Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution

Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 6; pp. 1310 - 1315
Main Authors Wilburn, Damien B., Tuttle, Lisa M., Klevit, Rachel E., Swanson, Willie J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 06.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
AbstractList Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin -- including crystal structures of multiple orthologs -- it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( Haliotis rufescens ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
The fertilization of eggs by sperm is a critical biological process for nearly all sexually reproducing organisms to propagate their genetic information, yet the molecules that mediate egg−sperm interactions evolve at extraordinary rates, and their biochemical mechanisms are poorly understood. In the marine mollusk abalone, sperm lysin interacts with egg vitelline envelope receptor for lysin (VERL) in a species-specific manner to facilitate fertilization. In this report, we characterized the solution structure and molecular evolution of sperm lysin from red abalone ( Haliotis rufescens ), and identified that the VERL binding interface has experienced incessant sexual coevolution. Furthermore, increased dynamics in the lysin fold has facilitated this exacerbated evolution, and may reflect a common molecular basis for accelerated evolution in other rapidly evolving proteins, such as immune genes. Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin—including crystal structures of multiple orthologs—it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone ( Haliotis rufescens ). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
Author Wilburn, Damien B.
Swanson, Willie J.
Tuttle, Lisa M.
Klevit, Rachel E.
Author_xml – sequence: 1
  givenname: Damien B.
  surname: Wilburn
  fullname: Wilburn, Damien B.
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195
– sequence: 2
  givenname: Lisa M.
  surname: Tuttle
  fullname: Tuttle, Lisa M.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195
– sequence: 3
  givenname: Rachel E.
  surname: Klevit
  fullname: Klevit, Rachel E.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195
– sequence: 4
  givenname: Willie J.
  surname: Swanson
  fullname: Swanson, Willie J.
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29348201$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEcxYNU7LZ69qQMeOll2m9-zSQXoRStQsGDeg7ZTKbNkknGJLOw_71Zdmu14CmB7_u8vG_eGToJMViE3mK4xNDTqznofIl7kNBhjPkLtMIgcdsxCSdoBUD6VjDCTtFZzhsAkFzAK3RKJGWCAF6hzffol-JiaHJJiylLsk0cmzzbNDV-l11ods76ITchbq1vXMju_qHkeimxmaK3ZvE6NcMu6MmZvIeTnt3QzCkWW3G7Pb7wGr0ctc_2zfE8Rz8_f_px86W9-3b79eb6rjWM0dLiQWPNsKZ9342c0zUMPe84HgjojrFOYG0JBzAjkaIT2o4GrwdjiexhHNcjPUcfD77zsp5snYSStFdzcpNOOxW1U_9OgntQ93GruMCSClkNLo4GKf5abC5qctlY73WwcckKSyE7YJzQKv3wTLqJSwp1PUUAhBBUClJV7_9O9CfKYw1VwA8Ck2LOyY7KuKL3n1YDOq8wqH3dal-3eqq7clfPuEfr_xPvDsQml5ieknQcetwL-hvylLmE
CitedBy_id crossref_primary_10_3389_fcell_2022_828947
crossref_primary_10_1002_jez_b_23004
crossref_primary_10_1002_mrd_23517
crossref_primary_10_3389_fcell_2022_795273
crossref_primary_10_7554_eLife_52628
crossref_primary_10_3389_fgene_2020_00515
crossref_primary_10_1186_s12861_019_0190_z
crossref_primary_10_7717_peerj_7988
crossref_primary_10_1371_journal_pone_0289296
Cites_doi 10.1016/j.pnmrs.2005.10.001
10.1023/A:1011254402785
10.1016/j.febslet.2009.12.022
10.1371/journal.pgen.0010035
10.1016/S0022-2836(02)00241-3
10.1126/science.281.5377.710
10.1038/nature13203
10.1016/S0022-2836(03)00670-3
10.1371/journal.pone.0022477
10.1016/j.tree.2004.03.003
10.1016/0012-1606(82)90167-1
10.1107/S0907444999014626
10.1016/j.jmr.2014.03.011
10.1006/jmbi.1997.1284
10.1093/oxfordjournals.molbev.a026245
10.1093/molbev/msv010
10.1083/jcb.130.5.1117
10.1016/0012-1606(80)90371-1
10.1021/ja011241p
10.1201/9780429258756
10.1006/dbio.1999.9411
10.1073/pnas.1519803113
10.1006/jmbi.2000.3533
10.1007/s10858-010-9457-1
10.1016/j.jmb.2008.07.064
10.1073/pnas.94.15.7799
10.1016/j.anbehav.2014.10.019
10.1111/mec.12251
10.1093/bioinformatics/btu830
10.1016/0003-2697(87)90587-2
10.1016/S1090-7807(02)00014-9
10.1371/journal.pcbi.1000392
10.1093/molbev/msm088
10.1016/S0378-1119(02)00459-6
10.1073/pnas.78.6.3721
10.1093/bioinformatics/btm265
10.1038/nrg733
10.1002/prot.25064
10.1371/journal.pgen.1003287
10.1093/molbev/msp221
10.1016/j.jprot.2015.06.007
10.1073/pnas.94.13.6724
10.1371/journal.pgen.1000570
10.1111/j.1558-5646.2009.00850.x
10.1093/bioinformatics/btu033
10.1007/s10858-013-9741-y
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 6, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 6, 2018
– notice: 2018
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1709061115
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structure of lysin informs rapid protein evolution
EISSN 1091-6490
EndPage 1315
ExternalDocumentID PMC5819389
29348201
10_1073_pnas_1709061115
26507178
Genre Journal Article
Feature
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD076862
– fundername: NIGMS NIH HHS
  grantid: F32 GM116298
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: F32-GM116298
– fundername: HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  grantid: R01-HD076862
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-1da1a41a3776f553b0d75651d20a644681ae2500cf29868aefc1bdce2970ffbf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:04 EDT 2025
Sun Aug 24 03:45:14 EDT 2025
Mon Jun 30 08:35:32 EDT 2025
Wed Feb 19 02:42:27 EST 2025
Thu Apr 24 23:05:34 EDT 2025
Tue Jul 01 03:19:45 EDT 2025
Fri May 30 11:18:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fertilization
nuclear magnetic resonance
sexual selection
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-1da1a41a3776f553b0d75651d20a644681ae2500cf29868aefc1bdce2970ffbf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved December 19, 2017 (received for review June 1, 2017)
Author contributions: D.B.W. and W.J.S. designed research; D.B.W. and L.M.T. performed research; D.B.W. and L.M.T. analyzed data; D.B.W., R.E.K., and W.J.S. wrote the paper; and R.E.K. and W.J.S. supervised the project.
ORCID 0000-0002-1255-9982
0000-0002-3476-969X
OpenAccessLink https://www.pnas.org/content/pnas/115/6/1310.full.pdf
PMID 29348201
PQID 2008883982
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5819389
proquest_miscellaneous_1989604523
proquest_journals_2008883982
pubmed_primary_29348201
crossref_citationtrail_10_1073_pnas_1709061115
crossref_primary_10_1073_pnas_1709061115
jstor_primary_26507178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-06
PublicationDateYYYYMMDD 2018-02-06
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Donaldson LW (e_1_3_4_40_2) 2001; 123
Barton NH (e_1_3_4_6_2) 2007
Lewis CA (e_1_3_4_7_2) 1982; 92
Callebaut I (e_1_3_4_26_2) 2007; 23
Moult J (e_1_3_4_16_2) 2016; 84
Stapper AP (e_1_3_4_28_2) 2015; 32
Kresge N (e_1_3_4_17_2) 2000; 296
Swanson WJ (e_1_3_4_4_2) 2002; 3
Bianchi E (e_1_3_4_25_2) 2014; 508
Lande R (e_1_3_4_2_2) 1981; 78
Marley J (e_1_3_4_30_2) 2001; 20
Mead LS (e_1_3_4_3_2) 2004; 19
Nei M (e_1_3_4_21_2) 1997; 94
Kresge N (e_1_3_4_18_2) 2000; 56
Lyon JD (e_1_3_4_19_2) 1999; 214
Clark NL (e_1_3_4_23_2) 2005; 1
Shaw A (e_1_3_4_12_2) 1995; 130
Higman VA (e_1_3_4_38_2) 2011; 49
Tian Y (e_1_3_4_39_2) 2014; 243
Hart MW (e_1_3_4_24_2) 2013; 22
Galindo BE (e_1_3_4_14_2) 2002; 288
Güntert P (e_1_3_4_33_2) 1997; 273
Chaudhury S (e_1_3_4_46_2) 2011; 6
Shen Y (e_1_3_4_35_2) 2013; 56
Wilburn DB (e_1_3_4_29_2) 2015; 100
Aagaard JE (e_1_3_4_48_2) 2013; 9
Swanson WJ (e_1_3_4_13_2) 1998; 281
Bradley RK (e_1_3_4_42_2) 2009; 5
Aagaard JE (e_1_3_4_47_2) 2010; 27
Schwieters CD (e_1_3_4_37_2) 2006; 48
da Fonseca RR (e_1_3_4_22_2) 2010; 584
Herrmann T (e_1_3_4_34_2) 2002; 319
Bokhove M (e_1_3_4_9_2) 2016; 113
Yang Z (e_1_3_4_11_2) 2000; 17
Swanson WJ (e_1_3_4_10_2) 1997; 94
Schägger H (e_1_3_4_31_2) 1987; 166
Stamatakis A (e_1_3_4_43_2) 2014; 30
Gray JJ (e_1_3_4_45_2) 2003; 331
Bleil JD (e_1_3_4_8_2) 1980; 76
Levitan DR (e_1_3_4_27_2) 2010; 64
Yang Z (e_1_3_4_44_2) 2007; 24
Wilburn DB (e_1_3_4_5_2) 2016; 135
Rupp B (e_1_3_4_20_2) 2009
Lee W (e_1_3_4_32_2) 2015; 31
Schwieters CD (e_1_3_4_36_2) 2003; 160
Darwin CR (e_1_3_4_1_2) 1871
Clark NL (e_1_3_4_15_2) 2009; 5
Lee GM (e_1_3_4_41_2) 2008; 382
12565051 - J Magn Reson. 2003 Jan;160(1):65-73
27171127 - Proteins. 2016 Sep;84 Suppl 1:4-14
2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79
11430757 - J Biomol NMR. 2001 May;20(1):71-5
20026333 - FEBS Lett. 2010 Feb 5;584(3):469-76
19629160 - PLoS Genet. 2009 Jul;5(7):e1000570
26074353 - J Proteomics. 2016 Mar 1;135:12-25
9367762 - J Mol Biol. 1997 Oct 17;273(1):283-98
19796148 - Evolution. 2010 Mar 1;64(3):785-97
7106382 - Dev Biol. 1982 Jul;92(1):227-39
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
10698629 - J Mol Biol. 2000 Mar 10;296(5):1225-34
23432510 - Mol Ecol. 2013 Apr;22(8):2143-56
24739963 - Nature. 2014 Apr 24;508(7497):483-7
24747742 - J Magn Reson. 2014 Jun;243:54-64
16593036 - Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721-5
16170411 - PLoS Genet. 2005 Sep;1(3):e35
11018152 - Mol Biol Evol. 2000 Oct;17(10):1446-55
23408913 - PLoS Genet. 2013;9(2):e1003287
12051947 - J Mol Biol. 2002 May 24;319(1):209-27
26811476 - Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1552-7
19767347 - Mol Biol Evol. 2010 Jan;27(1):193-203
25505092 - Bioinformatics. 2015 Apr 15;31(8):1325-7
12034500 - Gene. 2002 Apr 17;288(1-2):111-7
7657696 - J Cell Biol. 1995 Sep;130(5):1117-25
10666624 - Acta Crystallogr D Biol Crystallogr. 2000 Jan;56(Pt 1):34-41
17510169 - Bioinformatics. 2007 Aug 1;23 (15):1871-4
23728592 - J Biomol NMR. 2013 Jul;56(3):227-41
16701266 - Trends Ecol Evol. 2004 May;19(5):264-71
11836507 - Nat Rev Genet. 2002 Feb;3(2):137-44
18692067 - J Mol Biol. 2008 Oct 17;382(4):1014-30
19478997 - PLoS Comput Biol. 2009 May;5(5):e1000392
9685267 - Science. 1998 Jul 31;281(5377):710-2
9192632 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6724-9
21829626 - PLoS One. 2011;6(8):e22477
25618458 - Mol Biol Evol. 2015 Apr;32(4):859-70
21184138 - J Biomol NMR. 2011 Jan;49(1):53-60
9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
24451623 - Bioinformatics. 2014 May 1;30(9):1312-3
12875852 - J Mol Biol. 2003 Aug 1;331(1):281-99
7380091 - Dev Biol. 1980 Apr;76(1):185-202
11583547 - J Am Chem Soc. 2001 Oct 10;123(40):9843-7
10491264 - Dev Biol. 1999 Oct 1;214(1):151-9
References_xml – volume-title: The Descent of Man, and Selection in Relation to Sex
  year: 1871
  ident: e_1_3_4_1_2
– volume: 48
  start-page: 47
  year: 2006
  ident: e_1_3_4_37_2
  article-title: Using Xplor-NIH for NMR molecular structure determination
  publication-title: Prog Nucl Magn Reson Spectrosc
  doi: 10.1016/j.pnmrs.2005.10.001
– volume: 20
  start-page: 71
  year: 2001
  ident: e_1_3_4_30_2
  article-title: A method for efficient isotopic labeling of recombinant proteins
  publication-title: J Biomol NMR
  doi: 10.1023/A:1011254402785
– volume: 584
  start-page: 469
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Positive selection on apoptosis related genes
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.12.022
– volume: 1
  start-page: e35
  year: 2005
  ident: e_1_3_4_23_2
  article-title: Pervasive adaptive evolution in primate seminal proteins
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0010035
– volume: 319
  start-page: 209
  year: 2002
  ident: e_1_3_4_34_2
  article-title: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00241-3
– volume: 281
  start-page: 710
  year: 1998
  ident: e_1_3_4_13_2
  article-title: Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein
  publication-title: Science
  doi: 10.1126/science.281.5377.710
– volume: 508
  start-page: 483
  year: 2014
  ident: e_1_3_4_25_2
  article-title: Juno is the egg Izumo receptor and is essential for mammalian fertilization
  publication-title: Nature
  doi: 10.1038/nature13203
– volume: 331
  start-page: 281
  year: 2003
  ident: e_1_3_4_45_2
  article-title: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(03)00670-3
– volume: 6
  start-page: e22477
  year: 2011
  ident: e_1_3_4_46_2
  article-title: Benchmarking and analysis of protein docking performance in Rosetta v3.2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022477
– volume: 19
  start-page: 264
  year: 2004
  ident: e_1_3_4_3_2
  article-title: Quantitative genetic models of sexual selection
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2004.03.003
– volume: 92
  start-page: 227
  year: 1982
  ident: e_1_3_4_7_2
  article-title: A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(82)90167-1
– volume: 56
  start-page: 34
  year: 2000
  ident: e_1_3_4_18_2
  article-title: 1.35 and 2.07 Å resolution structures of the red abalone sperm lysin monomer and dimer reveal features involved in receptor binding
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444999014626
– volume: 243
  start-page: 54
  year: 2014
  ident: e_1_3_4_39_2
  article-title: A practical implicit solvent potential for NMR structure calculation
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2014.03.011
– volume: 273
  start-page: 283
  year: 1997
  ident: e_1_3_4_33_2
  article-title: Torsion angle dynamics for NMR structure calculation with the new program DYANA
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.1284
– volume: 17
  start-page: 1446
  year: 2000
  ident: e_1_3_4_11_2
  article-title: Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026245
– volume: 32
  start-page: 859
  year: 2015
  ident: e_1_3_4_28_2
  article-title: Assortative mating drives linkage disequilibrium between sperm and egg recognition protein loci in the sea urchin Strongylocentrotus purpuratus
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv010
– volume: 130
  start-page: 1117
  year: 1995
  ident: e_1_3_4_12_2
  article-title: Crystal structure and subunit dynamics of the abalone sperm lysin dimer: Egg envelopes dissociate dimers, the monomer is the active species
  publication-title: J Cell Biol
  doi: 10.1083/jcb.130.5.1117
– volume: 76
  start-page: 185
  year: 1980
  ident: e_1_3_4_8_2
  article-title: Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(80)90371-1
– volume: 123
  start-page: 9843
  year: 2001
  ident: e_1_3_4_40_2
  article-title: Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy
  publication-title: J Am Chem Soc
  doi: 10.1021/ja011241p
– volume-title: Biomolecular Crystallography: Principles, Practices, and Applications to Structural Biology
  year: 2009
  ident: e_1_3_4_20_2
  doi: 10.1201/9780429258756
– volume: 214
  start-page: 151
  year: 1999
  ident: e_1_3_4_19_2
  article-title: Interspecies chimeric sperm lysins identify regions mediating species-specific recognition of the abalone egg vitelline envelope
  publication-title: Dev Biol
  doi: 10.1006/dbio.1999.9411
– volume: 113
  start-page: 1552
  year: 2016
  ident: e_1_3_4_9_2
  article-title: A structured interdomain linker directs self-polymerization of human uromodulin
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1519803113
– volume: 296
  start-page: 1225
  year: 2000
  ident: e_1_3_4_17_2
  article-title: The high resolution crystal structure of green abalone sperm lysin: Implications for species-specific binding of the egg receptor
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3533
– volume: 49
  start-page: 53
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Residual dipolar couplings: Are multiple independent alignments always possible?
  publication-title: J Biomol NMR
  doi: 10.1007/s10858-010-9457-1
– volume: 382
  start-page: 1014
  year: 2008
  ident: e_1_3_4_41_2
  article-title: The affinity of Ets-1 for DNA is modulated by phosphorylation through transient interactions of an unstructured region
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.07.064
– volume: 94
  start-page: 7799
  year: 1997
  ident: e_1_3_4_21_2
  article-title: Evolution by the birth-and-death process in multigene families of the vertebrate immune system
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.15.7799
– volume: 100
  start-page: 1
  year: 2015
  ident: e_1_3_4_29_2
  article-title: Pheromone isoform composition differentially affects female behaviour in the red-legged salamander, Plethodon shermani
  publication-title: Anim Behav
  doi: 10.1016/j.anbehav.2014.10.019
– volume: 22
  start-page: 2143
  year: 2013
  ident: e_1_3_4_24_2
  article-title: Structure and evolution of the sea star egg receptor for sperm bindin
  publication-title: Mol Ecol
  doi: 10.1111/mec.12251
– volume: 31
  start-page: 1325
  year: 2015
  ident: e_1_3_4_32_2
  article-title: NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu830
– volume: 166
  start-page: 368
  year: 1987
  ident: e_1_3_4_31_2
  article-title: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(87)90587-2
– volume: 160
  start-page: 65
  year: 2003
  ident: e_1_3_4_36_2
  article-title: The Xplor-NIH NMR molecular structure determination package
  publication-title: J Magn Reson
  doi: 10.1016/S1090-7807(02)00014-9
– volume: 5
  start-page: e1000392
  year: 2009
  ident: e_1_3_4_42_2
  article-title: Fast statistical alignment
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1000392
– volume: 24
  start-page: 1586
  year: 2007
  ident: e_1_3_4_44_2
  article-title: PAML 4: Phylogenetic analysis by maximum likelihood
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 288
  start-page: 111
  year: 2002
  ident: e_1_3_4_14_2
  article-title: Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin
  publication-title: Gene
  doi: 10.1016/S0378-1119(02)00459-6
– volume: 78
  start-page: 3721
  year: 1981
  ident: e_1_3_4_2_2
  article-title: Models of speciation by sexual selection on polygenic traits
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.78.6.3721
– volume: 23
  start-page: 1871
  year: 2007
  ident: e_1_3_4_26_2
  article-title: Isolated ZP-N domains constitute the N-terminal extensions of zona pellucida proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm265
– volume: 3
  start-page: 137
  year: 2002
  ident: e_1_3_4_4_2
  article-title: The rapid evolution of reproductive proteins
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg733
– volume: 84
  start-page: 4
  year: 2016
  ident: e_1_3_4_16_2
  article-title: Critical assessment of methods of protein structure prediction: Progress and new directions in round XI
  publication-title: Proteins
  doi: 10.1002/prot.25064
– volume: 9
  start-page: e1003287
  year: 2013
  ident: e_1_3_4_48_2
  article-title: Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003287
– volume: 27
  start-page: 193
  year: 2010
  ident: e_1_3_4_47_2
  article-title: ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp221
– volume: 135
  start-page: 12
  year: 2016
  ident: e_1_3_4_5_2
  article-title: From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2015.06.007
– volume: 94
  start-page: 6724
  year: 1997
  ident: e_1_3_4_10_2
  article-title: The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.13.6724
– volume-title: Evolution
  year: 2007
  ident: e_1_3_4_6_2
– volume: 5
  start-page: e1000570
  year: 2009
  ident: e_1_3_4_15_2
  article-title: Coevolution of interacting fertilization proteins
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000570
– volume: 64
  start-page: 785
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Simultaneous positive and negative frequency-dependent selection on sperm bindin, a gamete recognition protein in the sea urchin Strongylocentrotus purpuratus
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00850.x
– volume: 30
  start-page: 1312
  year: 2014
  ident: e_1_3_4_43_2
  article-title: RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 56
  start-page: 227
  year: 2013
  ident: e_1_3_4_35_2
  article-title: Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks
  publication-title: J Biomol NMR
  doi: 10.1007/s10858-013-9741-y
– reference: 9192632 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6724-9
– reference: 20026333 - FEBS Lett. 2010 Feb 5;584(3):469-76
– reference: 10666624 - Acta Crystallogr D Biol Crystallogr. 2000 Jan;56(Pt 1):34-41
– reference: 19478997 - PLoS Comput Biol. 2009 May;5(5):e1000392
– reference: 17510169 - Bioinformatics. 2007 Aug 1;23 (15):1871-4
– reference: 12051947 - J Mol Biol. 2002 May 24;319(1):209-27
– reference: 26074353 - J Proteomics. 2016 Mar 1;135:12-25
– reference: 19629160 - PLoS Genet. 2009 Jul;5(7):e1000570
– reference: 24747742 - J Magn Reson. 2014 Jun;243:54-64
– reference: 23432510 - Mol Ecol. 2013 Apr;22(8):2143-56
– reference: 11583547 - J Am Chem Soc. 2001 Oct 10;123(40):9843-7
– reference: 21829626 - PLoS One. 2011;6(8):e22477
– reference: 9685267 - Science. 1998 Jul 31;281(5377):710-2
– reference: 11430757 - J Biomol NMR. 2001 May;20(1):71-5
– reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
– reference: 25618458 - Mol Biol Evol. 2015 Apr;32(4):859-70
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 24739963 - Nature. 2014 Apr 24;508(7497):483-7
– reference: 27171127 - Proteins. 2016 Sep;84 Suppl 1:4-14
– reference: 11836507 - Nat Rev Genet. 2002 Feb;3(2):137-44
– reference: 16593036 - Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721-5
– reference: 2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79
– reference: 9367762 - J Mol Biol. 1997 Oct 17;273(1):283-98
– reference: 16701266 - Trends Ecol Evol. 2004 May;19(5):264-71
– reference: 7380091 - Dev Biol. 1980 Apr;76(1):185-202
– reference: 21184138 - J Biomol NMR. 2011 Jan;49(1):53-60
– reference: 19767347 - Mol Biol Evol. 2010 Jan;27(1):193-203
– reference: 10491264 - Dev Biol. 1999 Oct 1;214(1):151-9
– reference: 23728592 - J Biomol NMR. 2013 Jul;56(3):227-41
– reference: 10698629 - J Mol Biol. 2000 Mar 10;296(5):1225-34
– reference: 25505092 - Bioinformatics. 2015 Apr 15;31(8):1325-7
– reference: 26811476 - Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1552-7
– reference: 12565051 - J Magn Reson. 2003 Jan;160(1):65-73
– reference: 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3
– reference: 12875852 - J Mol Biol. 2003 Aug 1;331(1):281-99
– reference: 7657696 - J Cell Biol. 1995 Sep;130(5):1117-25
– reference: 19796148 - Evolution. 2010 Mar 1;64(3):785-97
– reference: 16170411 - PLoS Genet. 2005 Sep;1(3):e35
– reference: 18692067 - J Mol Biol. 2008 Oct 17;382(4):1014-30
– reference: 12034500 - Gene. 2002 Apr 17;288(1-2):111-7
– reference: 7106382 - Dev Biol. 1982 Jul;92(1):227-39
– reference: 23408913 - PLoS Genet. 2013;9(2):e1003287
– reference: 11018152 - Mol Biol Evol. 2000 Oct;17(10):1446-55
SSID ssj0009580
Score 2.3165553
Snippet Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain...
The fertilization of eggs by sperm is a critical biological process for nearly all sexually reproducing organisms to propagate their genetic information, yet...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1310
SubjectTerms Binding
Biochemistry
Biological activity
Biological evolution
Biological Sciences
Clustering
Crystal structure
Crystallography
Evolution
Haliotis rufescens
Molecular dynamics
Mollusks
Mutagenesis
NMR
Nuclear magnetic resonance
Physiochemistry
Positive selection
Proteins
Shellfish
Site-directed mutagenesis
Sperm
Title Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution
URI https://www.jstor.org/stable/26507178
https://www.ncbi.nlm.nih.gov/pubmed/29348201
https://www.proquest.com/docview/2008883982
https://www.proquest.com/docview/1989604523
https://pubmed.ncbi.nlm.nih.gov/PMC5819389
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwLWiROBRZDl4_18cKtaqghAoSKTdrvVmrRa1T4aQV_Ap-MjP7sJMSpMLFitbrtZP5MjsznvmGkDdKhhJ2LhWEUuRBUkV1UDEMw8lIyIxnSgosTv40yo4nyYdpOh0Mfq1kLS0X1VD-3FhX8j9ShTGQK1bJ_oNku0VhAD6DfOEIEobjnWTsYlq-YYHFdwFg-yH396WPVCON_wMT1Fq_mV8rJNdo0RXHDCywOC9dY1x_ZrrS66SO7-LqHJkD5tgF01fX9g6rNuxpt-e1LsNg5EKKB32BitUarR_4p6O-3TGoIZCj0XVwV9X0fZ_HSyRUNpGCVvRx2o9YAq83iy9IP33RV098vRGueE0HjpR9y2XDGIzrzOdsRfOC4RJkiekdOlQbxpy6NuWfFperypfFJkP2j10B1Bi2Mm5EO2R5WIAJ4xZZ498efS6PJicn5fhwOr5H7kfgeMQu_tPROHPDb2EfzJFF5fG7W8uv2Tkm1XWTE3M7F3fFuBk_Ig-tV0IPDMS2yUA1j8m2kyDdt-Tkb5-Qbw5ztMMcnddUY45qzFGDOaoxRx3mKGKOdpijDnN4scYctZijHeaeksnR4fj9cWD7dQQySeJFwGaCiYSJOM-zOk3jKpzl4C-wWRQKMLszzoQCizuUdVTwjAtVS1bBF4-KPKzrqo53yFYzb9RzQjOZFzyZqbCKRBLHXNR1WrFMiBp2EMULjwzdr1tKS2aPPVUuSp1UkccliqPsxeGR_e6CK8Pj8vepO1pc3bwoQ6cp5x7Zc_IrrRZodRtXDl4GjzzyujsNOhpfvIlGzZewdsGRAymNYo88M-LuFy-QXipkHsnXgNBNQP739TPN-ZnmgU_Bmgd_48Ud7rtLHvR_uj2yBQhRL8GaXlSvNMB_A3RU0c0
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+structure+of+sperm+lysin+yields+novel+insights+into+molecular+dynamics+of+rapid+protein+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wilburn%2C+Damien+B&rft.au=Tuttle%2C+Lisa+M&rft.au=Klevit%2C+Rachel+E&rft.au=Swanson%2C+Willie+J&rft.date=2018-02-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=6&rft.spage=1310&rft_id=info:doi/10.1073%2Fpnas.1709061115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon