Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens

The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in medicine Vol. 10; p. 1209782
Main Authors Karn, Subhash Lal, Gangwar, Mayank, Kumar, Rajesh, Bhartiya, Satyanam Kumar, Nath, Gopal
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 19.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo . However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo . Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
AbstractList The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo . However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo . Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy’s potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another’s suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Author Nath, Gopal
Bhartiya, Satyanam Kumar
Karn, Subhash Lal
Gangwar, Mayank
Kumar, Rajesh
AuthorAffiliation 1 Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
2 Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
AuthorAffiliation_xml – name: 2 Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
– name: 1 Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
Author_xml – sequence: 1
  givenname: Subhash Lal
  surname: Karn
  fullname: Karn, Subhash Lal
– sequence: 2
  givenname: Mayank
  surname: Gangwar
  fullname: Gangwar, Mayank
– sequence: 3
  givenname: Rajesh
  surname: Kumar
  fullname: Kumar, Rajesh
– sequence: 4
  givenname: Satyanam Kumar
  surname: Bhartiya
  fullname: Bhartiya, Satyanam Kumar
– sequence: 5
  givenname: Gopal
  surname: Nath
  fullname: Nath, Gopal
BookMark eNp1kk1v1DAQhiNUJErpD-DmI4fu4o98OFwQqvioVAkOIHGzJt5x4iqxg50tWv4X_48Ju0gUiZMtz_s-M56Zp8VZiAGL4rngW6V0-9JNuNtKLtVWSN42Wj4qzqVs642u9Nezv-5Pisuc7zjnQsmqFOq8-PlpgB7ZMmCC-fCKAUt4H8f94mOAdGB58G5hPqwKNkEg8YRhYdGxDuyCycNIYYd2deQrNtOB9Bx6FvA7G2LyPyiwIuzog7eknxNZvcUrBmFHCf0EPYXIsmaBlDGQCnrwIS9s8jbFbs0zwzLEHkN-Vjx2MGa8PJ0XxZd3bz9ff9jcfnx_c_3mdmPLUi0bybEGp10rLZS2UoCKu9Y5VJ1QCHVTUb9K12kLotLc1pXegQJXt61tdNmpi-LmyN1FuDNzokLTwUTw5vdDTL2BRD8Z0TRYdpajEoCylBV1vBQ1VLUQulmnQqzXR9a872helrqYYHwAfRgJfjB9vDeC15JrIYjw4kRI8dse82Imny2OIwSM-2yk1nVNoy1rkjZHKbUu54TOWL_AOiJC-5GYZt0cs26OWTfHnDaHnOIf558K_-_5BU8czs4
CitedBy_id crossref_primary_10_3390_biomedicines13010100
crossref_primary_10_3389_fmicb_2024_1479700
crossref_primary_10_1016_j_heliyon_2024_e40076
crossref_primary_10_1007_s13205_024_04101_8
crossref_primary_10_1016_j_heliyon_2024_e34333
crossref_primary_10_1002_cbf_4022
crossref_primary_10_1016_j_micpath_2024_107088
crossref_primary_10_3390_antibiotics14030296
Cites_doi 10.3389/fmicb.2020.506068
10.1016/s0163-4453(98)92874-2
10.2217/fmb-2022-0054
10.1093/cid/ciaa705
10.1001/jama.1941.62820200013011
10.12968/jowc.2009.18.6.42801
10.3389/fphar.2021.692614
10.1016/j.cmi.2023.01.021
10.1111/ajt.15503
10.1093/INFDIS/JIU059
10.1007/978-1-4939-7395-8_14
10.1155/2015/752930
10.33314/jnhrc.v19i1.3282
10.1186/s13063-022-07047-5
10.3390/antibiotics9050241
10.3390/antibiotics9110827
10.1186/s12941-020-00389-5
10.1111/tid.13391
10.1128/AAC.41.3.497
10.1371/journal.pone.0056022
10.3390/V10040177
10.1128/AAC.01123-10
10.2174/1874364101509010167
10.3390/v13122348
10.1038/S41591-019-0437-Z
10.1007/s13337-021-00673-8
10.1111/1462-2920.13284
10.1016/j.micpath.2018.10.042
10.1016/j.jddst.2020.101754
10.3389/fmicb.2017.00837
10.1128/JB.186.14.4808-4812.2004
10.1371/journal.pone.0047742
10.1016/j.resmic.2008.04.003
10.1128/AEM.01979-20
10.1186/S13054-017-1709-Y
10.1007/s00134-017-4878-x
10.3389/fmic,b.2015.01471
10.1089/mdr.2014.0120
10.1093/INFDIS/JIW632
10.1007/978-3-030-26736-0_15
10.3390/ph14040359
10.1128/AAC.01714-17
10.3389/FCIMB.2020.608402
10.1128/AAC.00602-12
10.1080/22221751.2021.1902754
10.1128/MBIO.00034-21
10.1146/annurev-food-030713-092415
10.1371/journal.pone.0175256
10.1038/nbt0396-309
10.3390/V13020257
10.1038/S41591-021-01403-9
10.1002/ppul.24945
10.1093/cid/ciz782
10.1007/S15010-019-01319-0
10.1007/s12250-019-00192-3
10.3390/v10040205
10.3389/FCIMB.2017.00049
10.1001/jama.2013.281053
10.1111/LAM.13744
10.1007/s11095-016-1892-6
10.2174/138920110790725410
10.3390/V10020064
10.4172/1747-0862.1000050
10.1002/jobm.201800412
10.3390/IJMS21124390
10.3390/v11020096
10.1001/jama.1934.72750490003007
10.1016/S0966-842X(97)01054-8
10.4161/bact.1.2.14590
10.1111/WRR.12056
10.1093/ofid/ofy269
10.1099/JMM.0.029744-0
10.1016/J.MIB.2017.09.004
10.1007/s10529-007-9346-1
10.1002/med.21593
10.1128/MBIO.00019-20
10.3389/FCIMB.2017.00049/BIBTEX
10.1001/jamaoto.2019.1191
10.3389/fcimb.2021.631585
10.1080/21597081.2015.1088124
10.1016/J.EJPB.2017.09.002
10.3389/fimmu.2018.02252
10.4102/AJLM.V5I1.435
10.1016/S1473-3099(18)30482-1
10.1016/j.ijmm.2005.09.002
10.1177/15347346211072779
10.1016/j.healun.2019.01.001
10.1093/emph/eoy005
10.1128/AAC.01870-19
10.1590/s2175-97902018000117093
10.1016/S0065-2164(10)70007-1
10.3390/V13010060
10.2174/138920110790725401
10.1086/648478
10.3390/pharmaceutics8020018
10.3390/v11010018
10.1016/j.burns.2006.02.012
10.1016/j.tim.2018.09.006
10.1007/s00253-015-7247-0
10.1371/journal.pone.0016963
10.1016/J.TRSL.2018.12.002
10.1093/jpids/pix056
10.1016/j.tim.2005.08.007
10.1016/j.resmic.2018.05.001
10.1016/S1473-3099(21)00612-5
10.1177/1534734619835115
10.1097/im9.0000000000000013
10.1016/j.fm.2020.103630
10.1093/INFDIS/JIAB112
10.1038/srep41441
10.1111/J.1524-475X.2011.00690.X
10.1128/aem.01166-16
10.1128/AEM.05493-11
10.1038/s41598-020-62691-8
10.19080/JOJIV.2017.01.55557
10.1155/2018/7569645
10.1128/AAC.45.3.649-659.2001
10.1007/s12275-011-1512-4
10.1128/AAC.00954-17
10.1111/J.1440-1681.2007.04563.X
10.1016/j.ijantimicag.2007.04.006
10.1007/s00284-010-9699-x
10.1186/S12866-014-0212-8/FIGURES/5
10.1093/ecco-jcc/jjw224
10.1093/INFDIS/JIV029
10.1016/J.IJMM.2014.02.007
10.3390/microorganisms10071324
10.1155/2006/329465
10.3389/fmicb.2018.01832/full
10.3389/fphar.2022.778676
10.1016/j.burns.2017.03.029
10.12659/msm.>16271
10.1007/s00253-021-11695-z
10.2217/fmb.14.50
10.1016/j.ejpb.2017.01.024
10.3389/fmicb.2022.825828
10.3390/V13061182
10.1016/j.cis.2017.05.014
10.3390/v13102044
10.3390/antibiotics7040087
10.1007/s12223-021-00895-9
10.3390/V11100891
10.1016/j.micpath.2016.08.001
10.1136/thoraxjnl-2016-209265
10.1128/msystems.00542-20
10.1016/j.vetmic.2010.05.014
10.1099/jmm.0.018580-0
10.1128/AAC.00379-19
10.1016/j.copbio.2020.11.003
10.1128/AEM.02900-18
10.1007/S11262-007-0098-8
10.1016/J.MICINF.2012.11.002
10.1038/S41564-019-0634-Z
10.4014/JMB.0909.09010
10.1016/S1473-3099(17)30753-3
10.1371/journal.pone.0031698
10.1128/AAC.01281-19
10.1128/AAC.06330-11
10.1002/ALR.21270
10.1093/ejcts/ezz295
10.3390/ph10020043
10.3390/antibiotics7020035
10.1159/000486117
10.1016/j.micinf.2014.02.011
10.1186/s12866-020-01891-8
10.1371/journal.pmed.1002184
10.1080/22221751.2020.1747950
10.1586/14787210.2015.990383
10.3389/fphar.2021.675440
10.4103/IJMR.IJMR_2271_18
10.1201/9780203491751.ch12
10.1128/AAC.02388-13
10.3390/v9110328
10.1073/PNAS.93.8.3188
10.1016/j.ijfoodmicro.2019.108250
10.1128/AAC.02146-16
10.1093/FEMSLE/FNY136
10.1002/jps.20853
10.1128/AAC.01774-15
10.1164/rccm.201904-0839LE
10.1097/PRS.0b013e31827e47cd
10.1590/0037-8682-0290-2019
10.1371/journal.pone.0219599
10.1016/j.drudis.2013.09.001
10.1001/jama.2019.0510
10.12968/jowc.2016.25.sup7.s27
10.1128/mBio.00029-12
10.2217/fmb.13.58
10.1146/annurev-micro-090817-062535
10.1371/journal.pntd.0002183
10.1177/1534734619881076
ContentType Journal Article
Copyright Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath.
Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. 2023 Karn, Gangwar, Kumar, Bhartiya and Nath
Copyright_xml – notice: Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath.
– notice: Copyright © 2023 Karn, Gangwar, Kumar, Bhartiya and Nath. 2023 Karn, Gangwar, Kumar, Bhartiya and Nath
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmed.2023.1209782
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
EISSN 2296-858X
ExternalDocumentID oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209
PMC10620811
10_3389_fmed_2023_1209782
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c443t-20e6af8f92ca4c53ae30f9ffe3b13ea6751204fb8ca1580c658da3af699c784b3
IEDL.DBID M48
ISSN 2296-858X
IngestDate Wed Aug 27 01:30:33 EDT 2025
Thu Aug 21 18:36:26 EDT 2025
Fri Jul 11 12:18:30 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-20e6af8f92ca4c53ae30f9ffe3b13ea6751204fb8ca1580c658da3af699c784b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors have contributed equally to this work
Edited by: Mark Willcox, University of New South Wales, Australia
Reviewed by: Vijay Singh Gondil, University of Rochester Medical Center, United States; Urmi Bajpai, University of Delhi, India
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmed.2023.1209782
PQID 2886601346
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620811
proquest_miscellaneous_2886601346
crossref_citationtrail_10_3389_fmed_2023_1209782
crossref_primary_10_3389_fmed_2023_1209782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-19
PublicationDateYYYYMMDD 2023-10-19
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-19
  day: 19
PublicationDecade 2020
PublicationTitle Frontiers in medicine
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References De Vos (ref177) 2019
Nale (ref76) 2016; 60
Parracho (ref127) 2012; 6
Bhargava (ref216) 2021; 105
Alemayehu (ref88) 2012; 3
Clokie (ref56) 2009
(ref195) 2023
Dedrick (ref160) 2019; 25
Furusawa (ref117) 2016; 82
Moye (ref191) 2018; 10
Galtier (ref77) 2016; 18
Alisky (ref209) 1998; 36
Fukuda (ref116) 2012; 7
(ref200) 2023
Chang (ref94) 2018; 62
Duplessis (ref152) 2018; 7
Vaughan (ref182) 1996; 14
(ref205) 2023
Soffer (ref189) 2017; 12
Veiga-Crespo (ref12) 2007; 96
Yin (ref67) 2018; 44
Drulis-Kawa (ref43) 2021; 13
Alomari (ref188) 2021; 13
Kumari (ref101) 2010; 20
Jun (ref75) 2014; 210
Bao (ref142) 2020; 9
Pires (ref46) 2017; 39
Loc-Carrillo (ref55) 2011; 1
Gainey (ref161) 2020; 55
Sulakvelidze (ref208) 2001; 45
Patel (ref70) 2021; 154
Trigo (ref105) 2013; 7
Onsea (ref135) 2019; 11
Takagi (ref186) 2007; 34
(ref206) 2023
Semler (ref27) 2014; 58
Singh (ref71) 2022; 13
Hesse (ref100) 2021; 12
Selle (ref204) 2020; 11
Capparelli (ref51) 2010; 201
(ref170) 2023
Kifelew (ref114) 2020; 20
Gondil (ref22) 2017; 1
Tan (ref163) 2021; 11
Hyman (ref49) 2010; 70
Chang (ref28) 2017; 121
Jamal (ref7) 2019; 59
Chopra (ref58) 1997; 41
(ref194) 2023
(ref201) 2023
Vázquez (ref20) 2018; 9
Doub (ref133) 2020; 9
O’Neill (ref1) 2014
Drilling (ref84) 2014; 4
Villarroel (ref122) 2017; 9
Bhartiya (ref148) 2022
Tamma (ref168); 23
Morello (ref87) 2011; 6
Kutter (ref41) 2010; 11
Kim (ref82) 2021; 94
Johri (ref144) 2021; 12
Vahedi (ref79) 2018; 365
Abedon (ref123) 2017; 10
Mulzer (ref156) 2020; 57
Hoyle (ref162) 2018; 169
Bakuradze (ref6) 2021; 13
Qin (ref141) 2021; 10
Abedon (ref40) 2010; 11
Zhang (ref190) 2019
(ref178) 2006; 71
Chernomordik (ref37) 1989; 48
Fadlallah (ref150) 2015; 9
Fish (ref129) 2018; 7
Hawkins (ref115) 2010; 146
Qadir (ref36) 2018; 54
Daṃbrowska (ref106) 2014; 9
Schneider (ref68) 2018; 2018
Tang (ref60) 2019; 126
Shivaswamy (ref107) 2015; 21
Hanlon (ref8) 2007; 30
Kumari (ref102) 2011; 60
Horváth (ref97) 2020; 10
(ref187) 2023
Dedrick (ref164) 2021; 27
Ferry (ref131) 2018; 5
Cao (ref89) 2015; 2015
Maddocks (ref157) 2019; 200
Archana (ref214) 2021; 32
Leung (ref25) 2016; 33
Singla (ref90) 2015; 212
Sybesma (ref15) 2018; 7
Nikkhahi (ref78) 2017; 10
Górski (ref53) 2007
Jault (ref5) 2019; 19
De Kraker (ref2) 2016; 13
Huon (ref112) 2020; 5
Oduor (ref91) 2016; 5
Rostkowska (ref143) 2021; 23
Krueger (ref212) 1941; 116
Jaiswal (ref73) 2013; 15
Lenneman (ref218) 2021; 68
Chan (ref136) 2018; 2018
Khawaldeh (ref140) 2011; 60
Huang (ref172) 2022; 10
Ooi (ref167) 2019; 145
Ibaraki (ref29) 2020; 57
Skurnik (ref52) 2006; 296
Harper (ref124) 2018; 10
Ujmajuridze (ref137) 2018; 9
Górski (ref121) 2020; 9
Takemura-Uchiyama (ref63) 2014; 16
(ref192) 2023
Łusiak-Szelachowska (ref11) 2020; 35
Cheng (ref66) 2017; 8
Leptihn (ref207) 2022; 17
Pouillot (ref65) 2012; 56
Kaur (ref113) 2021; 66
Gondil (ref24) 2021; 12
Drilling (ref93) 2017
Patel (ref146) 2021; 20
Chhibber (ref31) 2017; 61
Yoong (ref17) 2004; 186
Waters (ref92) 2017; 72
Mendes (ref103) 2013; 21
Chadha (ref110) 2017; 43
Loh (ref21) 2021; 87
Dhungana (ref98) 2021; 19
Endersen (ref174) 2014; 5
Anany (ref34) 2011; 77
Nang (ref35) 2023; 29
Yang (ref14) 2015; 6
Kucharewicz-Krukowska (ref213) 1987; 35
Kropinski (ref173); 17
Bassetti (ref3) 2017; 43
Wu (ref165) 2021; 10
Skurnik (ref39) 2007; 29
Albac (ref111) 2020; 64
Patey (ref179) 2019; 11
(ref202) 2023
Gu (ref61) 2012; 7
Abdelkader (ref16) 2019; 11
Hamzeh-Mivehroud (ref184) 2013; 18
Prazak (ref99) 2022; 225
Morozov (ref185) 2007; 35
Galtier (ref193) 2017; 11
Chhibber (ref104) 2013; 8
Carlton (ref50) 1999; 47
Gurjala (ref45) 2011; 19
Kuipers (ref138) 2019; 64
Manohar (ref57) 2019; 1
Rhoads (ref145) 2009; 18
Oechslin (ref69) 2017; 215
Voelker (ref180) 2019; 321
Barrow (ref210) 1997; 5
(ref171) 2023
Fischetti (ref19) 2004
Malik (ref23) 2017; 249
Mann (ref54) 2008; 159
(ref169) 2023
Pires (ref13) 2016; 100
Sun (ref42) 2013; 8
(ref175) 2013; 310
Eaton (ref211) 1934; 103
Shlezinger (ref118) 2019; 14
Aslam (ref159) 2019; 19
Colom (ref32) 2017; 7
Maura (ref72) 2012; 56
(ref181) 2019
Chegini (ref47); 19
Rose (ref149) 2014; 4
Merril (ref215) 1996; 93
Mai (ref198) 2015; 5
Jaiswal (ref74) 2014; 304
Lebeaux (ref166) 2021; 13
Tacconelli (ref4) 2018; 18
Chang (ref48) 2022; 13
Jeon (ref95) 2019; 85
Marza (ref126) 2006; 32
(ref196) 2023
Corbellino (ref139) 2020; 70
Jiang (ref119) 2020; 11
Górski (ref9) 2020; 40
Gupta (ref38) 2011; 62
Schooley (ref154) 2017; 61
Basu (ref108) 2015; 61
Gupta (ref147) 2019; 18
Rukavina (ref30) 2016; 8
Sarhan (ref183) 2015; 13
Dallal (ref81) 2019; 52
Fong (ref86) 2019; 206
(ref199) 2023
Law (ref158) 2019; 47
Tiwari (ref62) 2011; 49
(ref197) 2023
Tóthová (ref59) 2011; 17
Aslam (ref155) 2019; 38
Ramirez-Sanchez (ref134) 2021; 13
Grygorcewicz (ref120) 2020; 21
(ref203) 2023
Hung (ref64) 2011; 55
Fischetti (ref18) 2005; 13
Cano (ref132) 2021; 73
Fish (ref128) 2016; 25
Drilling (ref85) 2017; 7
Yadav (ref80) 2022; 75
Chadha (ref109) 2016; 99
Seth (ref44) 2013; 131
Hesse (ref10) 2019; 73
Rosner (ref33) 2021; 14
Uyttebroek (ref125) 2022; 22
Mensink (ref26) 2017; 114
Jennes (ref151) 2017; 21
Chhibber (ref83) 2014; 14
Pirnay (ref176) 2018; 10
Kilcher (ref217) 2019; 27
Petrovic Fabijan (ref153) 2020; 5
Dufour (ref96) 2019; 63
Fish (ref130) 2018; 1693
References_xml – volume: 11
  start-page: 506068
  year: 2020
  ident: ref119
  article-title: Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.506068
– year: 2023
  ident: ref205
– volume: 36
  start-page: 5
  year: 1998
  ident: ref209
  article-title: Bacteriophages show promise as antimicrobial agents
  publication-title: J Infect
  doi: 10.1016/s0163-4453(98)92874-2
– volume: 17
  start-page: 643
  year: 2022
  ident: ref207
  article-title: Complexity, challenges and costs of implementing phage therapy
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2022-0054
– volume: 73
  start-page: e144
  year: 2021
  ident: ref132
  article-title: Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa705
– volume: 116
  start-page: 2269
  year: 1941
  ident: ref212
  article-title: The bacteriophage: its nature and its therapeutic use
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1941.62820200013011
– volume: 18
  start-page: 237
  year: 2009
  ident: ref145
  article-title: Bacteriophage therapy of venous leg ulcers in humans
  publication-title: J Wound Care
  doi: 10.12968/jowc.2009.18.6.42801
– volume: 12
  start-page: 692614
  year: 2021
  ident: ref144
  article-title: Chronic bacterial prostatitis treated with phage therapy after multiple failed antibiotic treatments
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2021.692614
– volume: 29
  start-page: 702
  year: 2023
  ident: ref35
  article-title: Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2023.01.021
– volume: 19
  start-page: 2631
  year: 2019
  ident: ref159
  article-title: Early clinical experience of bacteriophage therapy in 3 lung transplant recipients
  publication-title: Am J Transplant
  doi: 10.1111/ajt.15503
– volume: 210
  start-page: 72
  year: 2014
  ident: ref75
  article-title: Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain
  publication-title: J Infect Dis
  doi: 10.1093/INFDIS/JIU059
– volume: 1693
  start-page: 159
  year: 2018
  ident: ref130
  article-title: Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-7395-8_14
– volume: 2015
  start-page: 752930
  year: 2015
  ident: ref89
  article-title: Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice
  publication-title: Biomed Res Int
  doi: 10.1155/2015/752930
– volume: 19
  start-page: 76
  year: 2021
  ident: ref98
  article-title: Therapeutic efficacy of bacteriophage therapy to treat carbapenem resistant Klebsiella pneumoniae in mouse model
  publication-title: J Nepal Health Res Council
  doi: 10.33314/jnhrc.v19i1.3282
– volume: 23
  start-page: 1057
  ident: ref168
  article-title: Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial
  publication-title: Trials
  doi: 10.1186/s13063-022-07047-5
– volume: 9
  start-page: 241
  year: 2020
  ident: ref133
  article-title: Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics9050241
– volume: 9
  start-page: 1
  year: 2020
  ident: ref121
  article-title: Phage therapy: towards a successful clinical trial
  publication-title: Antibiotics.
  doi: 10.3390/antibiotics9110827
– volume: 19
  start-page: 45
  ident: ref47
  article-title: Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review
  publication-title: Ann Clin Microbiol Antimicrob
  doi: 10.1186/s12941-020-00389-5
– volume: 23
  start-page: e13391
  year: 2021
  ident: ref143
  article-title: Treatment of recurrent urinary tract infections in a 60-year-old kidney transplant recipient. The use of phage therapy
  publication-title: Transpl Infect Dis
  doi: 10.1111/tid.13391
– volume: 41
  start-page: 497
  year: 1997
  ident: ref58
  article-title: The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.41.3.497
– volume: 8
  start-page: 56022
  year: 2013
  ident: ref104
  article-title: Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0056022
– volume: 10
  start-page: 177
  year: 2018
  ident: ref124
  article-title: Criteria for selecting suitable infectious diseases for phage therapy
  publication-title: Viruses
  doi: 10.3390/V10040177
– volume: 55
  start-page: 1358
  year: 2011
  ident: ref64
  article-title: Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01123-10
– volume: 9
  start-page: 167
  year: 2015
  ident: ref150
  article-title: Corneal infection therapy with topical bacteriophage Administration
  publication-title: Open Ophthalmol J
  doi: 10.2174/1874364101509010167
– volume: 13
  start-page: 2348
  year: 2021
  ident: ref188
  article-title: Bacteriophages as an alternative method for control of zoonotic and foodborne pathogens
  publication-title: Viruses
  doi: 10.3390/v13122348
– volume: 25
  start-page: 730
  year: 2019
  ident: ref160
  article-title: Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus
  publication-title: Nat Med
  doi: 10.1038/S41591-019-0437-Z
– volume: 32
  start-page: 38
  year: 2021
  ident: ref214
  article-title: Neutralizing antibody response against subcutaneously injected bacteriophages in rabbit model
  publication-title: Virus
  doi: 10.1007/s13337-021-00673-8
– volume: 18
  start-page: 2237
  year: 2016
  ident: ref77
  article-title: Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13284
– volume: 126
  start-page: 193
  year: 2019
  ident: ref60
  article-title: Isolation and characterization of a broad-spectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice
  publication-title: Microb Pathog
  doi: 10.1016/j.micpath.2018.10.042
– year: 2023
  ident: ref199
– volume: 57
  start-page: 101754
  year: 2020
  ident: ref29
  article-title: The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm
  publication-title: J Drug Deliv Sci Technol
  doi: 10.1016/j.jddst.2020.101754
– volume: 8
  start-page: 837
  year: 2017
  ident: ref66
  article-title: The bacteriophage EF-P29 efficiently protects against lethal vancomycin-resistant enterococcus faecalis and alleviates gut microbiota imbalance in a murine bacteremia model
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00837
– year: 2023
  ident: ref170
– year: 2023
  ident: ref169
– volume: 186
  start-page: 4808
  year: 2004
  ident: ref17
  article-title: Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.14.4808-4812.2004
– volume: 7
  start-page: e47742
  year: 2012
  ident: ref116
  article-title: Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047742
– volume: 159
  start-page: 400
  year: 2008
  ident: ref54
  article-title: The potential of phages to prevent MRSA infections
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2008.04.003
– volume: 87
  start-page: e01979
  year: 2021
  ident: ref21
  article-title: Encapsulation and delivery of therapeutic phages
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01979-20
– volume: 21
  start-page: 129
  year: 2017
  ident: ref151
  article-title: Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report
  publication-title: Crit Care
  doi: 10.1186/S13054-017-1709-Y
– volume: 43
  start-page: 1464
  year: 2017
  ident: ref3
  article-title: Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4878-x
– volume: 6
  start-page: 1471
  year: 2015
  ident: ref14
  article-title: Antibacterial activity of a novel peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa
  publication-title: Front Microbiol
  doi: 10.3389/fmic,b.2015.01471
– volume: 21
  start-page: 171
  year: 2015
  ident: ref107
  article-title: Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats
  publication-title: Microb Drug Resist
  doi: 10.1089/mdr.2014.0120
– year: 2023
  ident: ref192
– volume: 215
  start-page: 703
  year: 2017
  ident: ref69
  article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence
  publication-title: J Infect Dis
  doi: 10.1093/INFDIS/JIW632
– start-page: 363
  volume-title: Phage Therapy: A Practical Approach
  year: 2019
  ident: ref177
  article-title: Phage therapy in Europe: Regulatory and intellectual property protection issues
  doi: 10.1007/978-3-030-26736-0_15
– volume: 14
  start-page: 359
  year: 2021
  ident: ref33
  article-title: Formulations for bacteriophage therapy and the potential uses of immobilization
  publication-title: Pharmaceuticals
  doi: 10.3390/ph14040359
– volume: 62
  start-page: e01714
  year: 2018
  ident: ref94
  article-title: Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01714-17
– volume: 10
  start-page: 608402
  year: 2021
  ident: ref141
  article-title: Heterogeneous Klebsiella pneumoniae co-infections complicate personalized bacteriophage therapy
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/FCIMB.2020.608402
– year: 2023
  ident: ref194
– volume: 56
  start-page: 6235
  year: 2012
  ident: ref72
  article-title: Virulent bacteriophages can target O104:H4 Enteroaggregative Escherichia coli in the mouse intestine
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00602-12
– volume: 10
  start-page: 612
  year: 2021
  ident: ref165
  article-title: Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2021.1902754
– volume: 12
  start-page: 1
  year: 2021
  ident: ref100
  article-title: Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258
  publication-title: MBio
  doi: 10.1128/MBIO.00034-21
– year: 2023
  ident: ref195
– volume: 5
  start-page: 327
  year: 2014
  ident: ref174
  article-title: Phage therapy in the food industry
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-030713-092415
– volume: 12
  start-page: e0175256
  year: 2017
  ident: ref189
  article-title: Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175256
– volume: 14
  start-page: 309
  year: 1996
  ident: ref182
  article-title: Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0396-309
– volume: 13
  start-page: 257
  year: 2021
  ident: ref43
  article-title: Special Issue: “Bacteriophages and biofilms”
  publication-title: Viruses
  doi: 10.3390/V13020257
– volume: 27
  start-page: 1357
  year: 2021
  ident: ref164
  article-title: Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection
  publication-title: Nat Med
  doi: 10.1038/S41591-021-01403-9
– volume: 55
  start-page: 2990
  year: 2020
  ident: ref161
  article-title: Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.24945
– volume: 70
  start-page: 1998
  year: 2020
  ident: ref139
  article-title: Eradication of a multidrug-resistant, Carbapenemase-producing Klebsiella pneumoniae isolate following Oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation
  publication-title: Rev Infect Dis
  doi: 10.1093/cid/ciz782
– volume: 47
  start-page: 665
  year: 2019
  ident: ref158
  article-title: Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient
  publication-title: Infection
  doi: 10.1007/S15010-019-01319-0
– volume: 35
  start-page: 125
  year: 2020
  ident: ref11
  article-title: Bacteriophages and Lysins in biofilm control
  publication-title: Virol Sin
  doi: 10.1007/s12250-019-00192-3
– volume: 10
  start-page: 205
  year: 2018
  ident: ref191
  article-title: Bacteriophage applications for Food production and processing
  publication-title: Viruses
  doi: 10.3390/v10040205
– start-page: 7(FEB)
  year: 2017
  ident: ref93
  article-title: Long-term safety of topical bacteriophage application to the frontal sinus region
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/FCIMB.2017.00049
– volume: 310
  start-page: 2191
  year: 2013
  ident: ref175
  article-title: World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects
  publication-title: JAMA
  doi: 10.1001/jama.2013.281053
– volume: 75
  start-page: 422
  year: 2022
  ident: ref80
  article-title: Bacteriophage therapy of human-restricted Salmonella species—a study in a surrogate bacterial and animal model
  publication-title: Lett Appl Microbiol
  doi: 10.1111/LAM.13744
– volume: 33
  start-page: 1486
  year: 2016
  ident: ref25
  article-title: Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections
  publication-title: Pharm Res
  doi: 10.1007/s11095-016-1892-6
– volume: 11
  start-page: 28
  year: 2010
  ident: ref40
  article-title: Phage therapy pharmacology
  publication-title: Curr Pharm Biotechnol
  doi: 10.2174/138920110790725410
– year: 2023
  ident: ref203
– volume: 47
  start-page: 267
  year: 1999
  ident: ref50
  article-title: Phage therapy: past history and future prospects
  publication-title: Arch Immunol Ther Exp
– volume: 10
  start-page: 2
  year: 2018
  ident: ref176
  article-title: The magistral phage Viruses
  publication-title: Viruses
  doi: 10.3390/V10020064
– volume: 6
  start-page: 286
  year: 2012
  ident: ref127
  article-title: The role of regulated clinical trials in the development of bacteriophage therapeutics
  publication-title: J Mol Genet Med
  doi: 10.4172/1747-0862.1000050
– volume: 59
  start-page: 123
  year: 2019
  ident: ref7
  article-title: Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201800412
– volume: 4
  start-page: 66
  year: 2014
  ident: ref149
  article-title: Experimental phage therapy of burn wound infection: difficult first steps. Int J burns
  publication-title: Trauma
– volume: 21
  start-page: 1
  year: 2020
  ident: ref120
  article-title: Antibiotics act with vB_AbaP_AGC01 phage against Acinetobacter baumannii in human heat-inactivated plasma blood and galleria mellonella models
  publication-title: Int J Mol Sci
  doi: 10.3390/IJMS21124390
– volume: 11
  start-page: 96
  year: 2019
  ident: ref16
  article-title: The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole
  publication-title: Viruses
  doi: 10.3390/v11020096
– volume: 103
  start-page: 1769
  year: 1934
  ident: ref211
  article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1934.72750490003007
– volume: 5
  start-page: 268
  year: 1997
  ident: ref210
  article-title: Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(97)01054-8
– volume: 1
  start-page: 111
  year: 2011
  ident: ref55
  article-title: Pros and cons of phage therapy
  publication-title: Bacteriophage
  doi: 10.4161/bact.1.2.14590
– volume: 21
  start-page: 595
  year: 2013
  ident: ref103
  article-title: Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds
  publication-title: Wound Repair Regen
  doi: 10.1111/WRR.12056
– year: 2019
  ident: ref181
– volume: 5
  start-page: ofy269
  year: 2018
  ident: ref131
  article-title: Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open forum
  publication-title: Infect Dis
  doi: 10.1093/ofid/ofy269
– volume: 60
  start-page: 1697
  year: 2011
  ident: ref140
  article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection
  publication-title: J Med Microbiol
  doi: 10.1099/JMM.0.029744-0
– volume: 39
  start-page: 48
  year: 2017
  ident: ref46
  article-title: Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections
  publication-title: Curr Opin Microbiol
  doi: 10.1016/J.MIB.2017.09.004
– volume: 29
  start-page: 995
  year: 2007
  ident: ref39
  article-title: Biotechnological challenges of phage therapy
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-007-9346-1
– volume: 40
  start-page: 459
  year: 2020
  ident: ref9
  article-title: Phage therapy: current status and perspectives
  publication-title: Med Res Rev
  doi: 10.1002/med.21593
– volume: 11
  start-page: e00019
  year: 2020
  ident: ref204
  article-title: In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials
  publication-title: MBio
  doi: 10.1128/MBIO.00019-20
– volume: 7
  start-page: 49
  year: 2017
  ident: ref85
  article-title: Long-term safety of topical bacteriophage application to the frontal sinus region
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/FCIMB.2017.00049/BIBTEX
– volume: 145
  start-page: 723
  year: 2019
  ident: ref167
  article-title: Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2019.1191
– volume: 11
  start-page: 631585
  year: 2021
  ident: ref163
  article-title: Clinical experience of personalized phage therapy against Carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2021.631585
– volume: 5
  start-page: e1088124
  year: 2015
  ident: ref198
  article-title: Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota
  publication-title: Bacteriophage
  doi: 10.1080/21597081.2015.1088124
– volume: 121
  start-page: 1
  year: 2017
  ident: ref28
  article-title: Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/J.EJPB.2017.09.002
– year: 2023
  ident: ref187
– volume: 9
  start-page: 2252
  year: 2018
  ident: ref20
  article-title: Phage lysins for fighting bacterial respiratory infections: a new generation of antimicrobials
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02252
– volume: 5
  start-page: 435
  year: 2016
  ident: ref91
  article-title: Experimental phage therapy against haematogenous multi-drug resistant Staphylococcus aureus pneumonia in mice. Afr
  publication-title: J Lab Med
  doi: 10.4102/AJLM.V5I1.435
– volume: 19
  start-page: 35
  year: 2019
  ident: ref5
  article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(18)30482-1
– volume: 296
  start-page: 5
  year: 2006
  ident: ref52
  article-title: Phage therapy: facts and fiction
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2005.09.002
– start-page: 727
  year: 2022
  ident: ref148
  article-title: Biological therapy on infected traumatic wounds: a case-control study
  publication-title: Int J Low Extrem Wounds
  doi: 10.1177/15347346211072779
– volume: 38
  start-page: 475
  year: 2019
  ident: ref155
  article-title: Novel bacteriophage therapy for treatment of left ventricular assist device infection
  publication-title: J Heart Lung Transplant
  doi: 10.1016/j.healun.2019.01.001
– volume: 2018
  start-page: 60
  year: 2018
  ident: ref136
  article-title: Phage treatment of an aortic graft infected with Pseudomonas aeruginosa
  publication-title: Evol Med Public Health
  doi: 10.1093/emph/eoy005
– volume: 64
  start-page: 1870
  year: 2020
  ident: ref111
  article-title: Efficacy of bacteriophages in a Staphylococcus aureus nondiabetic or diabetic foot infection murine model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01870-19
– year: 2023
  ident: ref206
– volume: 54
  year: 2018
  ident: ref36
  article-title: Phage therapy: Progress in pharmacokinetics. Brazilian
  publication-title: J Pharm Sci
  doi: 10.1590/s2175-97902018000117093
– volume: 70
  start-page: 217
  year: 2010
  ident: ref49
  article-title: Bacteriophage host range and bacterial resistance
  publication-title: Adv Appl Microbiol
  doi: 10.1016/S0065-2164(10)70007-1
– volume: 13
  start-page: 10060
  year: 2021
  ident: ref166
  article-title: A case of phage therapy against Pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient
  publication-title: Viruses
  doi: 10.3390/V13010060
– volume: 61
  start-page: 16
  year: 2015
  ident: ref108
  article-title: An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms
  publication-title: Ostomy Wound Manage
– volume: 11
  start-page: 69
  year: 2010
  ident: ref41
  article-title: Phage therapy in clinical practice: treatment of human infections
  publication-title: Curr Pharm Biotechnol
  doi: 10.2174/138920110790725401
– volume: 201
  start-page: 52
  year: 2010
  ident: ref51
  article-title: Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy
  publication-title: J Infect Dis
  doi: 10.1086/648478
– volume: 8
  start-page: 18
  year: 2016
  ident: ref30
  article-title: Current trends in development of liposomes for targeting bacterial biofilms
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics8020018
– volume: 11
  start-page: 18
  year: 2019
  ident: ref179
  article-title: Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections
  publication-title: Viruses
  doi: 10.3390/v11010018
– volume: 32
  start-page: 644
  year: 2006
  ident: ref126
  article-title: Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients
  publication-title: Burns
  doi: 10.1016/j.burns.2006.02.012
– volume: 27
  start-page: 355
  year: 2019
  ident: ref217
  article-title: Engineering bacteriophages as versatile biologics
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2018.09.006
– volume: 100
  start-page: 2141
  year: 2016
  ident: ref13
  article-title: Bacteriophage-encoded depolymerases: their diversity and biotechnological applications
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-7247-0
– volume: 6
  start-page: e16963
  year: 2011
  ident: ref87
  article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016963
– volume: 206
  start-page: 41
  year: 2019
  ident: ref86
  article-title: Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis
  publication-title: Transl Res
  doi: 10.1016/J.TRSL.2018.12.002
– volume: 7
  start-page: 253
  year: 2018
  ident: ref152
  article-title: Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy
  publication-title: J Pediatric Infect Dis Soc
  doi: 10.1093/jpids/pix056
– volume: 13
  start-page: 491
  year: 2005
  ident: ref18
  article-title: Bacteriophage lytic enzymes: novel anti-infectives
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2005.08.007
– volume: 169
  start-page: 540
  year: 2018
  ident: ref162
  article-title: Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2018.05.001
– volume: 22
  start-page: e208
  year: 2022
  ident: ref125
  article-title: Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(21)00612-5
– volume: 18
  start-page: 171
  year: 2019
  ident: ref147
  article-title: Bacteriophage therapy of chronic nonhealing wound: clinical study
  publication-title: Int J Lower Extrem Wounds
  doi: 10.1177/1534734619835115
– volume: 1
  start-page: 34
  year: 2019
  ident: ref57
  article-title: Pharmacological and immunological aspects of phage therapy
  publication-title: Infect Microb Dis
  doi: 10.1097/im9.0000000000000013
– volume: 94
  start-page: 103630
  year: 2021
  ident: ref82
  article-title: Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2020.103630
– volume: 225
  start-page: 1452
  year: 2022
  ident: ref99
  article-title: Benefits of aerosolized phages for the treatment of pneumonia due to methicillin-resistant Staphylococcus aureus: an experimental study in rats
  publication-title: J Infect Dis
  doi: 10.1093/INFDIS/JIAB112
– volume: 7
  start-page: 41441
  year: 2017
  ident: ref32
  article-title: Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy
  publication-title: Sci Rep
  doi: 10.1038/srep41441
– volume: 35
  start-page: 553
  year: 1987
  ident: ref213
  article-title: Immunogenic effect of bacteriophage in patients subjected to phage therapy
  publication-title: Arch Immunol Ther Exp
– volume: 19
  start-page: 400
  year: 2011
  ident: ref45
  article-title: Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing
  publication-title: Wound Repair Regen
  doi: 10.1111/J.1524-475X.2011.00690.X
– year: 2023
  ident: ref197
– volume: 82
  start-page: 5332
  year: 2016
  ident: ref117
  article-title: Phage therapy is effective in a mouse model of bacterial equine keratitis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.01166-16
– year: 2023
  ident: ref202
– volume: 77
  start-page: 6379
  year: 2011
  ident: ref34
  article-title: Biocontrol of listeria monocytogenes and Escherichia coli O157: H7 in meat by using phages immobilized on modified cellulose membranes
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.05493-11
– volume: 10
  start-page: 5891
  year: 2020
  ident: ref97
  article-title: Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62691-8
– volume: 1
  start-page: 555
  year: 2017
  ident: ref22
  article-title: Evading antibody mediated inactivation of bacteriophages using delivery systems
  publication-title: J Virol Curr Res
  doi: 10.19080/JOJIV.2017.01.55557
– volume: 2018
  start-page: 7569645
  year: 2018
  ident: ref68
  article-title: Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1
  publication-title: Biomed Res Int
  doi: 10.1155/2018/7569645
– volume: 45
  start-page: 649
  year: 2001
  ident: ref208
  article-title: Bacteriophage therapy
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.45.3.649-659.2001
– volume: 49
  start-page: 994
  year: 2011
  ident: ref62
  article-title: Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models
  publication-title: J Microbiol
  doi: 10.1007/s12275-011-1512-4
– volume: 61
  start-page: e00954
  year: 2017
  ident: ref154
  article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00954-17
– volume: 34
  start-page: 286
  year: 2007
  ident: ref186
  article-title: Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/J.1440-1681.2007.04563.X
– volume: 30
  start-page: 118
  year: 2007
  ident: ref8
  article-title: Bacteriophages: an appraisal of their role in the treatment of bacterial infections
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2007.04.006
– volume: 62
  start-page: 255
  year: 2011
  ident: ref38
  article-title: Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-010-9699-x
– volume: 14
  start-page: 1
  year: 2014
  ident: ref83
  article-title: Bacteriophage as effective decolonising agent for elimination of MRSA from anterior nares of BALB/c mice
  publication-title: BMC Microbiol
  doi: 10.1186/S12866-014-0212-8/FIGURES/5
– volume: 11
  start-page: 840
  year: 2017
  ident: ref193
  article-title: Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease
  publication-title: J Crohns Colitis
  doi: 10.1093/ecco-jcc/jjw224
– volume: 212
  start-page: 325
  year: 2015
  ident: ref90
  article-title: Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia
  publication-title: J Infect Dis
  doi: 10.1093/INFDIS/JIV029
– volume: 304
  start-page: 422
  year: 2014
  ident: ref74
  article-title: Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice
  publication-title: Int J Med Microbiol
  doi: 10.1016/J.IJMM.2014.02.007
– volume: 10
  start-page: 1324
  year: 2022
  ident: ref172
  article-title: Phage products for fighting antimicrobial resistance
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10071324
– volume: 17
  start-page: 297
  ident: ref173
  article-title: Phage therapy-everything old is new again
  publication-title: Can J Infect Dis Med Microbiol
  doi: 10.1155/2006/329465
– volume: 9
  start-page: 1832
  year: 2018
  ident: ref137
  article-title: Adapted bacteriophages for treating urinary tract infections
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01832/full
– volume: 13
  start-page: 778676
  year: 2022
  ident: ref71
  article-title: Evaluation of bacteriophage cocktail on septicemia caused by colistin-resistant Klebsiella pneumoniae in mice model
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.778676
– year: 2023
  ident: ref196
– volume: 43
  start-page: 1532
  year: 2017
  ident: ref110
  article-title: Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections
  publication-title: Burns
  doi: 10.1016/j.burns.2017.03.029
– volume: 17
  start-page: BR173
  year: 2011
  ident: ref59
  article-title: Phage therapy of Cronobacter-induced urinary tract infection in mice
  publication-title: Med Sci Monit
  doi: 10.12659/msm.>16271
– volume: 105
  start-page: 9047
  year: 2021
  ident: ref216
  article-title: Phage therapeutics: from promises to practices and prospectives
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-021-11695-z
– volume: 9
  start-page: 861
  year: 2014
  ident: ref106
  article-title: Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment
  publication-title: Future Microbiol
  doi: 10.2217/fmb.14.50
– volume: 114
  start-page: 288
  year: 2017
  ident: ref26
  article-title: How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2017.01.024
– volume: 13
  start-page: 825828
  year: 2022
  ident: ref48
  article-title: Bacteriophage-mediated control of biofilm: a promising new Dawn for the future
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.825828
– volume: 13
  start-page: 1182
  year: 2021
  ident: ref134
  article-title: Successful treatment of Staphylococcus aureus prosthetic joint infection with bacteriophage therapy
  publication-title: Viruses
  doi: 10.3390/V13061182
– volume: 249
  start-page: 100
  year: 2017
  ident: ref23
  article-title: Formulation, stabilisation and encapsulation of bacteriophage for phage therapy
  publication-title: Adv Colloid Interf Sci
  doi: 10.1016/j.cis.2017.05.014
– volume: 13
  start-page: 2044
  year: 2021
  ident: ref6
  article-title: In vitro evaluation of the therapeutic potential of phage va7 against enterotoxigenic Bacteroides fragilis infection
  publication-title: Viruses
  doi: 10.3390/v13102044
– volume: 7
  start-page: 87
  year: 2018
  ident: ref129
  article-title: Resolving digital staphylococcal osteomyelitis using bacteriophage–a case report
  publication-title: Antibiotics
  doi: 10.3390/antibiotics7040087
– volume: 66
  start-page: 959
  year: 2021
  ident: ref113
  article-title: A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus
  publication-title: Folia Microbiol (Praha)
  doi: 10.1007/s12223-021-00895-9
– volume: 11
  start-page: 891
  year: 2019
  ident: ref135
  article-title: Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol
  publication-title: Viruses
  doi: 10.3390/V11100891
– volume: 99
  start-page: 68
  year: 2016
  ident: ref109
  article-title: In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice
  publication-title: Microb Pathog
  doi: 10.1016/j.micpath.2016.08.001
– volume: 72
  start-page: 666
  year: 2017
  ident: ref92
  article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2016-209265
– volume: 5
  start-page: 542
  year: 2020
  ident: ref112
  article-title: Phages versus antibiotics to treat infected diabetic wounds in a mouse model: a microbiological and microbiotic evaluation
  publication-title: Microb Syst
  doi: 10.1128/msystems.00542-20
– volume: 146
  start-page: 309
  year: 2010
  ident: ref115
  article-title: Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial
  publication-title: Vet Microbiol
  doi: 10.1016/j.vetmic.2010.05.014
– volume: 60
  start-page: 205
  year: 2011
  ident: ref102
  article-title: Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.018580-0
– start-page: 69
  volume-title: Methods and protocols, volume 1: isolation, characterization, and interactions methods in molecular biology
  year: 2009
  ident: ref56
– volume: 63
  start-page: e00379
  year: 2019
  ident: ref96
  article-title: Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00379-19
– volume: 68
  start-page: 151
  year: 2021
  ident: ref218
  article-title: Enhancing phage therapy through synthetic biology and genome engineering
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2020.11.003
– volume: 85
  start-page: e02900
  year: 2019
  ident: ref95
  article-title: Two novel bacteriophages improve survival in Galleria mellonella infection and mouse acute pneumonia models infected with extensively drug-resistant Pseudomonas aeruginosa
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02900-18
– volume: 35
  start-page: 167
  year: 2007
  ident: ref185
  article-title: Transmembrane protein polymorphisms and resistance to T-20 (Enfuvirtide, Fuzeon) in HIV-1 infected therapy-naive seroconverters and AIDS patients under HAART-T-20 therapy
  publication-title: Virus Genes
  doi: 10.1007/S11262-007-0098-8
– volume: 15
  start-page: 152
  year: 2013
  ident: ref73
  article-title: Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model
  publication-title: Microbes Infect
  doi: 10.1016/J.MICINF.2012.11.002
– volume: 5
  start-page: 465
  year: 2020
  ident: ref153
  article-title: Safety of bacteriophage therapy in severe Staphylococcus aureus infection
  publication-title: Nat Microbiol
  doi: 10.1038/S41564-019-0634-Z
– year: 2023
  ident: ref200
– volume: 20
  start-page: 935
  year: 2010
  ident: ref101
  article-title: Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/JMB.0909.09010
– volume: 18
  start-page: 318
  year: 2018
  ident: ref4
  article-title: Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(17)30753-3
– volume: 71
  start-page: 47729
  year: 2006
  ident: ref178
  article-title: Food additives permitted for direct addition to food for human consumption; bacteriophage preparation
  publication-title: Fed Regist
– volume: 7
  start-page: e31698
  year: 2012
  ident: ref61
  article-title: A method for generation phage cocktail with great therapeutic potential
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031698
– volume: 64
  start-page: e01281
  year: 2019
  ident: ref138
  article-title: A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01281-19
– volume: 56
  start-page: 3568
  year: 2012
  ident: ref65
  article-title: Efficacy of bacteriophage therapy in experimental Sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.06330-11
– volume: 4
  start-page: 176
  year: 2014
  ident: ref84
  article-title: Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of Staphylococcus aureus infection in a sheep model of sinusitis
  publication-title: Int Forum Allergy Rhinol
  doi: 10.1002/ALR.21270
– volume: 57
  start-page: 1003
  year: 2020
  ident: ref156
  article-title: Treatment of chronic left ventricular assist device infection with local application of bacteriophages
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezz295
– volume: 10
  start-page: 328
  year: 2017
  ident: ref123
  article-title: Information phage therapy research should report
  publication-title: Pharmaceuticals
  doi: 10.3390/ph10020043
– volume: 7
  start-page: 35
  year: 2018
  ident: ref15
  article-title: Silk route to the acceptance and re-implementation of bacteriophage therapy–part II
  publication-title: Antibiotics
  doi: 10.3390/antibiotics7020035
– volume: 44
  start-page: 2337
  year: 2018
  ident: ref67
  article-title: Phage Abp1 rescues human cells and mice from infection by Pan-drug resistant Acinetobacter baumannii
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000486117
– year: 2023
  ident: ref171
– volume: 16
  start-page: 512
  year: 2014
  ident: ref63
  article-title: Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2014.02.011
– volume: 20
  start-page: 204
  year: 2020
  ident: ref114
  article-title: Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-020-01891-8
– year: 2014
  ident: ref1
– volume: 13
  start-page: e1002184
  year: 2016
  ident: ref2
  article-title: Will 10 million people die a year due to antimicrobial resistance by 2050?
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002184
– volume: 9
  start-page: 771
  year: 2020
  ident: ref142
  article-title: Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1747950
– volume: 13
  start-page: 91
  year: 2015
  ident: ref183
  article-title: Phage approved in food, why not as a therapeutic?
  publication-title: Expert Rev Anti-Infect Ther
  doi: 10.1586/14787210.2015.990383
– volume: 48
  start-page: 44
  year: 1989
  ident: ref37
  article-title: Bacteriophages and their therapeutic-prophylactic use
  publication-title: Med Sestra
– volume: 12
  start-page: 675440
  year: 2021
  ident: ref24
  article-title: Bacteriophage and endolysin encapsulation systems: a promising strategy to improve therapeutic outcomes
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2021.675440
– volume: 154
  start-page: 141
  year: 2021
  ident: ref70
  article-title: Evaluation of bacteriophage cocktail on septicaemia caused by colistin-resistant Acinetobacter baumannii in immunocompromised mice model
  publication-title: Indian J Med Res
  doi: 10.4103/IJMR.IJMR_2271_18
– start-page: 321
  volume-title: Bacteriophages: Biology and applications
  year: 2004
  ident: ref19
  article-title: 12 the use of phage lytic enzymes to control bacterial infections
  doi: 10.1201/9780203491751.ch12
– volume: 58
  start-page: 4005
  year: 2014
  ident: ref27
  article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02388-13
– year: 2023
  ident: ref201
– volume: 9
  start-page: 328
  year: 2017
  ident: ref122
  article-title: Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014
  publication-title: Viruses
  doi: 10.3390/v9110328
– volume: 93
  start-page: 3188
  year: 1996
  ident: ref215
  article-title: Long-circulating bacteriophage as antibacterial agents
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/PNAS.93.8.3188
– volume: 10
  start-page: 131
  year: 2017
  ident: ref78
  article-title: Phage therapy: assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice
  publication-title: Gastroenterol Hepatol Bed Bench
– start-page: 305
  year: 2019
  ident: ref190
  article-title: SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2019.108250
– volume: 61
  start-page: e02146
  year: 2017
  ident: ref31
  article-title: Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02146-16
– volume: 365
  start-page: fny136
  year: 2018
  ident: ref79
  article-title: Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage
  publication-title: FEMS Microbiol Lett
  doi: 10.1093/FEMSLE/FNY136
– volume: 96
  start-page: 1917
  year: 2007
  ident: ref12
  article-title: Enzybiotics: a look to the future, recalling the past
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20853
– volume: 60
  start-page: 968
  year: 2016
  ident: ref76
  article-title: Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01774-15
– volume: 200
  start-page: 1179
  year: 2019
  ident: ref157
  article-title: Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by Pseudomonas aeruginosa
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201904-0839LE
– volume: 131
  start-page: 225
  year: 2013
  ident: ref44
  article-title: Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e31827e47cd
– volume: 52
  start-page: e20190290
  year: 2019
  ident: ref81
  article-title: Phage therapy as an approach to control Salmonella enterica serotype Enteritidis infection in mice
  publication-title: Rev Soc Bras Med Trop
  doi: 10.1590/0037-8682-0290-2019
– volume: 14
  start-page: e0219599
  year: 2019
  ident: ref118
  article-title: Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219599
– volume: 18
  start-page: 1144
  year: 2013
  ident: ref184
  article-title: Phage display as a technology delivering on the promise of peptide drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2013.09.001
– volume: 321
  start-page: 638
  year: 2019
  ident: ref180
  article-title: FDA approves bacteriophage trial
  publication-title: JAMA
  doi: 10.1001/jama.2019.0510
– volume: 25
  start-page: S27
  year: 2016
  ident: ref128
  article-title: Bacteriophage treatment of intransigent diabetic toe ulcers: a case series
  publication-title: Methods Mol Biol
  doi: 10.12968/jowc.2016.25.sup7.s27
– volume: 3
  start-page: e00029
  year: 2012
  ident: ref88
  article-title: Bacteriophages ϕMR299-2 and ϕNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells
  publication-title: MBio
  doi: 10.1128/mBio.00029-12
– start-page: 125
  year: 2007
  ident: ref53
  article-title: Bacteriophages in medicine
  publication-title: Bacteriophage
– volume: 8
  start-page: 877
  year: 2013
  ident: ref42
  article-title: Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies
  publication-title: Future Microbiol
  doi: 10.2217/fmb.13.58
– volume: 73
  start-page: 155
  year: 2019
  ident: ref10
  article-title: Phage therapy in the twenty-first century: Facing the decline of the antibiotic era; is it finally time for the age of the phage?
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-090817-062535
– volume: 7
  start-page: e2183
  year: 2013
  ident: ref105
  article-title: Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002183
– volume: 20
  start-page: 37
  year: 2021
  ident: ref146
  article-title: Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study
  publication-title: Int J Lower Extrem Wounds
  doi: 10.1177/1534734619881076
SSID ssj0001325413
Score 2.3055682
SecondaryResourceType review_article
Snippet The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1209782
SubjectTerms bacteriophage
immune response
Medicine
preclinical AND clinical trials
treatment challenges
veterinary medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQD4gLggXEUoqMxAk1kNhOYnOjVasKCcSBot4s2_GwkdhstbtFov_V_2PGSVabC1y4JuPYzowzb-KZZ8belKbxTS58plQJmaoxTtGgQxZr7dFDqSBDyvL9Ul1cqk9X5dXeUV-UE9bTA_cv7n0dlQ95lIWLhI5pl7CoHHr9AqG-6Ev30OftBVPp74rEwKeQ_TYmRmEG1RSJGFTId9Sq1mLiiBJf_wRkTlMk93zO-SP2cACL_GM_yMfsXuxm7P7nYTt8xmbfKZklVdTy8eoTdvd1gR8J3ldW_f7AHV_HX4OFkeRm0cKWtx1J8OUu_YWvgPueuxn7HJO0us0xvyY2o0RZyBGE88Vq3d7iDXrEWFjJx2qrY-66Bjtsl3T8ETWhXjB6jjQT98O1iEf5sk38T9QOEegKjXjzlF2en307vciG0xmyoJTc4vKKlQMNRgSnQildlDkYgCh9IaPDQARftAKvgytKnQeEOo2TDipjQq2Vl8_YQYfDf854aKDBbwkYL6UCUTsUB5cbaEQTAMyc5aOqbBioy-kEjZ8WQxjSriXtWtKuHbQ7Z293Ta573o6_CZ-Q_neCRLmdLqAh2sEQ7b8Mcc5ej9ZjcYnSvovr4upmY4XWFca9UlVzpidmNelxeqdrF4nsG0N2gbCtePE_xnjIHtC8yfcW5iU72K5v4hGCqq1_ldbPH9ryI-o
  priority: 102
  providerName: Directory of Open Access Journals
Title Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens
URI https://www.proquest.com/docview/2886601346
https://pubmed.ncbi.nlm.nih.gov/PMC10620811
https://doaj.org/article/7e4bc0e31ae2425296416a5611871209
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zgvgi86p4_TEi-CTraJu0TYQhmziGMPHBK3srSZrsFnbbrb0T5_-1_2_npOnFwvDJ1zZp2pycnvMl53yHkPeZrHQVpzriPHMRLwCnCCdMZAuhwUJxw4yP8v2Wnyz417PsbIuM5a3CBPb3QjusJ7XoLvZ_X918AoU_QMQJ9hYkYJHzM2X7mAgKJu8BeQiGqcCCBqfB2_dbLgzQUMKGs837e06skyfxn3ie07jJvwzR8Q55EjxIejiI_CnZss2MPDoNZ-QzMvuJES4-zZaOV5-R2-9L-HPQId3q5iNVtLO_wrLDlv2ydmtaN9iCrjYxMbR1VA-EzjDmGLnV9Hv0EimOPI8hBc-cLtuu_gM38BFjtiUdU7D2qGoqGLBeYU0k7IKjwLxb_BJ1rmpwUumq9qRQ2A_c0hZWdv-cLI6__Ph8EoWSDZHhnK1B52yunHAyNYqbjCnLYieds0wnzCpAJzDR3GlhVJKJ2ID_UymmXC6lKQTX7AXZbuD1XxJqKlfBD8ZJzRh3aaGguVOxdFVaGefknMSjqEoT-MyxrMZFCbgGpVuidEuUbhmkOycfNl0uBzKPfzU-QvlvGiIPt7_QdudlUOuysFyb2LJEWcRueIad5Ap80gSAKDxnTt6Nq6cEvcXDGNXY9rovUyFyAMOM53MiJstqMuL0TlMvPQM44PgUfLnk1f94x9fkMX43GuREviHb6-7avgVPa613_Q7FrteiO3JxLec
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phage+therapy%3A+a+revolutionary+shift+in+the+management+of+bacterial+infections%2C+pioneering+new+horizons+in+clinical+practice%2C+and+reimagining+the+arsenal+against+microbial+pathogens&rft.jtitle=Frontiers+in+medicine&rft.au=Subhash+Lal+Karn&rft.au=Mayank+Gangwar&rft.au=Rajesh+Kumar&rft.au=Satyanam+Kumar+Bhartiya&rft.date=2023-10-19&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-858X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmed.2023.1209782&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e4bc0e31ae2425296416a5611871209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-858X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-858X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-858X&client=summon