Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution
Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypi...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 6; pp. 1310 - 1315 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
06.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. |
---|---|
AbstractList | Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin -- including crystal structures of multiple orthologs -- it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( Haliotis rufescens ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. The fertilization of eggs by sperm is a critical biological process for nearly all sexually reproducing organisms to propagate their genetic information, yet the molecules that mediate egg−sperm interactions evolve at extraordinary rates, and their biochemical mechanisms are poorly understood. In the marine mollusk abalone, sperm lysin interacts with egg vitelline envelope receptor for lysin (VERL) in a species-specific manner to facilitate fertilization. In this report, we characterized the solution structure and molecular evolution of sperm lysin from red abalone ( Haliotis rufescens ), and identified that the VERL binding interface has experienced incessant sexual coevolution. Furthermore, increased dynamics in the lysin fold has facilitated this exacerbated evolution, and may reflect a common molecular basis for accelerated evolution in other rapidly evolving proteins, such as immune genes. Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( Haliotis rufescens ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins. |
Author | Wilburn, Damien B. Swanson, Willie J. Tuttle, Lisa M. Klevit, Rachel E. |
Author_xml | – sequence: 1 givenname: Damien B. surname: Wilburn fullname: Wilburn, Damien B. organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195 – sequence: 2 givenname: Lisa M. surname: Tuttle fullname: Tuttle, Lisa M. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195 – sequence: 3 givenname: Rachel E. surname: Klevit fullname: Klevit, Rachel E. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195 – sequence: 4 givenname: Willie J. surname: Swanson fullname: Swanson, Willie J. organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29348201$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEcxYNU7LZ69qQMeOll2m9-zSQXoRStQsGDeg7ZTKbNkknGJLOw_71Zdmu14CmB7_u8vG_eGToJMViE3mK4xNDTqznofIl7kNBhjPkLtMIgcdsxCSdoBUD6VjDCTtFZzhsAkFzAK3RKJGWCAF6hzffol-JiaHJJiylLsk0cmzzbNDV-l11ods76ITchbq1vXMju_qHkeimxmaK3ZvE6NcMu6MmZvIeTnt3QzCkWW3G7Pb7wGr0ctc_2zfE8Rz8_f_px86W9-3b79eb6rjWM0dLiQWPNsKZ9342c0zUMPe84HgjojrFOYG0JBzAjkaIT2o4GrwdjiexhHNcjPUcfD77zsp5snYSStFdzcpNOOxW1U_9OgntQ93GruMCSClkNLo4GKf5abC5qctlY73WwcckKSyE7YJzQKv3wTLqJSwp1PUUAhBBUClJV7_9O9CfKYw1VwA8Ck2LOyY7KuKL3n1YDOq8wqH3dal-3eqq7clfPuEfr_xPvDsQml5ieknQcetwL-hvylLmE |
CitedBy_id | crossref_primary_10_3389_fcell_2022_828947 crossref_primary_10_1002_jez_b_23004 crossref_primary_10_1002_mrd_23517 crossref_primary_10_3389_fcell_2022_795273 crossref_primary_10_7554_eLife_52628 crossref_primary_10_3389_fgene_2020_00515 crossref_primary_10_1186_s12861_019_0190_z crossref_primary_10_7717_peerj_7988 crossref_primary_10_1371_journal_pone_0289296 |
Cites_doi | 10.1016/j.pnmrs.2005.10.001 10.1023/A:1011254402785 10.1016/j.febslet.2009.12.022 10.1371/journal.pgen.0010035 10.1016/S0022-2836(02)00241-3 10.1126/science.281.5377.710 10.1038/nature13203 10.1016/S0022-2836(03)00670-3 10.1371/journal.pone.0022477 10.1016/j.tree.2004.03.003 10.1016/0012-1606(82)90167-1 10.1107/S0907444999014626 10.1016/j.jmr.2014.03.011 10.1006/jmbi.1997.1284 10.1093/oxfordjournals.molbev.a026245 10.1093/molbev/msv010 10.1083/jcb.130.5.1117 10.1016/0012-1606(80)90371-1 10.1021/ja011241p 10.1201/9780429258756 10.1006/dbio.1999.9411 10.1073/pnas.1519803113 10.1006/jmbi.2000.3533 10.1007/s10858-010-9457-1 10.1016/j.jmb.2008.07.064 10.1073/pnas.94.15.7799 10.1016/j.anbehav.2014.10.019 10.1111/mec.12251 10.1093/bioinformatics/btu830 10.1016/0003-2697(87)90587-2 10.1016/S1090-7807(02)00014-9 10.1371/journal.pcbi.1000392 10.1093/molbev/msm088 10.1016/S0378-1119(02)00459-6 10.1073/pnas.78.6.3721 10.1093/bioinformatics/btm265 10.1038/nrg733 10.1002/prot.25064 10.1371/journal.pgen.1003287 10.1093/molbev/msp221 10.1016/j.jprot.2015.06.007 10.1073/pnas.94.13.6724 10.1371/journal.pgen.1000570 10.1111/j.1558-5646.2009.00850.x 10.1093/bioinformatics/btu033 10.1007/s10858-013-9741-y |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Feb 6, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Feb 6, 2018 – notice: 2018 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1709061115 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Structure of lysin informs rapid protein evolution |
EISSN | 1091-6490 |
EndPage | 1315 |
ExternalDocumentID | PMC5819389 29348201 10_1073_pnas_1709061115 26507178 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD076862 – fundername: NIGMS NIH HHS grantid: F32 GM116298 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: F32-GM116298 – fundername: HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grantid: R01-HD076862 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-1da1a41a3776f553b0d75651d20a644681ae2500cf29868aefc1bdce2970ffbf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:04 EDT 2025 Sun Aug 24 03:45:14 EDT 2025 Mon Jun 30 08:35:32 EDT 2025 Wed Feb 19 02:42:27 EST 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 03:19:45 EDT 2025 Fri May 30 11:18:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fertilization nuclear magnetic resonance sexual selection |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-1da1a41a3776f553b0d75651d20a644681ae2500cf29868aefc1bdce2970ffbf3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved December 19, 2017 (received for review June 1, 2017) Author contributions: D.B.W. and W.J.S. designed research; D.B.W. and L.M.T. performed research; D.B.W. and L.M.T. analyzed data; D.B.W., R.E.K., and W.J.S. wrote the paper; and R.E.K. and W.J.S. supervised the project. |
ORCID | 0000-0002-1255-9982 0000-0002-3476-969X |
OpenAccessLink | https://www.pnas.org/content/pnas/115/6/1310.full.pdf |
PMID | 29348201 |
PQID | 2008883982 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5819389 proquest_miscellaneous_1989604523 proquest_journals_2008883982 pubmed_primary_29348201 crossref_citationtrail_10_1073_pnas_1709061115 crossref_primary_10_1073_pnas_1709061115 jstor_primary_26507178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-06 |
PublicationDateYYYYMMDD | 2018-02-06 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Donaldson LW (e_1_3_4_40_2) 2001; 123 Barton NH (e_1_3_4_6_2) 2007 Lewis CA (e_1_3_4_7_2) 1982; 92 Callebaut I (e_1_3_4_26_2) 2007; 23 Moult J (e_1_3_4_16_2) 2016; 84 Stapper AP (e_1_3_4_28_2) 2015; 32 Kresge N (e_1_3_4_17_2) 2000; 296 Swanson WJ (e_1_3_4_4_2) 2002; 3 Bianchi E (e_1_3_4_25_2) 2014; 508 Lande R (e_1_3_4_2_2) 1981; 78 Marley J (e_1_3_4_30_2) 2001; 20 Mead LS (e_1_3_4_3_2) 2004; 19 Nei M (e_1_3_4_21_2) 1997; 94 Kresge N (e_1_3_4_18_2) 2000; 56 Lyon JD (e_1_3_4_19_2) 1999; 214 Clark NL (e_1_3_4_23_2) 2005; 1 Shaw A (e_1_3_4_12_2) 1995; 130 Higman VA (e_1_3_4_38_2) 2011; 49 Tian Y (e_1_3_4_39_2) 2014; 243 Hart MW (e_1_3_4_24_2) 2013; 22 Galindo BE (e_1_3_4_14_2) 2002; 288 Güntert P (e_1_3_4_33_2) 1997; 273 Chaudhury S (e_1_3_4_46_2) 2011; 6 Shen Y (e_1_3_4_35_2) 2013; 56 Wilburn DB (e_1_3_4_29_2) 2015; 100 Aagaard JE (e_1_3_4_48_2) 2013; 9 Swanson WJ (e_1_3_4_13_2) 1998; 281 Bradley RK (e_1_3_4_42_2) 2009; 5 Aagaard JE (e_1_3_4_47_2) 2010; 27 Schwieters CD (e_1_3_4_37_2) 2006; 48 da Fonseca RR (e_1_3_4_22_2) 2010; 584 Herrmann T (e_1_3_4_34_2) 2002; 319 Bokhove M (e_1_3_4_9_2) 2016; 113 Yang Z (e_1_3_4_11_2) 2000; 17 Swanson WJ (e_1_3_4_10_2) 1997; 94 Schägger H (e_1_3_4_31_2) 1987; 166 Stamatakis A (e_1_3_4_43_2) 2014; 30 Gray JJ (e_1_3_4_45_2) 2003; 331 Bleil JD (e_1_3_4_8_2) 1980; 76 Levitan DR (e_1_3_4_27_2) 2010; 64 Yang Z (e_1_3_4_44_2) 2007; 24 Wilburn DB (e_1_3_4_5_2) 2016; 135 Rupp B (e_1_3_4_20_2) 2009 Lee W (e_1_3_4_32_2) 2015; 31 Schwieters CD (e_1_3_4_36_2) 2003; 160 Darwin CR (e_1_3_4_1_2) 1871 Clark NL (e_1_3_4_15_2) 2009; 5 Lee GM (e_1_3_4_41_2) 2008; 382 12565051 - J Magn Reson. 2003 Jan;160(1):65-73 27171127 - Proteins. 2016 Sep;84 Suppl 1:4-14 2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79 11430757 - J Biomol NMR. 2001 May;20(1):71-5 20026333 - FEBS Lett. 2010 Feb 5;584(3):469-76 19629160 - PLoS Genet. 2009 Jul;5(7):e1000570 26074353 - J Proteomics. 2016 Mar 1;135:12-25 9367762 - J Mol Biol. 1997 Oct 17;273(1):283-98 19796148 - Evolution. 2010 Mar 1;64(3):785-97 7106382 - Dev Biol. 1982 Jul;92(1):227-39 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 10698629 - J Mol Biol. 2000 Mar 10;296(5):1225-34 23432510 - Mol Ecol. 2013 Apr;22(8):2143-56 24739963 - Nature. 2014 Apr 24;508(7497):483-7 24747742 - J Magn Reson. 2014 Jun;243:54-64 16593036 - Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721-5 16170411 - PLoS Genet. 2005 Sep;1(3):e35 11018152 - Mol Biol Evol. 2000 Oct;17(10):1446-55 23408913 - PLoS Genet. 2013;9(2):e1003287 12051947 - J Mol Biol. 2002 May 24;319(1):209-27 26811476 - Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1552-7 19767347 - Mol Biol Evol. 2010 Jan;27(1):193-203 25505092 - Bioinformatics. 2015 Apr 15;31(8):1325-7 12034500 - Gene. 2002 Apr 17;288(1-2):111-7 7657696 - J Cell Biol. 1995 Sep;130(5):1117-25 10666624 - Acta Crystallogr D Biol Crystallogr. 2000 Jan;56(Pt 1):34-41 17510169 - Bioinformatics. 2007 Aug 1;23 (15):1871-4 23728592 - J Biomol NMR. 2013 Jul;56(3):227-41 16701266 - Trends Ecol Evol. 2004 May;19(5):264-71 11836507 - Nat Rev Genet. 2002 Feb;3(2):137-44 18692067 - J Mol Biol. 2008 Oct 17;382(4):1014-30 19478997 - PLoS Comput Biol. 2009 May;5(5):e1000392 9685267 - Science. 1998 Jul 31;281(5377):710-2 9192632 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6724-9 21829626 - PLoS One. 2011;6(8):e22477 25618458 - Mol Biol Evol. 2015 Apr;32(4):859-70 21184138 - J Biomol NMR. 2011 Jan;49(1):53-60 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 12875852 - J Mol Biol. 2003 Aug 1;331(1):281-99 7380091 - Dev Biol. 1980 Apr;76(1):185-202 11583547 - J Am Chem Soc. 2001 Oct 10;123(40):9843-7 10491264 - Dev Biol. 1999 Oct 1;214(1):151-9 |
References_xml | – volume-title: The Descent of Man, and Selection in Relation to Sex year: 1871 ident: e_1_3_4_1_2 – volume: 48 start-page: 47 year: 2006 ident: e_1_3_4_37_2 article-title: Using Xplor-NIH for NMR molecular structure determination publication-title: Prog Nucl Magn Reson Spectrosc doi: 10.1016/j.pnmrs.2005.10.001 – volume: 20 start-page: 71 year: 2001 ident: e_1_3_4_30_2 article-title: A method for efficient isotopic labeling of recombinant proteins publication-title: J Biomol NMR doi: 10.1023/A:1011254402785 – volume: 584 start-page: 469 year: 2010 ident: e_1_3_4_22_2 article-title: Positive selection on apoptosis related genes publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.12.022 – volume: 1 start-page: e35 year: 2005 ident: e_1_3_4_23_2 article-title: Pervasive adaptive evolution in primate seminal proteins publication-title: PLoS Genet doi: 10.1371/journal.pgen.0010035 – volume: 319 start-page: 209 year: 2002 ident: e_1_3_4_34_2 article-title: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00241-3 – volume: 281 start-page: 710 year: 1998 ident: e_1_3_4_13_2 article-title: Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein publication-title: Science doi: 10.1126/science.281.5377.710 – volume: 508 start-page: 483 year: 2014 ident: e_1_3_4_25_2 article-title: Juno is the egg Izumo receptor and is essential for mammalian fertilization publication-title: Nature doi: 10.1038/nature13203 – volume: 331 start-page: 281 year: 2003 ident: e_1_3_4_45_2 article-title: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations publication-title: J Mol Biol doi: 10.1016/S0022-2836(03)00670-3 – volume: 6 start-page: e22477 year: 2011 ident: e_1_3_4_46_2 article-title: Benchmarking and analysis of protein docking performance in Rosetta v3.2 publication-title: PLoS One doi: 10.1371/journal.pone.0022477 – volume: 19 start-page: 264 year: 2004 ident: e_1_3_4_3_2 article-title: Quantitative genetic models of sexual selection publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2004.03.003 – volume: 92 start-page: 227 year: 1982 ident: e_1_3_4_7_2 article-title: A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism publication-title: Dev Biol doi: 10.1016/0012-1606(82)90167-1 – volume: 56 start-page: 34 year: 2000 ident: e_1_3_4_18_2 article-title: 1.35 and 2.07 Å resolution structures of the red abalone sperm lysin monomer and dimer reveal features involved in receptor binding publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444999014626 – volume: 243 start-page: 54 year: 2014 ident: e_1_3_4_39_2 article-title: A practical implicit solvent potential for NMR structure calculation publication-title: J Magn Reson doi: 10.1016/j.jmr.2014.03.011 – volume: 273 start-page: 283 year: 1997 ident: e_1_3_4_33_2 article-title: Torsion angle dynamics for NMR structure calculation with the new program DYANA publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1284 – volume: 17 start-page: 1446 year: 2000 ident: e_1_3_4_11_2 article-title: Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026245 – volume: 32 start-page: 859 year: 2015 ident: e_1_3_4_28_2 article-title: Assortative mating drives linkage disequilibrium between sperm and egg recognition protein loci in the sea urchin Strongylocentrotus purpuratus publication-title: Mol Biol Evol doi: 10.1093/molbev/msv010 – volume: 130 start-page: 1117 year: 1995 ident: e_1_3_4_12_2 article-title: Crystal structure and subunit dynamics of the abalone sperm lysin dimer: Egg envelopes dissociate dimers, the monomer is the active species publication-title: J Cell Biol doi: 10.1083/jcb.130.5.1117 – volume: 76 start-page: 185 year: 1980 ident: e_1_3_4_8_2 article-title: Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida publication-title: Dev Biol doi: 10.1016/0012-1606(80)90371-1 – volume: 123 start-page: 9843 year: 2001 ident: e_1_3_4_40_2 article-title: Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy publication-title: J Am Chem Soc doi: 10.1021/ja011241p – volume-title: Biomolecular Crystallography: Principles, Practices, and Applications to Structural Biology year: 2009 ident: e_1_3_4_20_2 doi: 10.1201/9780429258756 – volume: 214 start-page: 151 year: 1999 ident: e_1_3_4_19_2 article-title: Interspecies chimeric sperm lysins identify regions mediating species-specific recognition of the abalone egg vitelline envelope publication-title: Dev Biol doi: 10.1006/dbio.1999.9411 – volume: 113 start-page: 1552 year: 2016 ident: e_1_3_4_9_2 article-title: A structured interdomain linker directs self-polymerization of human uromodulin publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1519803113 – volume: 296 start-page: 1225 year: 2000 ident: e_1_3_4_17_2 article-title: The high resolution crystal structure of green abalone sperm lysin: Implications for species-specific binding of the egg receptor publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3533 – volume: 49 start-page: 53 year: 2011 ident: e_1_3_4_38_2 article-title: Residual dipolar couplings: Are multiple independent alignments always possible? publication-title: J Biomol NMR doi: 10.1007/s10858-010-9457-1 – volume: 382 start-page: 1014 year: 2008 ident: e_1_3_4_41_2 article-title: The affinity of Ets-1 for DNA is modulated by phosphorylation through transient interactions of an unstructured region publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.07.064 – volume: 94 start-page: 7799 year: 1997 ident: e_1_3_4_21_2 article-title: Evolution by the birth-and-death process in multigene families of the vertebrate immune system publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.15.7799 – volume: 100 start-page: 1 year: 2015 ident: e_1_3_4_29_2 article-title: Pheromone isoform composition differentially affects female behaviour in the red-legged salamander, Plethodon shermani publication-title: Anim Behav doi: 10.1016/j.anbehav.2014.10.019 – volume: 22 start-page: 2143 year: 2013 ident: e_1_3_4_24_2 article-title: Structure and evolution of the sea star egg receptor for sperm bindin publication-title: Mol Ecol doi: 10.1111/mec.12251 – volume: 31 start-page: 1325 year: 2015 ident: e_1_3_4_32_2 article-title: NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu830 – volume: 166 start-page: 368 year: 1987 ident: e_1_3_4_31_2 article-title: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa publication-title: Anal Biochem doi: 10.1016/0003-2697(87)90587-2 – volume: 160 start-page: 65 year: 2003 ident: e_1_3_4_36_2 article-title: The Xplor-NIH NMR molecular structure determination package publication-title: J Magn Reson doi: 10.1016/S1090-7807(02)00014-9 – volume: 5 start-page: e1000392 year: 2009 ident: e_1_3_4_42_2 article-title: Fast statistical alignment publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1000392 – volume: 24 start-page: 1586 year: 2007 ident: e_1_3_4_44_2 article-title: PAML 4: Phylogenetic analysis by maximum likelihood publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 288 start-page: 111 year: 2002 ident: e_1_3_4_14_2 article-title: Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin publication-title: Gene doi: 10.1016/S0378-1119(02)00459-6 – volume: 78 start-page: 3721 year: 1981 ident: e_1_3_4_2_2 article-title: Models of speciation by sexual selection on polygenic traits publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.78.6.3721 – volume: 23 start-page: 1871 year: 2007 ident: e_1_3_4_26_2 article-title: Isolated ZP-N domains constitute the N-terminal extensions of zona pellucida proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm265 – volume: 3 start-page: 137 year: 2002 ident: e_1_3_4_4_2 article-title: The rapid evolution of reproductive proteins publication-title: Nat Rev Genet doi: 10.1038/nrg733 – volume: 84 start-page: 4 year: 2016 ident: e_1_3_4_16_2 article-title: Critical assessment of methods of protein structure prediction: Progress and new directions in round XI publication-title: Proteins doi: 10.1002/prot.25064 – volume: 9 start-page: e1003287 year: 2013 ident: e_1_3_4_48_2 article-title: Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003287 – volume: 27 start-page: 193 year: 2010 ident: e_1_3_4_47_2 article-title: ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins publication-title: Mol Biol Evol doi: 10.1093/molbev/msp221 – volume: 135 start-page: 12 year: 2016 ident: e_1_3_4_5_2 article-title: From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins publication-title: J Proteomics doi: 10.1016/j.jprot.2015.06.007 – volume: 94 start-page: 6724 year: 1997 ident: e_1_3_4_10_2 article-title: The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.13.6724 – volume-title: Evolution year: 2007 ident: e_1_3_4_6_2 – volume: 5 start-page: e1000570 year: 2009 ident: e_1_3_4_15_2 article-title: Coevolution of interacting fertilization proteins publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000570 – volume: 64 start-page: 785 year: 2010 ident: e_1_3_4_27_2 article-title: Simultaneous positive and negative frequency-dependent selection on sperm bindin, a gamete recognition protein in the sea urchin Strongylocentrotus purpuratus publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00850.x – volume: 30 start-page: 1312 year: 2014 ident: e_1_3_4_43_2 article-title: RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 56 start-page: 227 year: 2013 ident: e_1_3_4_35_2 article-title: Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks publication-title: J Biomol NMR doi: 10.1007/s10858-013-9741-y – reference: 9192632 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6724-9 – reference: 20026333 - FEBS Lett. 2010 Feb 5;584(3):469-76 – reference: 10666624 - Acta Crystallogr D Biol Crystallogr. 2000 Jan;56(Pt 1):34-41 – reference: 19478997 - PLoS Comput Biol. 2009 May;5(5):e1000392 – reference: 17510169 - Bioinformatics. 2007 Aug 1;23 (15):1871-4 – reference: 12051947 - J Mol Biol. 2002 May 24;319(1):209-27 – reference: 26074353 - J Proteomics. 2016 Mar 1;135:12-25 – reference: 19629160 - PLoS Genet. 2009 Jul;5(7):e1000570 – reference: 24747742 - J Magn Reson. 2014 Jun;243:54-64 – reference: 23432510 - Mol Ecol. 2013 Apr;22(8):2143-56 – reference: 11583547 - J Am Chem Soc. 2001 Oct 10;123(40):9843-7 – reference: 21829626 - PLoS One. 2011;6(8):e22477 – reference: 9685267 - Science. 1998 Jul 31;281(5377):710-2 – reference: 11430757 - J Biomol NMR. 2001 May;20(1):71-5 – reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 – reference: 25618458 - Mol Biol Evol. 2015 Apr;32(4):859-70 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 24739963 - Nature. 2014 Apr 24;508(7497):483-7 – reference: 27171127 - Proteins. 2016 Sep;84 Suppl 1:4-14 – reference: 11836507 - Nat Rev Genet. 2002 Feb;3(2):137-44 – reference: 16593036 - Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721-5 – reference: 2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79 – reference: 9367762 - J Mol Biol. 1997 Oct 17;273(1):283-98 – reference: 16701266 - Trends Ecol Evol. 2004 May;19(5):264-71 – reference: 7380091 - Dev Biol. 1980 Apr;76(1):185-202 – reference: 21184138 - J Biomol NMR. 2011 Jan;49(1):53-60 – reference: 19767347 - Mol Biol Evol. 2010 Jan;27(1):193-203 – reference: 10491264 - Dev Biol. 1999 Oct 1;214(1):151-9 – reference: 23728592 - J Biomol NMR. 2013 Jul;56(3):227-41 – reference: 10698629 - J Mol Biol. 2000 Mar 10;296(5):1225-34 – reference: 25505092 - Bioinformatics. 2015 Apr 15;31(8):1325-7 – reference: 26811476 - Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1552-7 – reference: 12565051 - J Magn Reson. 2003 Jan;160(1):65-73 – reference: 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 – reference: 12875852 - J Mol Biol. 2003 Aug 1;331(1):281-99 – reference: 7657696 - J Cell Biol. 1995 Sep;130(5):1117-25 – reference: 19796148 - Evolution. 2010 Mar 1;64(3):785-97 – reference: 16170411 - PLoS Genet. 2005 Sep;1(3):e35 – reference: 18692067 - J Mol Biol. 2008 Oct 17;382(4):1014-30 – reference: 12034500 - Gene. 2002 Apr 17;288(1-2):111-7 – reference: 7106382 - Dev Biol. 1982 Jul;92(1):227-39 – reference: 23408913 - PLoS Genet. 2013;9(2):e1003287 – reference: 11018152 - Mol Biol Evol. 2000 Oct;17(10):1446-55 |
SSID | ssj0009580 |
Score | 2.3165553 |
Snippet | Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain... The fertilization of eggs by sperm is a critical biological process for nearly all sexually reproducing organisms to propagate their genetic information, yet... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1310 |
SubjectTerms | Binding Biochemistry Biological activity Biological evolution Biological Sciences Clustering Crystal structure Crystallography Evolution Haliotis rufescens Molecular dynamics Mollusks Mutagenesis NMR Nuclear magnetic resonance Physiochemistry Positive selection Proteins Shellfish Site-directed mutagenesis Sperm |
Title | Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution |
URI | https://www.jstor.org/stable/26507178 https://www.ncbi.nlm.nih.gov/pubmed/29348201 https://www.proquest.com/docview/2008883982 https://www.proquest.com/docview/1989604523 https://pubmed.ncbi.nlm.nih.gov/PMC5819389 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwLWiROBRZDl4_18cKtaqghAoSKTdrvVmrRa1T4aQV_Ap-MjP7sJMSpMLFitbrtZP5MjsznvmGkDdKhhJ2LhWEUuRBUkV1UDEMw8lIyIxnSgosTv40yo4nyYdpOh0Mfq1kLS0X1VD-3FhX8j9ShTGQK1bJ_oNku0VhAD6DfOEIEobjnWTsYlq-YYHFdwFg-yH396WPVCON_wMT1Fq_mV8rJNdo0RXHDCywOC9dY1x_ZrrS66SO7-LqHJkD5tgF01fX9g6rNuxpt-e1LsNg5EKKB32BitUarR_4p6O-3TGoIZCj0XVwV9X0fZ_HSyRUNpGCVvRx2o9YAq83iy9IP33RV098vRGueE0HjpR9y2XDGIzrzOdsRfOC4RJkiekdOlQbxpy6NuWfFperypfFJkP2j10B1Bi2Mm5EO2R5WIAJ4xZZ498efS6PJicn5fhwOr5H7kfgeMQu_tPROHPDb2EfzJFF5fG7W8uv2Tkm1XWTE3M7F3fFuBk_Ig-tV0IPDMS2yUA1j8m2kyDdt-Tkb5-Qbw5ztMMcnddUY45qzFGDOaoxRx3mKGKOdpijDnN4scYctZijHeaeksnR4fj9cWD7dQQySeJFwGaCiYSJOM-zOk3jKpzl4C-wWRQKMLszzoQCizuUdVTwjAtVS1bBF4-KPKzrqo53yFYzb9RzQjOZFzyZqbCKRBLHXNR1WrFMiBp2EMULjwzdr1tKS2aPPVUuSp1UkccliqPsxeGR_e6CK8Pj8vepO1pc3bwoQ6cp5x7Zc_IrrRZodRtXDl4GjzzyujsNOhpfvIlGzZewdsGRAymNYo88M-LuFy-QXipkHsnXgNBNQP739TPN-ZnmgU_Bmgd_48Ud7rtLHvR_uj2yBQhRL8GaXlSvNMB_A3RU0c0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+structure+of+sperm+lysin+yields+novel+insights+into+molecular+dynamics+of+rapid+protein+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wilburn%2C+Damien+B&rft.au=Tuttle%2C+Lisa+M&rft.au=Klevit%2C+Rachel+E&rft.au=Swanson%2C+Willie+J&rft.date=2018-02-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=6&rft.spage=1310&rft_id=info:doi/10.1073%2Fpnas.1709061115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |