Cover

Loading…
Abstract Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
AbstractList ABSTRACT Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2 , which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2 Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7 , and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2 . Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2 Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae .
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein alpha subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2 Delta / Delta mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2 Delta / Delta mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2 , which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2 Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7 , and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2 . Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2 Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae .
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
Author Sarah L. J. Michel
Jennifer A. Schwartz
Jamie L. Michalek
Gurjinder S. Jandu
Karen T. Olarte
Vincent M. Bruno
Author_xml – sequence: 1
  givenname: Jennifer A
  surname: Schwartz
  fullname: Schwartz, Jennifer A
  organization: Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
– sequence: 2
  givenname: Karen T
  surname: Olarte
  fullname: Olarte, Karen T
– sequence: 3
  givenname: Jamie L
  surname: Michalek
  fullname: Michalek, Jamie L
– sequence: 4
  givenname: Gurjinder S
  surname: Jandu
  fullname: Jandu, Gurjinder S
– sequence: 5
  givenname: Sarah L J
  surname: Michel
  fullname: Michel, Sarah L J
– sequence: 6
  givenname: Vincent M
  surname: Bruno
  fullname: Bruno, Vincent M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23584994$$D View this record in MEDLINE/PubMed
BookMark eNpVkM1Lw0AQxRep2FY9eZccPAiSul_JZi9CCbUKgiL1vGw2k3Y1zdZsova_N7W16GXmwfx4b3hD1KtcBQidETwihCbXk3SEMeM8JPQADUjEolCKJO7ttUj6aOj9K8YkkoIdoT5lUcKl5AMUP8O8LXVjXRW4IkjdagV1MHNf1thmHWTrINVVbnMd6DKzRlc-mD6N6Qk6LHTp4XS3j9HL7WSW3oUPj9P7dPwQGs5ZExJjiswkcVHEgE0uspwmWUZi0U3Ki0hikUvCeQ4JljEWBAotRSeAGQ1as2N0s_VdtdkScgNVU-tSrWq71PVaOW3V_0tlF2ruPhSLpeCCdAaXO4PavbfgG7W03kBZ6gpc6xVhUkrKaEQ79GqLmtp5X0OxjyFYbZpWk1T9NK3Ihj7_-9me_a22Ay62wMLOF5-2BqX9UkH7tknvHJRQMuLsGytmh2g
CitedBy_id crossref_primary_10_1016_j_jinorgbio_2021_111424
crossref_primary_10_3389_fmicb_2020_586940
crossref_primary_10_1073_pnas_1513447112
crossref_primary_10_1186_s13065_023_01037_7
crossref_primary_10_1007_s00775_016_1335_1
crossref_primary_10_3390_ijms20010175
crossref_primary_10_1128_aac_02105_21
crossref_primary_10_1016_j_nutres_2024_02_010
crossref_primary_10_1016_j_ibiod_2018_12_001
crossref_primary_10_1016_j_ibiod_2019_104769
crossref_primary_10_1016_j_mib_2016_05_013
crossref_primary_10_3390_pharmaceutics13020165
crossref_primary_10_1002_jobm_201900240
crossref_primary_10_1007_s11356_017_9817_4
crossref_primary_10_1093_femsre_fux050
crossref_primary_10_1093_g3journal_jkad070
crossref_primary_10_1080_21505594_2018_1496774
crossref_primary_10_1371_journal_pgen_1007911
crossref_primary_10_3389_fmicb_2024_1383737
crossref_primary_10_3389_fmicb_2021_771878
crossref_primary_10_1016_j_celrep_2017_04_019
Cites_doi 10.1099/mic.0.26172-0
10.1111/j.1749-6632.1992.tb43836.x
10.1101/gr.109553.110
10.1091/mbc.e04-09-0780
10.1111/j.1365-2958.2006.05367.x
10.1073/pnas.85.5.1374
10.1099/mic.0.27004-0
10.1002/yea.1892
10.1074/jbc.272.25.15951
10.1128/mcb.8.7.2745-2752.1988
10.1074/jbc.M109.070201
10.1128/EC.3.4.919-931.2004
10.1074/jbc.M110.145953
10.1073/pnas.162491399
10.1371/journal.pgen.1000783
10.1126/science.285.5429.901
10.1093/emboj/17.12.3326
10.1099/mic.0.2007/013441-0
10.1074/jbc.272.21.13786
10.1128/EC.1.6.865-874.2002
10.1128/mcb.9.9.4091-4095.1989
10.1002/j.1460-2075.1996.tb00720.x
10.1073/pnas.81.2.337
10.1074/jbc.270.1.128
10.1101/gad.11.23.3206
10.1006/meth.1996.0423
10.1016/j.bbamcr.2012.02.011
10.1073/pnas.1009261108
10.1074/jbc.C200203200
10.1111/j.1462-5822.2004.00476.x
10.1128/mcb.9.2.421-429.1989
10.1073/pnas.94.11.5550
10.1128/MCB.21.9.3179-3191.2001
10.1021/cr900104z
10.1128/JB.182.17.4899-4905.2000
10.1128/iai.62.7.2849-2856.1994
10.1074/jbc.272.28.17711
10.1073/pnas.97.7.3520
10.1111/j.1574-6968.2011.02386.x
ContentType Journal Article
Copyright Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
Copyright_xml – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U7
C1K
M7N
5PM
DOI 10.1128/EC.00344-12
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Toxicology Abstracts
Environmental Sciences and Pollution Management
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
MEDLINE
Toxicology Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 961
ExternalDocumentID 10_1128_EC_00344_12
23584994
eukcell_12_7_954
Genre Journal Article
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
AAYXX
CITATION
7U7
C1K
M7N
5PM
ID FETCH-LOGICAL-c443t-1ccfbc86ff6e0cd7bd28bb1678bb24f5907d9144de8096071efa97607e3caeaa3
IEDL.DBID RPM
ISSN 1535-9778
1535-9786
IngestDate Tue Sep 17 21:20:14 EDT 2024
Fri Oct 25 04:48:24 EDT 2024
Fri Aug 23 00:31:49 EDT 2024
Sat Sep 28 08:02:17 EDT 2024
Wed May 18 15:27:30 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-1ccfbc86ff6e0cd7bd28bb1678bb24f5907d9144de8096071efa97607e3caeaa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Present address: Jennifer A. Schwartz, Profectus BioSciences, Inc., Baltimore, Maryland, USA.
OpenAccessLink https://ec.asm.org/content/eukcell/12/7/954.full.pdf
PMID 23584994
PQID 1399923252
PQPubID 23462
PageCount 8
ParticipantIDs highwire_asm_eukcell_12_7_954
pubmed_primary_23584994
proquest_miscellaneous_1399923252
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697471
crossref_primary_10_1128_EC_00344_12
PublicationCentury 2000
PublicationDate 20130701
2013-Jul
2013-07-00
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 20130701
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Eukaryotic Cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2013
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 2830616 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1374-8
16987174 - Mol Microbiol. 2006 Oct;62(1):100-19
19824702 - Chem Rev. 2009 Oct;109(10):4760-79
20810668 - Genome Res. 2010 Oct;20(10):1451-8
7814363 - J Biol Chem. 1995 Jan 6;270(1):128-34
15673611 - Mol Biol Cell. 2005 Apr;16(4):1971-86
22387373 - Biochim Biophys Acta. 2012 Sep;1823(9):1580-93
6364141 - Proc Natl Acad Sci U S A. 1984 Jan;81(2):337-41
15302825 - Eukaryot Cell. 2004 Aug;3(4):919-31
9188496 - J Biol Chem. 1997 Jun 20;272(25):15951-8
9628870 - EMBO J. 1998 Jun 15;17(12):3326-41
20041210 - PLoS Genet. 2009 Dec;5(12):e1000783
22092765 - FEMS Microbiol Lett. 2011 Nov;324(1):64-72
9159110 - Proc Natl Acad Sci U S A. 1997 May 27;94(11):5550-5
2651899 - Mol Cell Biol. 1989 Feb;9(2):421-9
2674688 - Mol Cell Biol. 1989 Sep;9(9):4091-5
8670854 - EMBO J. 1996 Jul 15;15(14):3515-23
19808669 - J Biol Chem. 2009 Dec 4;284(49):33949-56
12370430 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14298-302
15760450 - Cell Microbiol. 2005 Apr;7(4):499-510
9073572 - Methods. 1997 Mar;11(3):289-99
10436161 - Science. 1999 Aug 6;285(5429):901-6
9153234 - J Biol Chem. 1997 May 23;272(21):13786-92
20534583 - J Biol Chem. 2010 Aug 13;285(33):25259-68
12011036 - J Biol Chem. 2002 Jul 5;277(27):23981-4
9211922 - J Biol Chem. 1997 Jul 11;272(28):17711-8
21823165 - Yeast. 2011 Sep;28(9):629-44
9389652 - Genes Dev. 1997 Dec 1;11(23):3206-17
10737803 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3520-5
11287622 - Mol Cell Biol. 2001 May;21(9):3179-91
12477787 - Eukaryot Cell. 2002 Dec;1(6):865-74
12777486 - Microbiology. 2003 Jun;149(Pt 6):1461-74
15256562 - Microbiology. 2004 Jul;150(Pt 7):2197-208
3902832 - J Biol Chem. 1985 Nov 25;260(27):14464-70
1288347 - Ann N Y Acad Sci. 1992 Nov 30;671:484-6
10940034 - J Bacteriol. 2000 Sep;182(17):4899-905
21205886 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1621-6
3043194 - Mol Cell Biol. 1988 Jul;8(7):2745-52
8005675 - Infect Immun. 1994 Jul;62(7):2849-56
18451059 - Microbiology. 2008 May;154(Pt 5):1502-12
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
Winge DR (e_1_3_2_34_2) 1985; 260
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
Borkow G (e_1_3_2_4_2) 2009; 3
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_32_2
  doi: 10.1099/mic.0.26172-0
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1749-6632.1992.tb43836.x
– ident: e_1_3_2_26_2
  doi: 10.1101/gr.109553.110
– ident: e_1_3_2_35_2
  doi: 10.1091/mbc.e04-09-0780
– ident: e_1_3_2_27_2
  doi: 10.1111/j.1365-2958.2006.05367.x
– ident: e_1_3_2_41_2
  doi: 10.1073/pnas.85.5.1374
– ident: e_1_3_2_15_2
  doi: 10.1099/mic.0.27004-0
– ident: e_1_3_2_14_2
  doi: 10.1002/yea.1892
– ident: e_1_3_2_9_2
  doi: 10.1074/jbc.272.25.15951
– ident: e_1_3_2_24_2
  doi: 10.1128/mcb.8.7.2745-2752.1988
– ident: e_1_3_2_6_2
  doi: 10.1074/jbc.M109.070201
– ident: e_1_3_2_36_2
  doi: 10.1128/EC.3.4.919-931.2004
– ident: e_1_3_2_5_2
  doi: 10.1074/jbc.M110.145953
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.162491399
– ident: e_1_3_2_25_2
  doi: 10.1371/journal.pgen.1000783
– volume: 260
  start-page: 14464
  year: 1985
  ident: e_1_3_2_34_2
  article-title: Yeast metallothionein
  publication-title: Sequence and metal-binding properties. J. Biol. Chem.
  contributor:
    fullname: Winge DR
– ident: e_1_3_2_45_2
  doi: 10.1126/science.285.5429.901
– ident: e_1_3_2_39_2
  doi: 10.1093/emboj/17.12.3326
– ident: e_1_3_2_16_2
  doi: 10.1099/mic.0.2007/013441-0
– ident: e_1_3_2_8_2
  doi: 10.1074/jbc.272.21.13786
– ident: e_1_3_2_37_2
  doi: 10.1128/EC.1.6.865-874.2002
– ident: e_1_3_2_22_2
  doi: 10.1128/mcb.9.9.4091-4095.1989
– ident: e_1_3_2_12_2
  doi: 10.1002/j.1460-2075.1996.tb00720.x
– ident: e_1_3_2_33_2
  doi: 10.1073/pnas.81.2.337
– ident: e_1_3_2_18_2
  doi: 10.1074/jbc.270.1.128
– ident: e_1_3_2_29_2
– ident: e_1_3_2_38_2
  doi: 10.1101/gad.11.23.3206
– ident: e_1_3_2_10_2
  doi: 10.1006/meth.1996.0423
– ident: e_1_3_2_30_2
– ident: e_1_3_2_3_2
  doi: 10.1016/j.bbamcr.2012.02.011
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.1009261108
– ident: e_1_3_2_19_2
  doi: 10.1074/jbc.C200203200
– ident: e_1_3_2_28_2
– ident: e_1_3_2_44_2
  doi: 10.1111/j.1462-5822.2004.00476.x
– ident: e_1_3_2_23_2
  doi: 10.1128/mcb.9.2.421-429.1989
– ident: e_1_3_2_17_2
  doi: 10.1073/pnas.94.11.5550
– volume: 3
  start-page: 272
  year: 2009
  ident: e_1_3_2_4_2
  article-title: Copper, an ancient remedy returning to fight microbial, fungal and viral infections
  publication-title: Curr. Chem. Biol.
  contributor:
    fullname: Borkow G
– ident: e_1_3_2_40_2
  doi: 10.1128/MCB.21.9.3179-3191.2001
– ident: e_1_3_2_2_2
  doi: 10.1021/cr900104z
– ident: e_1_3_2_20_2
  doi: 10.1128/JB.182.17.4899-4905.2000
– ident: e_1_3_2_42_2
  doi: 10.1128/iai.62.7.2849-2856.1994
– ident: e_1_3_2_13_2
  doi: 10.1074/jbc.272.28.17711
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.97.7.3520
– ident: e_1_3_2_43_2
  doi: 10.1111/j.1574-6968.2011.02386.x
SSID ssj0015973
Score 2.2127602
Snippet Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in...
ABSTRACT Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to...
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 954
SubjectTerms Cadmium - toxicity
Candida albicans
Candida albicans - cytology
Candida albicans - drug effects
Candida albicans - genetics
Candida albicans - metabolism
Cisplatin - pharmacology
Copper - toxicity
Cryptococcus neoformans
Cyclic AMP - pharmacology
Cyclic AMP-Dependent Protein Kinases - metabolism
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Deletion
Gene Expression Regulation, Fungal - drug effects
Genes, Fungal - genetics
GTP-Binding Protein alpha Subunits - genetics
GTP-Binding Protein alpha Subunits - metabolism
Homeostasis - drug effects
Homeostasis - genetics
Iron - toxicity
Saccharomyces cerevisiae
Signal Transduction - drug effects
Signal Transduction - genetics
Silver - toxicity
Title Regulation of Copper Toxicity by Candida albicans GPA2
URI http://ec.asm.org/content/12/7/954.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23584994
https://search.proquest.com/docview/1399923252
https://pubmed.ncbi.nlm.nih.gov/PMC3697471
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD44QfBFvDtvRPC123Lp7VHKVARFRGH4Epo0waFrh9tA_70naStOfPKtkKYJX06T7yPnAnDODY0NozqwAx0HIil0gFolDQp3RRerguHsnbfFXXT9JG5G4WgFwjYWxjvtazXulW-TXjl-8b6V04nut35i_fvbjEeOBdN-BzpooK1Eb64OkCHzOklqiMPGSROUh_twf5j1fIq7gLoiNi5IFPm-WD6R2izBfzHO346TP06iy03YaCgkuainugUrptyGtbqo5Cc-PVf-aQeih7rQPEJPKkuyajo17-Sx-hhr5N5EfZLMBbUUOcnflNsOZ-Tq_oLtwtPl8DG7Dpo6CYEWgs8DqrVVOomsjcxAFw7hRCmKx5BSTNgQ9W-RonAqTOIES0yNzZGFDGLDdW7ynO_BalmV5gAILhYPOaptbphI6EAJi33xR7epTRNtu3DeYiWndToM6WUES-Qwkx5dSVkXTlocZT6bSLN4dfcQ2CJjmYaiC2ctuBLN2bXlpakWM4mENEXOyUL8xn4N9vdA7YJ1IV5ahu8XXKrs5Ra0IJ8yu7GYw3_3PIJ15gthOEfdY1idvy_MCdKRuTqFztWInnoj_AKkfd8I
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qRQgu7MsABSP1mky8ZDtW0ZQB2qpCU1RxsWLHFqN2klFnRqL8ep6duGIqLnCL9OI41ufl--S3AOxzQ3PDqI5sovNIFI2OUKuUUeOu6HLVMPx7521xkk3PxOfz9HwH0hAL4532tZrH7eUibuc_vG_lcqHHwU9sfHpc8cyxYDq-A3dxvSYiiPTh8gA5Mu_TpKbYcV4MYXm4E48nVeyT3EXUlbFxYaLI-MX2mRTyBP-Nc952nfzjLDp8BN_CKHoXlIt4s1ax_nUrweM_D_MxPBzYKTnozU9gx7RP4V5fr_Ian753_ukZZF_7GvaIKuksqbrl0lyRWfdzrpHWE3VNKhcv09SkvlRup12Rj6cH7DmcHU5m1TQaSjBEWgi-jqjWVukiszYziW4ceIVSFE84pZiwKUrrpkRN1pjCaaGcGlsjwUlyw3Vt6pq_gN22a80rIDgPeMpRyHPDREETJSy2xT3ElrYstB3BfgBBLvtMG9IrFFbISSU9bJKyEewFgGS9WkizuXBXHGiRuSxTMYIPATWJK8XZ6tZ0m5VErlsinWUpfuNlj-JNR2EmjCDfwvfmBZeFe9uCqPls3ANKr_-75Xu4P50dH8mjTydf3sAD5uttOH_gt7C7vtqYPWQ9a_XOz_HfNscAIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6CIhAX9sIABSP1msVLtmMVZihbNUKtVPVixY4tRu0kUWdGovx6np2k6lScerNkO471efk-vef3APa5oZlhVAc21lkg8loHqFWKoHYmukzVDP_eeVscpYcn4ttpcnoj1Zd32tdqETYXy7BZ_Pa-ld1SR6OfWDT_WfLUsWAadbWN7sMD3LNxOgr1wYCAPJn3oVITHDzLh6d5eBpH0zL0ge4C6lLZuKeiyPrF9r00xgr-H--87T554z6aPYWzcSa9G8p5uFmrUP-9FeTxTlN9Bk8GlkoO-ibP4Z5pXsDDPm_lFZbOWl96CemvPpc9oktaS8q268wlOW7_LDTSe6KuSOnezdQVqS6UO3FX5Mv8gL2Ck9n0uDwMhlQMgRaCrwOqtVU6T61NTaxrB2KuFMWbTikmbIISuy5Qm9Umd5ooo8ZWSHTizHBdmariu7DTtI15AwTXA084CnpumMhprITFvniW2MIWubYT2B-BkF0fcUN6pcJyOS2lh05SNoG9ESRZrZbSbM6dqQNrZCaLREzg04icxB3j6qrGtJuVRM5bIK1lCX7jdY_k9UDjaphAtoXxdQMXjXu7BpHzUbkHpN7euedHeDT_PJM_vh59fwePmU-74dyC38PO-nJj9pD8rNUHv8z_AVIYAqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Copper+Toxicity+by+Candida+albicans+GPA2&rft.jtitle=Eukaryotic+Cell&rft.au=Jennifer+A.+Schwartz&rft.au=Karen+T.+Olarte&rft.au=Jamie+L.+Michalek&rft.au=Gurjinder+S.+Jandu&rft.date=2013-07-01&rft.pub=American+Society+for+Microbiology&rft.issn=1535-9778&rft.eissn=1535-9786&rft.volume=12&rft.issue=7&rft.spage=954&rft_id=info:doi/10.1128%2FEC.00344-12&rft_id=info%3Apmid%2F23584994&rft.externalDBID=n%2Fa&rft.externalDocID=eukcell_12_7_954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon