.2018.05.001 10.1016/S1473-3099(21)00612-5 10.1177/1534734619835115 10.1097/im9.0000000000000013 10.1016/j.fm.2020.103630 10.1093/INFDIS/JIAB112 10.1038/srep41441 10.1111/J.1524-475X.2011.00690.X 10.1128/aem.01166-16 10.1128/AEM.05493-11 10.1038/s41598-020-62691-8 10.19080/JOJIV.2017.01.55557 10.1155/2018/7569645 10.1128/AAC.45.3.649-659.2001 10.1007/s12275-011-1512-4 10.1128/AAC.00954-17 10.1111/J.1440-1681.2007.04563.X 10.1016/j.ijantimicag.2007.04.006 10.1007/s00284-010-9699-x 10.1186/S12866-014-0212-8/FIGURES/5 10.1093/ecco-jcc/jjw224 10.1093/INFDIS/JIV029 10.1016/J.IJMM.2014.02.007 10.3390/microorganisms10071324 10.1155/2006/329465 10.3389/fmicb.2018.01832/full 10.3389/fphar.2022.778676 10.1016/j.burns.2017.03.029 10.12659/msm.>16271 10.1007/s00253-021-11695-z 10.2217/fmb.14.50 10.1016/j.ejpb.2017.01.024 10.3389/fmicb.2022.825828 10.3390/V13061182 10.1016/j.cis.2017.05.014 10.3390/v13102044 10.3390/antibiotics7040087 10.1007/s12223-021-00895-9 10.3390/V11100891 10.1016/j.micpath.2016.08.001 10.1136/thoraxjnl-2016-209265 10.1128/msystems.00542-20 10.1016/j.vetmic.2010.05.014 10.1099/jmm.0.018580-0 10.1128/AAC.00379-19 10.1016/j.copbio.2020.11.003 10.1128/AEM.02900-18 10.1007/S11262-007-0098-8 10.1016/J.MICINF.2012.11.002 10.1038/S41564-019-0634-Z 10.4014/JMB.0909.09010 10.1016/S1473-3099(17)30753-3 10.1371/journal.pone.0031698 10.1128/AAC.01281-19 10.1128/AAC.06330-11 10.1002/ALR.21270 10.1093/ejcts/ezz295 10.3390/ph10020043 10.3390/antibiotics7020035 10.1159/000486117 10.1016/j.micinf.2014.02.011 10.1186/s12866-020-01891-8 10.1371/journal.pmed.1002184 10.1080/22221751.2020.1747950 10.1586/14787210.2015.990383 10.3389/fphar.2021.675440 10.4103/IJMR.IJMR_2271_18 10.1201/9780203491751.ch12 10.1128/AAC.02388-13 10.3390/v9110328 10.1073/PNAS.93.8.3188 10.1016/j.ijfoodmicro.2019.108250 10.1128/AAC.02146-16 10.1093/FEMSLE/FNY136 10.1002/jps.20853 10.1128/AAC.01774-15 10.1164/rccm.201904-0839LE 10.1097/PRS.0b013e31827e47cd 10.1590/0037-8682-0290-2019 10.1371/journal.pone.0219599 10.1016/j.drudis.2013.09.001 10.1001/jama.2019.0510 10.12968/jowc.2016.25.sup7.s27 10.1128/mBio.00029-12 10.2217/fmb.13.58 10.1146/annurev-micro-090817-062535 10.1371/journal.pntd.0002183 10.1177/1534734619881076 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. 2023 Karn, Gangwar, Kumar, Bhartiya and Nath |
Copyright_xml | – notice: Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. – notice: Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. 2023 Karn, Gangwar, Kumar, Bhartiya and Nath |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmed.2023.1209782 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine |
EISSN | 2296-858X |
ExternalDocumentID | oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209 PMC10620811 10_3389_fmed_2023_1209782 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c443t-20e6af8f92ca4c53ae30f9ffe3b13ea6751204fb8ca1580c658da3af699c784b3 |
IEDL.DBID | M48 |
ISSN | 2296-858X |
IngestDate | Wed Aug 27 01:30:33 EDT 2025 Thu Aug 21 18:36:26 EDT 2025 Fri Jul 11 12:18:30 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-20e6af8f92ca4c53ae30f9ffe3b13ea6751204fb8ca1580c658da3af699c784b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors have contributed equally to this work Edited by: Mark Willcox, University of New South Wales, Australia Reviewed by: Vijay Singh Gondil, University of Rochester Medical Center, United States; Urmi Bajpai, University of Delhi, India |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmed.2023.1209782 |
PQID | 2886601346 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620811 proquest_miscellaneous_2886601346 crossref_citationtrail_10_3389_fmed_2023_1209782 crossref_primary_10_3389_fmed_2023_1209782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-19 |
PublicationDateYYYYMMDD | 2023-10-19 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in medicine |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | De Vos (ref177) 2019 Nale (ref76) 2016; 60 Parracho (ref127) 2012; 6 Bhargava (ref216) 2021; 105 Alemayehu (ref88) 2012; 3 Clokie (ref56) 2009 (ref195) 2023 Dedrick (ref160) 2019; 25 Furusawa (ref117) 2016; 82 Moye (ref191) 2018; 10 Galtier (ref77) 2016; 18 Alisky (ref209) 1998; 36 Fukuda (ref116) 2012; 7 (ref200) 2023 Chang (ref94) 2018; 62 Duplessis (ref152) 2018; 7 Vaughan (ref182) 1996; 14 (ref205) 2023 Soffer (ref189) 2017; 12 Veiga-Crespo (ref12) 2007; 96 Yin (ref67) 2018; 44 Drulis-Kawa (ref43) 2021; 13 Alomari (ref188) 2021; 13 Kumari (ref101) 2010; 20 Jun (ref75) 2014; 210 Bao (ref142) 2020; 9 Pires (ref46) 2017; 39 Loc-Carrillo (ref55) 2011; 1 Gainey (ref161) 2020; 55 Sulakvelidze (ref208) 2001; 45 Patel (ref70) 2021; 154 Trigo (ref105) 2013; 7 Onsea (ref135) 2019; 11 Takagi (ref186) 2007; 34 (ref206) 2023 Semler (ref27) 2014; 58 Singh (ref71) 2022; 13 Hesse (ref100) 2021; 12 Selle (ref204) 2020; 11 Capparelli (ref51) 2010; 201 (ref170) 2023 Kifelew (ref114) 2020; 20 Gondil (ref22) 2017; 1 Tan (ref163) 2021; 11 Hyman (ref49) 2010; 70 Chang (ref28) 2017; 121 Jamal (ref7) 2019; 59 Chopra (ref58) 1997; 41 (ref194) 2023 (ref201) 2023 Vázquez (ref20) 2018; 9 Doub (ref133) 2020; 9 O’Neill (ref1) 2014 Drilling (ref84) 2014; 4 Villarroel (ref122) 2017; 9 Bhartiya (ref148) 2022 Tamma (ref168); 23 Morello (ref87) 2011; 6 Kutter (ref41) 2010; 11 Kim (ref82) 2021; 94 Johri (ref144) 2021; 12 Vahedi (ref79) 2018; 365 Abedon (ref123) 2017; 10 Mulzer (ref156) 2020; 57 Hoyle (ref162) 2018; 169 Bakuradze (ref6) 2021; 13 Qin (ref141) 2021; 10 Abedon (ref40) 2010; 11 Zhang (ref190) 2019 (ref178) 2006; 71 Chernomordik (ref37) 1989; 48 Fadlallah (ref150) 2015; 9 Fish (ref129) 2018; 7 Hawkins (ref115) 2010; 146 Qadir (ref36) 2018; 54 Daṃbrowska (ref106) 2014; 9 Schneider (ref68) 2018; 2018 Tang (ref60) 2019; 126 Shivaswamy (ref107) 2015; 21 Hanlon (ref8) 2007; 30 Kumari (ref102) 2011; 60 Horváth (ref97) 2020; 10 (ref187) 2023 Dedrick (ref164) 2021; 27 Ferry (ref131) 2018; 5 Cao (ref89) 2015; 2015 Maddocks (ref157) 2019; 200 Archana (ref214) 2021; 32 Leung (ref25) 2016; 33 Singla (ref90) 2015; 212 Sybesma (ref15) 2018; 7 Nikkhahi (ref78) 2017; 10 Górski (ref53) 2007 Jault (ref5) 2019; 19 De Kraker (ref2) 2016; 13 Huon (ref112) 2020; 5 Oduor (ref91) 2016; 5 Rostkowska (ref143) 2021; 23 Krueger (ref212) 1941; 116 Jaiswal (ref73) 2013; 15 Lenneman (ref218) 2021; 68 Chan (ref136) 2018; 2018 Khawaldeh (ref140) 2011; 60 Huang (ref172) 2022; 10 Ooi (ref167) 2019; 145 Ibaraki (ref29) 2020; 57 Skurnik (ref52) 2006; 296 Harper (ref124) 2018; 10 Ujmajuridze (ref137) 2018; 9 Górski (ref121) 2020; 9 Takemura-Uchiyama (ref63) 2014; 16 (ref192) 2023 Łusiak-Szelachowska (ref11) 2020; 35 Cheng (ref66) 2017; 8 Leptihn (ref207) 2022; 17 Pouillot (ref65) 2012; 56 Kaur (ref113) 2021; 66 Gondil (ref24) 2021; 12 Drilling (ref93) 2017 Patel (ref146) 2021; 20 Chhibber (ref31) 2017; 61 Yoong (ref17) 2004; 186 Waters (ref92) 2017; 72 Mendes (ref103) 2013; 21 Chadha (ref110) 2017; 43 Loh (ref21) 2021; 87 Dhungana (ref98) 2021; 19 Endersen (ref174) 2014; 5 Anany (ref34) 2011; 77 Nang (ref35) 2023; 29 Yang (ref14) 2015; 6 Kucharewicz-Krukowska (ref213) 1987; 35 Kropinski (ref173); 17 Bassetti (ref3) 2017; 43 Wu (ref165) 2021; 10 Skurnik (ref39) 2007; 29 Albac (ref111) 2020; 64 Patey (ref179) 2019; 11 (ref202) 2023 Gu (ref61) 2012; 7 Abdelkader (ref16) 2019; 11 Hamzeh-Mivehroud (ref184) 2013; 18 Prazak (ref99) 2022; 225 Morozov (ref185) 2007; 35 Galtier (ref193) 2017; 11 Chhibber (ref104) 2013; 8 Carlton (ref50) 1999; 47 Gurjala (ref45) 2011; 19 Kuipers (ref138) 2019; 64 Manohar (ref57) 2019; 1 Rhoads (ref145) 2009; 18 Oechslin (ref69) 2017; 215 Voelker (ref180) 2019; 321 Barrow (ref210) 1997; 5 (ref171) 2023 Fischetti (ref19) 2004 Malik (ref23) 2017; 249 Mann (ref54) 2008; 159 (ref169) 2023 Pires (ref13) 2016; 100 Sun (ref42) 2013; 8 (ref175) 2013; 310 Eaton (ref211) 1934; 103 Shlezinger (ref118) 2019; 14 Aslam (ref159) 2019; 19 Colom (ref32) 2017; 7 Maura (ref72) 2012; 56 (ref181) 2019 Chegini (ref47); 19 Rose (ref149) 2014; 4 Merril (ref215) 1996; 93 Mai (ref198) 2015; 5 Jaiswal (ref74) 2014; 304 Lebeaux (ref166) 2021; 13 Tacconelli (ref4) 2018; 18 Chang (ref48) 2022; 13 Jeon (ref95) 2019; 85 Marza (ref126) 2006; 32 (ref196) 2023 Corbellino (ref139) 2020; 70 Jiang (ref119) 2020; 11 Górski (ref9) 2020; 40 Gupta (ref38) 2011; 62 Schooley (ref154) 2017; 61 Basu (ref108) 2015; 61 Gupta (ref147) 2019; 18 Rukavina (ref30) 2016; 8 Sarhan (ref183) 2015; 13 Dallal (ref81) 2019; 52 Fong (ref86) 2019; 206 (ref199) 2023 Law (ref158) 2019; 47 Tiwari (ref62) 2011; 49 (ref197) 2023 Tóthová (ref59) 2011; 17 Aslam (ref155) 2019; 38 Ramirez-Sanchez (ref134) 2021; 13 Grygorcewicz (ref120) 2020; 21 (ref203) 2023 Hung (ref64) 2011; 55 Fischetti (ref18) 2005; 13 Cano (ref132) 2021; 73 Fish (ref128) 2016; 25 Drilling (ref85) 2017; 7 Yadav (ref80) 2022; 75 Chadha (ref109) 2016; 99 Seth (ref44) 2013; 131 Hesse (ref10) 2019; 73 Rosner (ref33) 2021; 14 Uyttebroek (ref125) 2022; 22 Mensink (ref26) 2017; 114 Jennes (ref151) 2017; 21 Chhibber (ref83) 2014; 14 Pirnay (ref176) 2018; 10 Kilcher (ref217) 2019; 27 Petrovic Fabijan (ref153) 2020; 5 Dufour (ref96) 2019; 63 Fish (ref130) 2018; 1693 |
References_xml | – volume: 11 start-page: 506068 year: 2020 ident: ref119 article-title: Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii publication-title: Front Microbiol doi: 10.3389/fmicb.2020.506068 – year: 2023 ident: ref205 – volume: 36 start-page: 5 year: 1998 ident: ref209 article-title: Bacteriophages show promise as antimicrobial agents publication-title: J Infect doi: 10.1016/s0163-4453(98)92874-2 – volume: 17 start-page: 643 year: 2022 ident: ref207 article-title: Complexity, challenges and costs of implementing phage therapy publication-title: Future Microbiol doi: 10.2217/fmb-2022-0054 – volume: 73 start-page: e144 year: 2021 ident: ref132 article-title: Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa705 – volume: 116 start-page: 2269 year: 1941 ident: ref212 article-title: The bacteriophage: its nature and its therapeutic use publication-title: J Am Med Assoc doi: 10.1001/jama.1941.62820200013011 – volume: 18 start-page: 237 year: 2009 ident: ref145 article-title: Bacteriophage therapy of venous leg ulcers in humans publication-title: J Wound Care doi: 10.12968/jowc.2009.18.6.42801 – volume: 12 start-page: 692614 year: 2021 ident: ref144 article-title: Chronic bacterial prostatitis treated with phage therapy after multiple failed antibiotic treatments publication-title: Front Pharmacol doi: 10.3389/fphar.2021.692614 – volume: 29 start-page: 702 year: 2023 ident: ref35 article-title: Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2023.01.021 – volume: 19 start-page: 2631 year: 2019 ident: ref159 article-title: Early clinical experience of bacteriophage therapy in 3 lung transplant recipients publication-title: Am J Transplant doi: 10.1111/ajt.15503 – volume: 210 start-page: 72 year: 2014 ident: ref75 article-title: Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain publication-title: J Infect Dis doi: 10.1093/INFDIS/JIU059 – volume: 1693 start-page: 159 year: 2018 ident: ref130 article-title: Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-7395-8_14 – volume: 2015 start-page: 752930 year: 2015 ident: ref89 article-title: Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice publication-title: Biomed Res Int doi: 10.1155/2015/752930 – volume: 19 start-page: 76 year: 2021 ident: ref98 article-title: Therapeutic efficacy of bacteriophage therapy to treat carbapenem resistant Klebsiella pneumoniae in mouse model publication-title: J Nepal Health Res Council doi: 10.33314/jnhrc.v19i1.3282 – volume: 23 start-page: 1057 ident: ref168 article-title: Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial publication-title: Trials doi: 10.1186/s13063-022-07047-5 – volume: 9 start-page: 241 year: 2020 ident: ref133 article-title: Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics9050241 – volume: 9 start-page: 1 year: 2020 ident: ref121 article-title: Phage therapy: towards a successful clinical trial publication-title: Antibiotics. doi: 10.3390/antibiotics9110827 – volume: 19 start-page: 45 ident: ref47 article-title: Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review publication-title: Ann Clin Microbiol Antimicrob doi: 10.1186/s12941-020-00389-5 – volume: 23 start-page: e13391 year: 2021 ident: ref143 article-title: Treatment of recurrent urinary tract infections in a 60-year-old kidney transplant recipient. The use of phage therapy publication-title: Transpl Infect Dis doi: 10.1111/tid.13391 – volume: 41 start-page: 497 year: 1997 ident: ref58 article-title: The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.41.3.497 – volume: 8 start-page: 56022 year: 2013 ident: ref104 article-title: Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections publication-title: PLoS One doi: 10.1371/journal.pone.0056022 – volume: 10 start-page: 177 year: 2018 ident: ref124 article-title: Criteria for selecting suitable infectious diseases for phage therapy publication-title: Viruses doi: 10.3390/V10040177 – volume: 55 start-page: 1358 year: 2011 ident: ref64 article-title: Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01123-10 – volume: 9 start-page: 167 year: 2015 ident: ref150 article-title: Corneal infection therapy with topical bacteriophage Administration publication-title: Open Ophthalmol J doi: 10.2174/1874364101509010167 – volume: 13 start-page: 2348 year: 2021 ident: ref188 article-title: Bacteriophages as an alternative method for control of zoonotic and foodborne pathogens publication-title: Viruses doi: 10.3390/v13122348 – volume: 25 start-page: 730 year: 2019 ident: ref160 article-title: Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus publication-title: Nat Med doi: 10.1038/S41591-019-0437-Z – volume: 32 start-page: 38 year: 2021 ident: ref214 article-title: Neutralizing antibody response against subcutaneously injected bacteriophages in rabbit model publication-title: Virus doi: 10.1007/s13337-021-00673-8 – volume: 18 start-page: 2237 year: 2016 ident: ref77 article-title: Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition publication-title: Environ Microbiol doi: 10.1111/1462-2920.13284 – volume: 126 start-page: 193 year: 2019 ident: ref60 article-title: Isolation and characterization of a broad-spectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice publication-title: Microb Pathog doi: 10.1016/j.micpath.2018.10.042 – year: 2023 ident: ref199 – volume: 57 start-page: 101754 year: 2020 ident: ref29 article-title: The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm publication-title: J Drug Deliv Sci Technol doi: 10.1016/j.jddst.2020.101754 – volume: 8 start-page: 837 year: 2017 ident: ref66 article-title: The bacteriophage EF-P29 efficiently protects against lethal vancomycin-resistant enterococcus faecalis and alleviates gut microbiota imbalance in a murine bacteremia model publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00837 – year: 2023 ident: ref170 – year: 2023 ident: ref169 – volume: 186 start-page: 4808 year: 2004 ident: ref17 article-title: Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium publication-title: J Bacteriol doi: 10.1128/JB.186.14.4808-4812.2004 – volume: 7 start-page: e47742 year: 2012 ident: ref116 article-title: Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration publication-title: PLoS One doi: 10.1371/journal.pone.0047742 – volume: 159 start-page: 400 year: 2008 ident: ref54 article-title: The potential of phages to prevent MRSA infections publication-title: Res Microbiol doi: 10.1016/j.resmic.2008.04.003 – volume: 87 start-page: e01979 year: 2021 ident: ref21 article-title: Encapsulation and delivery of therapeutic phages publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01979-20 – volume: 21 start-page: 129 year: 2017 ident: ref151 article-title: Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report publication-title: Crit Care doi: 10.1186/S13054-017-1709-Y – volume: 43 start-page: 1464 year: 2017 ident: ref3 article-title: Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach publication-title: Intensive Care Med doi: 10.1007/s00134-017-4878-x – volume: 6 start-page: 1471 year: 2015 ident: ref14 article-title: Antibacterial activity of a novel peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa publication-title: Front Microbiol doi: 10.3389/fmic,b.2015.01471 – volume: 21 start-page: 171 year: 2015 ident: ref107 article-title: Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats publication-title: Microb Drug Resist doi: 10.1089/mdr.2014.0120 – year: 2023 ident: ref192 – volume: 215 start-page: 703 year: 2017 ident: ref69 article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence publication-title: J Infect Dis doi: 10.1093/INFDIS/JIW632 – start-page: 363 volume-title: Phage Therapy: A Practical Approach year: 2019 ident: ref177 article-title: Phage therapy in Europe: Regulatory and intellectual property protection issues doi: 10.1007/978-3-030-26736-0_15 – volume: 14 start-page: 359 year: 2021 ident: ref33 article-title: Formulations for bacteriophage therapy and the potential uses of immobilization publication-title: Pharmaceuticals doi: 10.3390/ph14040359 – volume: 62 start-page: e01714 year: 2018 ident: ref94 article-title: Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01714-17 – volume: 10 start-page: 608402 year: 2021 ident: ref141 article-title: Heterogeneous Klebsiella pneumoniae co-infections complicate personalized bacteriophage therapy publication-title: Front Cell Infect Microbiol doi: 10.3389/FCIMB.2020.608402 – year: 2023 ident: ref194 – volume: 56 start-page: 6235 year: 2012 ident: ref72 article-title: Virulent bacteriophages can target O104:H4 Enteroaggregative Escherichia coli in the mouse intestine publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00602-12 – volume: 10 start-page: 612 year: 2021 ident: ref165 article-title: Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2021.1902754 – volume: 12 start-page: 1 year: 2021 ident: ref100 article-title: Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258 publication-title: MBio doi: 10.1128/MBIO.00034-21 – year: 2023 ident: ref195 – volume: 5 start-page: 327 year: 2014 ident: ref174 article-title: Phage therapy in the food industry publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-030713-092415 – volume: 12 start-page: e0175256 year: 2017 ident: ref189 article-title: Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods publication-title: PLoS One doi: 10.1371/journal.pone.0175256 – volume: 14 start-page: 309 year: 1996 ident: ref182 article-title: Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library publication-title: Nat Biotechnol doi: 10.1038/nbt0396-309 – volume: 13 start-page: 257 year: 2021 ident: ref43 article-title: Special Issue: “Bacteriophages and biofilms” publication-title: Viruses doi: 10.3390/V13020257 – volume: 27 start-page: 1357 year: 2021 ident: ref164 article-title: Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection publication-title: Nat Med doi: 10.1038/S41591-021-01403-9 – volume: 55 start-page: 2990 year: 2020 ident: ref161 article-title: Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient publication-title: Pediatr Pulmonol doi: 10.1002/ppul.24945 – volume: 70 start-page: 1998 year: 2020 ident: ref139 article-title: Eradication of a multidrug-resistant, Carbapenemase-producing Klebsiella pneumoniae isolate following Oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation publication-title: Rev Infect Dis doi: 10.1093/cid/ciz782 – volume: 47 start-page: 665 year: 2019 ident: ref158 article-title: Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient publication-title: Infection doi: 10.1007/S15010-019-01319-0 – volume: 35 start-page: 125 year: 2020 ident: ref11 article-title: Bacteriophages and Lysins in biofilm control publication-title: Virol Sin doi: 10.1007/s12250-019-00192-3 – volume: 10 start-page: 205 year: 2018 ident: ref191 article-title: Bacteriophage applications for Food production and processing publication-title: Viruses doi: 10.3390/v10040205 – start-page: 7(FEB) year: 2017 ident: ref93 article-title: Long-term safety of topical bacteriophage application to the frontal sinus region publication-title: Front Cell Infect Microbiol doi: 10.3389/FCIMB.2017.00049 – volume: 310 start-page: 2191 year: 2013 ident: ref175 article-title: World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects publication-title: JAMA doi: 10.1001/jama.2013.281053 – volume: 75 start-page: 422 year: 2022 ident: ref80 article-title: Bacteriophage therapy of human-restricted Salmonella species—a study in a surrogate bacterial and animal model publication-title: Lett Appl Microbiol doi: 10.1111/LAM.13744 – volume: 33 start-page: 1486 year: 2016 ident: ref25 article-title: Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections publication-title: Pharm Res doi: 10.1007/s11095-016-1892-6 – volume: 11 start-page: 28 year: 2010 ident: ref40 article-title: Phage therapy pharmacology publication-title: Curr Pharm Biotechnol doi: 10.2174/138920110790725410 – year: 2023 ident: ref203 – volume: 47 start-page: 267 year: 1999 ident: ref50 article-title: Phage therapy: past history and future prospects publication-title: Arch Immunol Ther Exp – volume: 10 start-page: 2 year: 2018 ident: ref176 article-title: The magistral phage Viruses publication-title: Viruses doi: 10.3390/V10020064 – volume: 6 start-page: 286 year: 2012 ident: ref127 article-title: The role of regulated clinical trials in the development of bacteriophage therapeutics publication-title: J Mol Genet Med doi: 10.4172/1747-0862.1000050 – volume: 59 start-page: 123 year: 2019 ident: ref7 article-title: Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields publication-title: J Basic Microbiol doi: 10.1002/jobm.201800412 – volume: 4 start-page: 66 year: 2014 ident: ref149 article-title: Experimental phage therapy of burn wound infection: difficult first steps. Int J burns publication-title: Trauma – volume: 21 start-page: 1 year: 2020 ident: ref120 article-title: Antibiotics act with vB_AbaP_AGC01 phage against Acinetobacter baumannii in human heat-inactivated plasma blood and galleria mellonella models publication-title: Int J Mol Sci doi: 10.3390/IJMS21124390 – volume: 11 start-page: 96 year: 2019 ident: ref16 article-title: The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole publication-title: Viruses doi: 10.3390/v11020096 – volume: 103 start-page: 1769 year: 1934 ident: ref211 article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections publication-title: J Am Med Assoc doi: 10.1001/jama.1934.72750490003007 – volume: 5 start-page: 268 year: 1997 ident: ref210 article-title: Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential publication-title: Trends Microbiol doi: 10.1016/S0966-842X(97)01054-8 – volume: 1 start-page: 111 year: 2011 ident: ref55 article-title: Pros and cons of phage therapy publication-title: Bacteriophage doi: 10.4161/bact.1.2.14590 – volume: 21 start-page: 595 year: 2013 ident: ref103 article-title: Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds publication-title: Wound Repair Regen doi: 10.1111/WRR.12056 – year: 2019 ident: ref181 – volume: 5 start-page: ofy269 year: 2018 ident: ref131 article-title: Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open forum publication-title: Infect Dis doi: 10.1093/ofid/ofy269 – volume: 60 start-page: 1697 year: 2011 ident: ref140 article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection publication-title: J Med Microbiol doi: 10.1099/JMM.0.029744-0 – volume: 39 start-page: 48 year: 2017 ident: ref46 article-title: Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections publication-title: Curr Opin Microbiol doi: 10.1016/J.MIB.2017.09.004 – volume: 29 start-page: 995 year: 2007 ident: ref39 article-title: Biotechnological challenges of phage therapy publication-title: Biotechnol Lett doi: 10.1007/s10529-007-9346-1 – volume: 40 start-page: 459 year: 2020 ident: ref9 article-title: Phage therapy: current status and perspectives publication-title: Med Res Rev doi: 10.1002/med.21593 – volume: 11 start-page: e00019 year: 2020 ident: ref204 article-title: In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials publication-title: MBio doi: 10.1128/MBIO.00019-20 – volume: 7 start-page: 49 year: 2017 ident: ref85 article-title: Long-term safety of topical bacteriophage application to the frontal sinus region publication-title: Front Cell Infect Microbiol doi: 10.3389/FCIMB.2017.00049/BIBTEX – volume: 145 start-page: 723 year: 2019 ident: ref167 article-title: Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus publication-title: JAMA Otolaryngol Head Neck Surg doi: 10.1001/jamaoto.2019.1191 – volume: 11 start-page: 631585 year: 2021 ident: ref163 article-title: Clinical experience of personalized phage therapy against Carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.631585 – volume: 5 start-page: e1088124 year: 2015 ident: ref198 article-title: Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota publication-title: Bacteriophage doi: 10.1080/21597081.2015.1088124 – volume: 121 start-page: 1 year: 2017 ident: ref28 article-title: Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection publication-title: Eur J Pharm Biopharm doi: 10.1016/J.EJPB.2017.09.002 – year: 2023 ident: ref187 – volume: 9 start-page: 2252 year: 2018 ident: ref20 article-title: Phage lysins for fighting bacterial respiratory infections: a new generation of antimicrobials publication-title: Front Immunol doi: 10.3389/fimmu.2018.02252 – volume: 5 start-page: 435 year: 2016 ident: ref91 article-title: Experimental phage therapy against haematogenous multi-drug resistant Staphylococcus aureus pneumonia in mice. Afr publication-title: J Lab Med doi: 10.4102/AJLM.V5I1.435 – volume: 19 start-page: 35 year: 2019 ident: ref5 article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(18)30482-1 – volume: 296 start-page: 5 year: 2006 ident: ref52 article-title: Phage therapy: facts and fiction publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2005.09.002 – start-page: 727 year: 2022 ident: ref148 article-title: Biological therapy on infected traumatic wounds: a case-control study publication-title: Int J Low Extrem Wounds doi: 10.1177/15347346211072779 – volume: 38 start-page: 475 year: 2019 ident: ref155 article-title: Novel bacteriophage therapy for treatment of left ventricular assist device infection publication-title: J Heart Lung Transplant doi: 10.1016/j.healun.2019.01.001 – volume: 2018 start-page: 60 year: 2018 ident: ref136 article-title: Phage treatment of an aortic graft infected with Pseudomonas aeruginosa publication-title: Evol Med Public Health doi: 10.1093/emph/eoy005 – volume: 64 start-page: 1870 year: 2020 ident: ref111 article-title: Efficacy of bacteriophages in a Staphylococcus aureus nondiabetic or diabetic foot infection murine model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01870-19 – year: 2023 ident: ref206 – volume: 54 year: 2018 ident: ref36 article-title: Phage therapy: Progress in pharmacokinetics. Brazilian publication-title: J Pharm Sci doi: 10.1590/s2175-97902018000117093 – volume: 70 start-page: 217 year: 2010 ident: ref49 article-title: Bacteriophage host range and bacterial resistance publication-title: Adv Appl Microbiol doi: 10.1016/S0065-2164(10)70007-1 – volume: 13 start-page: 10060 year: 2021 ident: ref166 article-title: A case of phage therapy against Pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient publication-title: Viruses doi: 10.3390/V13010060 – volume: 61 start-page: 16 year: 2015 ident: ref108 article-title: An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms publication-title: Ostomy Wound Manage – volume: 11 start-page: 69 year: 2010 ident: ref41 article-title: Phage therapy in clinical practice: treatment of human infections publication-title: Curr Pharm Biotechnol doi: 10.2174/138920110790725401 – volume: 201 start-page: 52 year: 2010 ident: ref51 article-title: Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy publication-title: J Infect Dis doi: 10.1086/648478 – volume: 8 start-page: 18 year: 2016 ident: ref30 article-title: Current trends in development of liposomes for targeting bacterial biofilms publication-title: Pharmaceutics doi: 10.3390/pharmaceutics8020018 – volume: 11 start-page: 18 year: 2019 ident: ref179 article-title: Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections publication-title: Viruses doi: 10.3390/v11010018 – volume: 32 start-page: 644 year: 2006 ident: ref126 article-title: Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients publication-title: Burns doi: 10.1016/j.burns.2006.02.012 – volume: 27 start-page: 355 year: 2019 ident: ref217 article-title: Engineering bacteriophages as versatile biologics publication-title: Trends Microbiol doi: 10.1016/j.tim.2018.09.006 – volume: 100 start-page: 2141 year: 2016 ident: ref13 article-title: Bacteriophage-encoded depolymerases: their diversity and biotechnological applications publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-7247-0 – volume: 6 start-page: e16963 year: 2011 ident: ref87 article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention publication-title: PLoS One doi: 10.1371/journal.pone.0016963 – volume: 206 start-page: 41 year: 2019 ident: ref86 article-title: Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis publication-title: Transl Res doi: 10.1016/J.TRSL.2018.12.002 – volume: 7 start-page: 253 year: 2018 ident: ref152 article-title: Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy publication-title: J Pediatric Infect Dis Soc doi: 10.1093/jpids/pix056 – volume: 13 start-page: 491 year: 2005 ident: ref18 article-title: Bacteriophage lytic enzymes: novel anti-infectives publication-title: Trends Microbiol doi: 10.1016/j.tim.2005.08.007 – volume: 169 start-page: 540 year: 2018 ident: ref162 article-title: Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report publication-title: Res Microbiol doi: 10.1016/j.resmic.2018.05.001 – volume: 22 start-page: e208 year: 2022 ident: ref125 article-title: Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(21)00612-5 – volume: 18 start-page: 171 year: 2019 ident: ref147 article-title: Bacteriophage therapy of chronic nonhealing wound: clinical study publication-title: Int J Lower Extrem Wounds doi: 10.1177/1534734619835115 – volume: 1 start-page: 34 year: 2019 ident: ref57 article-title: Pharmacological and immunological aspects of phage therapy publication-title: Infect Microb Dis doi: 10.1097/im9.0000000000000013 – volume: 94 start-page: 103630 year: 2021 ident: ref82 article-title: Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases publication-title: Food Microbiol doi: 10.1016/j.fm.2020.103630 – volume: 225 start-page: 1452 year: 2022 ident: ref99 article-title: Benefits of aerosolized phages for the treatment of pneumonia due to methicillin-resistant Staphylococcus aureus: an experimental study in rats publication-title: J Infect Dis doi: 10.1093/INFDIS/JIAB112 – volume: 7 start-page: 41441 year: 2017 ident: ref32 article-title: Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy publication-title: Sci Rep doi: 10.1038/srep41441 – volume: 35 start-page: 553 year: 1987 ident: ref213 article-title: Immunogenic effect of bacteriophage in patients subjected to phage therapy publication-title: Arch Immunol Ther Exp – volume: 19 start-page: 400 year: 2011 ident: ref45 article-title: Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing publication-title: Wound Repair Regen doi: 10.1111/J.1524-475X.2011.00690.X – year: 2023 ident: ref197 – volume: 82 start-page: 5332 year: 2016 ident: ref117 article-title: Phage therapy is effective in a mouse model of bacterial equine keratitis publication-title: Appl Environ Microbiol doi: 10.1128/aem.01166-16 – year: 2023 ident: ref202 – volume: 77 start-page: 6379 year: 2011 ident: ref34 article-title: Biocontrol of listeria monocytogenes and Escherichia coli O157: H7 in meat by using phages immobilized on modified cellulose membranes publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05493-11 – volume: 10 start-page: 5891 year: 2020 ident: ref97 article-title: Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates publication-title: Sci Rep doi: 10.1038/s41598-020-62691-8 – volume: 1 start-page: 555 year: 2017 ident: ref22 article-title: Evading antibody mediated inactivation of bacteriophages using delivery systems publication-title: J Virol Curr Res doi: 10.19080/JOJIV.2017.01.55557 – volume: 2018 start-page: 7569645 year: 2018 ident: ref68 article-title: Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1 publication-title: Biomed Res Int doi: 10.1155/2018/7569645 – volume: 45 start-page: 649 year: 2001 ident: ref208 article-title: Bacteriophage therapy publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.45.3.649-659.2001 – volume: 49 start-page: 994 year: 2011 ident: ref62 article-title: Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models publication-title: J Microbiol doi: 10.1007/s12275-011-1512-4 – volume: 61 start-page: e00954 year: 2017 ident: ref154 article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00954-17 – volume: 34 start-page: 286 year: 2007 ident: ref186 article-title: Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/J.1440-1681.2007.04563.X – volume: 30 start-page: 118 year: 2007 ident: ref8 article-title: Bacteriophages: an appraisal of their role in the treatment of bacterial infections publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2007.04.006 – volume: 62 start-page: 255 year: 2011 ident: ref38 article-title: Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections publication-title: Curr Microbiol doi: 10.1007/s00284-010-9699-x – volume: 14 start-page: 1 year: 2014 ident: ref83 article-title: Bacteriophage as effective decolonising agent for elimination of MRSA from anterior nares of BALB/c mice publication-title: BMC Microbiol doi: 10.1186/S12866-014-0212-8/FIGURES/5 – volume: 11 start-page: 840 year: 2017 ident: ref193 article-title: Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease publication-title: J Crohns Colitis doi: 10.1093/ecco-jcc/jjw224 – volume: 212 start-page: 325 year: 2015 ident: ref90 article-title: Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia publication-title: J Infect Dis doi: 10.1093/INFDIS/JIV029 – volume: 304 start-page: 422 year: 2014 ident: ref74 article-title: Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice publication-title: Int J Med Microbiol doi: 10.1016/J.IJMM.2014.02.007 – volume: 10 start-page: 1324 year: 2022 ident: ref172 article-title: Phage products for fighting antimicrobial resistance publication-title: Microorganisms doi: 10.3390/microorganisms10071324 – volume: 17 start-page: 297 ident: ref173 article-title: Phage therapy-everything old is new again publication-title: Can J Infect Dis Med Microbiol doi: 10.1155/2006/329465 – volume: 9 start-page: 1832 year: 2018 ident: ref137 article-title: Adapted bacteriophages for treating urinary tract infections publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01832/full – volume: 13 start-page: 778676 year: 2022 ident: ref71 article-title: Evaluation of bacteriophage cocktail on septicemia caused by colistin-resistant Klebsiella pneumoniae in mice model publication-title: Front Pharmacol doi: 10.3389/fphar.2022.778676 – year: 2023 ident: ref196 – volume: 43 start-page: 1532 year: 2017 ident: ref110 article-title: Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections publication-title: Burns doi: 10.1016/j.burns.2017.03.029 – volume: 17 start-page: BR173 year: 2011 ident: ref59 article-title: Phage therapy of Cronobacter-induced urinary tract infection in mice publication-title: Med Sci Monit doi: 10.12659/msm.>16271 – volume: 105 start-page: 9047 year: 2021 ident: ref216 article-title: Phage therapeutics: from promises to practices and prospectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-021-11695-z – volume: 9 start-page: 861 year: 2014 ident: ref106 article-title: Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment publication-title: Future Microbiol doi: 10.2217/fmb.14.50 – volume: 114 start-page: 288 year: 2017 ident: ref26 article-title: How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2017.01.024 – volume: 13 start-page: 825828 year: 2022 ident: ref48 article-title: Bacteriophage-mediated control of biofilm: a promising new Dawn for the future publication-title: Front Microbiol doi: 10.3389/fmicb.2022.825828 – volume: 13 start-page: 1182 year: 2021 ident: ref134 article-title: Successful treatment of Staphylococcus aureus prosthetic joint infection with bacteriophage therapy publication-title: Viruses doi: 10.3390/V13061182 – volume: 249 start-page: 100 year: 2017 ident: ref23 article-title: Formulation, stabilisation and encapsulation of bacteriophage for phage therapy publication-title: Adv Colloid Interf Sci doi: 10.1016/j.cis.2017.05.014 – volume: 13 start-page: 2044 year: 2021 ident: ref6 article-title: In vitro evaluation of the therapeutic potential of phage va7 against enterotoxigenic Bacteroides fragilis infection publication-title: Viruses doi: 10.3390/v13102044 – volume: 7 start-page: 87 year: 2018 ident: ref129 article-title: Resolving digital staphylococcal osteomyelitis using bacteriophage–a case report publication-title: Antibiotics doi: 10.3390/antibiotics7040087 – volume: 66 start-page: 959 year: 2021 ident: ref113 article-title: A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus publication-title: Folia Microbiol (Praha) doi: 10.1007/s12223-021-00895-9 – volume: 11 start-page: 891 year: 2019 ident: ref135 article-title: Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol publication-title: Viruses doi: 10.3390/V11100891 – volume: 99 start-page: 68 year: 2016 ident: ref109 article-title: In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice publication-title: Microb Pathog doi: 10.1016/j.micpath.2016.08.001 – volume: 72 start-page: 666 year: 2017 ident: ref92 article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa publication-title: Thorax doi: 10.1136/thoraxjnl-2016-209265 – volume: 5 start-page: 542 year: 2020 ident: ref112 article-title: Phages versus antibiotics to treat infected diabetic wounds in a mouse model: a microbiological and microbiotic evaluation publication-title: Microb Syst doi: 10.1128/msystems.00542-20 – volume: 146 start-page: 309 year: 2010 ident: ref115 article-title: Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2010.05.014 – volume: 60 start-page: 205 year: 2011 ident: ref102 article-title: Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055 publication-title: J Med Microbiol doi: 10.1099/jmm.0.018580-0 – start-page: 69 volume-title: Methods and protocols, volume 1: isolation, characterization, and interactions methods in molecular biology year: 2009 ident: ref56 – volume: 63 start-page: e00379 year: 2019 ident: ref96 article-title: Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00379-19 – volume: 68 start-page: 151 year: 2021 ident: ref218 article-title: Enhancing phage therapy through synthetic biology and genome engineering publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2020.11.003 – volume: 85 start-page: e02900 year: 2019 ident: ref95 article-title: Two novel bacteriophages improve survival in Galleria mellonella infection and mouse acute pneumonia models infected with extensively drug-resistant Pseudomonas aeruginosa publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02900-18 – volume: 35 start-page: 167 year: 2007 ident: ref185 article-title: Transmembrane protein polymorphisms and resistance to T-20 (Enfuvirtide, Fuzeon) in HIV-1 infected therapy-naive seroconverters and AIDS patients under HAART-T-20 therapy publication-title: Virus Genes doi: 10.1007/S11262-007-0098-8 – volume: 15 start-page: 152 year: 2013 ident: ref73 article-title: Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model publication-title: Microbes Infect doi: 10.1016/J.MICINF.2012.11.002 – volume: 5 start-page: 465 year: 2020 ident: ref153 article-title: Safety of bacteriophage therapy in severe Staphylococcus aureus infection publication-title: Nat Microbiol doi: 10.1038/S41564-019-0634-Z – year: 2023 ident: ref200 – volume: 20 start-page: 935 year: 2010 ident: ref101 article-title: Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice publication-title: J Microbiol Biotechnol doi: 10.4014/JMB.0909.09010 – volume: 18 start-page: 318 year: 2018 ident: ref4 article-title: Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(17)30753-3 – volume: 71 start-page: 47729 year: 2006 ident: ref178 article-title: Food additives permitted for direct addition to food for human consumption; bacteriophage preparation publication-title: Fed Regist – volume: 7 start-page: e31698 year: 2012 ident: ref61 article-title: A method for generation phage cocktail with great therapeutic potential publication-title: PLoS One doi: 10.1371/journal.pone.0031698 – volume: 64 start-page: e01281 year: 2019 ident: ref138 article-title: A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01281-19 – volume: 56 start-page: 3568 year: 2012 ident: ref65 article-title: Efficacy of bacteriophage therapy in experimental Sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.06330-11 – volume: 4 start-page: 176 year: 2014 ident: ref84 article-title: Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of Staphylococcus aureus infection in a sheep model of sinusitis publication-title: Int Forum Allergy Rhinol doi: 10.1002/ALR.21270 – volume: 57 start-page: 1003 year: 2020 ident: ref156 article-title: Treatment of chronic left ventricular assist device infection with local application of bacteriophages publication-title: Eur J Cardiothorac Surg doi: 10.1093/ejcts/ezz295 – volume: 10 start-page: 328 year: 2017 ident: ref123 article-title: Information phage therapy research should report publication-title: Pharmaceuticals doi: 10.3390/ph10020043 – volume: 7 start-page: 35 year: 2018 ident: ref15 article-title: Silk route to the acceptance and re-implementation of bacteriophage therapy–part II publication-title: Antibiotics doi: 10.3390/antibiotics7020035 – volume: 44 start-page: 2337 year: 2018 ident: ref67 article-title: Phage Abp1 rescues human cells and mice from infection by Pan-drug resistant Acinetobacter baumannii publication-title: Cell Physiol Biochem doi: 10.1159/000486117 – year: 2023 ident: ref171 – volume: 16 start-page: 512 year: 2014 ident: ref63 article-title: Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice publication-title: Microbes Infect doi: 10.1016/j.micinf.2014.02.011 – volume: 20 start-page: 204 year: 2020 ident: ref114 article-title: Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus publication-title: BMC Microbiol doi: 10.1186/s12866-020-01891-8 – year: 2014 ident: ref1 – volume: 13 start-page: e1002184 year: 2016 ident: ref2 article-title: Will 10 million people die a year due to antimicrobial resistance by 2050? publication-title: PLoS Med doi: 10.1371/journal.pmed.1002184 – volume: 9 start-page: 771 year: 2020 ident: ref142 article-title: Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1747950 – volume: 13 start-page: 91 year: 2015 ident: ref183 article-title: Phage approved in food, why not as a therapeutic? publication-title: Expert Rev Anti-Infect Ther doi: 10.1586/14787210.2015.990383 – volume: 48 start-page: 44 year: 1989 ident: ref37 article-title: Bacteriophages and their therapeutic-prophylactic use publication-title: Med Sestra – volume: 12 start-page: 675440 year: 2021 ident: ref24 article-title: Bacteriophage and endolysin encapsulation systems: a promising strategy to improve therapeutic outcomes publication-title: Front Pharmacol doi: 10.3389/fphar.2021.675440 – volume: 154 start-page: 141 year: 2021 ident: ref70 article-title: Evaluation of bacteriophage cocktail on septicaemia caused by colistin-resistant Acinetobacter baumannii in immunocompromised mice model publication-title: Indian J Med Res doi: 10.4103/IJMR.IJMR_2271_18 – start-page: 321 volume-title: Bacteriophages: Biology and applications year: 2004 ident: ref19 article-title: 12 the use of phage lytic enzymes to control bacterial infections doi: 10.1201/9780203491751.ch12 – volume: 58 start-page: 4005 year: 2014 ident: ref27 article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02388-13 – year: 2023 ident: ref201 – volume: 9 start-page: 328 year: 2017 ident: ref122 article-title: Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014 publication-title: Viruses doi: 10.3390/v9110328 – volume: 93 start-page: 3188 year: 1996 ident: ref215 article-title: Long-circulating bacteriophage as antibacterial agents publication-title: Proc Natl Acad Sci doi: 10.1073/PNAS.93.8.3188 – volume: 10 start-page: 131 year: 2017 ident: ref78 article-title: Phage therapy: assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice publication-title: Gastroenterol Hepatol Bed Bench – start-page: 305 year: 2019 ident: ref190 article-title: SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2019.108250 – volume: 61 start-page: e02146 year: 2017 ident: ref31 article-title: Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02146-16 – volume: 365 start-page: fny136 year: 2018 ident: ref79 article-title: Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage publication-title: FEMS Microbiol Lett doi: 10.1093/FEMSLE/FNY136 – volume: 96 start-page: 1917 year: 2007 ident: ref12 article-title: Enzybiotics: a look to the future, recalling the past publication-title: J Pharm Sci doi: 10.1002/jps.20853 – volume: 60 start-page: 968 year: 2016 ident: ref76 article-title: Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01774-15 – volume: 200 start-page: 1179 year: 2019 ident: ref157 article-title: Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by Pseudomonas aeruginosa publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201904-0839LE – volume: 131 start-page: 225 year: 2013 ident: ref44 article-title: Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e31827e47cd – volume: 52 start-page: e20190290 year: 2019 ident: ref81 article-title: Phage therapy as an approach to control Salmonella enterica serotype Enteritidis infection in mice publication-title: Rev Soc Bras Med Trop doi: 10.1590/0037-8682-0290-2019 – volume: 14 start-page: e0219599 year: 2019 ident: ref118 article-title: Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo publication-title: PLoS One doi: 10.1371/journal.pone.0219599 – volume: 18 start-page: 1144 year: 2013 ident: ref184 article-title: Phage display as a technology delivering on the promise of peptide drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2013.09.001 – volume: 321 start-page: 638 year: 2019 ident: ref180 article-title: FDA approves bacteriophage trial publication-title: JAMA doi: 10.1001/jama.2019.0510 – volume: 25 start-page: S27 year: 2016 ident: ref128 article-title: Bacteriophage treatment of intransigent diabetic toe ulcers: a case series publication-title: Methods Mol Biol doi: 10.12968/jowc.2016.25.sup7.s27 – volume: 3 start-page: e00029 year: 2012 ident: ref88 article-title: Bacteriophages ϕMR299-2 and ϕNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells publication-title: MBio doi: 10.1128/mBio.00029-12 – start-page: 125 year: 2007 ident: ref53 article-title: Bacteriophages in medicine publication-title: Bacteriophage – volume: 8 start-page: 877 year: 2013 ident: ref42 article-title: Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies publication-title: Future Microbiol doi: 10.2217/fmb.13.58 – volume: 73 start-page: 155 year: 2019 ident: ref10 article-title: Phage therapy in the twenty-first century: Facing the decline of the antibiotic era; is it finally time for the age of the phage? publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-090817-062535 – volume: 7 start-page: e2183 year: 2013 ident: ref105 article-title: Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002183 – volume: 20 start-page: 37 year: 2021 ident: ref146 article-title: Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study publication-title: Int J Lower Extrem Wounds doi: 10.1177/1534734619881076 |
SSID | ssj0001325413 |
Score | 2.3055682 |
SecondaryResourceType | review_article |
Snippet | The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1209782 |
SubjectTerms | bacteriophage immune response Medicine preclinical AND clinical trials treatment challenges veterinary medicine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQD4gLggXEUoqMxAk1kNhOYnOjVasKCcSBot4s2_GwkdhstbtFov_V_2PGSVabC1y4JuPYzowzb-KZZ8belKbxTS58plQJmaoxTtGgQxZr7dFDqSBDyvL9Ul1cqk9X5dXeUV-UE9bTA_cv7n0dlQ95lIWLhI5pl7CoHHr9AqG-6Ev30OftBVPp74rEwKeQ_TYmRmEG1RSJGFTId9Sq1mLiiBJf_wRkTlMk93zO-SP2cACL_GM_yMfsXuxm7P7nYTt8xmbfKZklVdTy8eoTdvd1gR8J3ldW_f7AHV_HX4OFkeRm0cKWtx1J8OUu_YWvgPueuxn7HJO0us0xvyY2o0RZyBGE88Vq3d7iDXrEWFjJx2qrY-66Bjtsl3T8ETWhXjB6jjQT98O1iEf5sk38T9QOEegKjXjzlF2en307vciG0xmyoJTc4vKKlQMNRgSnQildlDkYgCh9IaPDQARftAKvgytKnQeEOo2TDipjQq2Vl8_YQYfDf854aKDBbwkYL6UCUTsUB5cbaEQTAMyc5aOqbBioy-kEjZ8WQxjSriXtWtKuHbQ7Z293Ta573o6_CZ-Q_neCRLmdLqAh2sEQ7b8Mcc5ej9ZjcYnSvovr4upmY4XWFca9UlVzpidmNelxeqdrF4nsG0N2gbCtePE_xnjIHtC8yfcW5iU72K5v4hGCqq1_ldbPH9ryI-o priority: 102 providerName: Directory of Open Access Journals |
Title | Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens |
URI | https://www.proquest.com/docview/2886601346 https://pubmed.ncbi.nlm.nih.gov/PMC10620811 https://doaj.org/article/7e4bc0e31ae2425296416a5611871209 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zgvgi86p4_TEi-CTraJu0TYQhmziGMPHBK3srSZrsFnbbrb0T5_-1_2_npOnFwvDJ1zZp2pycnvMl53yHkPeZrHQVpzriPHMRLwCnCCdMZAuhwUJxw4yP8v2Wnyz417PsbIuM5a3CBPb3QjusJ7XoLvZ_X918AoU_QMQJ9hYkYJHzM2X7mAgKJu8BeQiGqcCCBqfB2_dbLgzQUMKGs837e06skyfxn3ie07jJvwzR8Q55EjxIejiI_CnZss2MPDoNZ-QzMvuJES4-zZaOV5-R2-9L-HPQId3q5iNVtLO_wrLDlv2ydmtaN9iCrjYxMbR1VA-EzjDmGLnV9Hv0EimOPI8hBc-cLtuu_gM38BFjtiUdU7D2qGoqGLBeYU0k7IKjwLxb_BJ1rmpwUumq9qRQ2A_c0hZWdv-cLI6__Ph8EoWSDZHhnK1B52yunHAyNYqbjCnLYieds0wnzCpAJzDR3GlhVJKJ2ID_UymmXC6lKQTX7AXZbuD1XxJqKlfBD8ZJzRh3aaGguVOxdFVaGefknMSjqEoT-MyxrMZFCbgGpVuidEuUbhmkOycfNl0uBzKPfzU-QvlvGiIPt7_QdudlUOuysFyb2LJEWcRueIad5Ap80gSAKDxnTt6Nq6cEvcXDGNXY9rovUyFyAMOM53MiJstqMuL0TlMvPQM44PgUfLnk1f94x9fkMX43GuREviHb6-7avgVPa613_Q7FrteiO3JxLec |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phage+therapy%3A+a+revolutionary+shift+in+the+management+of+bacterial+infections%2C+pioneering+new+horizons+in+clinical+practice%2C+and+reimagining+the+arsenal+against+microbial+pathogens&rft.jtitle=Frontiers+in+medicine&rft.au=Subhash+Lal+Karn&rft.au=Mayank+Gangwar&rft.au=Rajesh+Kumar&rft.au=Satyanam+Kumar+Bhartiya&rft.date=2023-10-19&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-858X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmed.2023.1209782&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-858X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-858X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-858X&client=summon |