Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8⁺ T cell stemness and antitumor immunity

Interleukin (IL)-2 and IL-21 dichotomously shape CD8⁺ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (TSCM) and antitumor responses. Here we investigated the role of metabolic pr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 11; pp. 6047 - 6055
Main Authors Hermans, Dalton, Gautam, Sanjivan, García-Cañaveras, Juan C., Gromer, Daniel, Mitra, Suman, Spolski, Rosanne, Li, Peng, Christensen, Stephen, Nguyen, Rosa, Lin, Jian-Xin, Oh, Jangsuk, Du, Ning, Veenbergen, Sharon, Fioravanti, Jessica, Ebina-Shibuya, Risa, Bleck, Christopher, Neckers, Leonard M., Rabinowitz, Joshua D., Gattinoni, Luca, Leonard, Warren J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interleukin (IL)-2 and IL-21 dichotomously shape CD8⁺ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (TSCM) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2–induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1. While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21–induced metabolism but caused major transcriptomic changes, including the suppression of IL-21–induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of TSCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
AbstractList Interleukin (IL)-2 and IL-21 dichotomously shape CD8⁺ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (TSCM) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2–induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1. While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21–induced metabolism but caused major transcriptomic changes, including the suppression of IL-21–induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of TSCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Interleukin (IL)-2 and IL-21 dichotomously shape CD8 + T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (T SCM ) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2–induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1 . While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21–induced metabolism but caused major transcriptomic changes, including the suppression of IL-21–induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of T SCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Interleukin (IL)-2 and IL-21 dichotomously shape CD8+ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (TSCM) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2–induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1. While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21–induced metabolism but caused major transcriptomic changes, including the suppression of IL-21–induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of TSCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Interleukin (IL)-2 and IL-21 dichotomously shape CD8 T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (T ) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2-induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as and While deletion of prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21-induced metabolism but caused major transcriptomic changes, including the suppression of IL-21-induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of T cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Current approaches for producing T cells for adoptive immunotherapy for cancer rely on interleukin (IL)-2–based strategies that generate large numbers of tumor-reactive T cells but also drive the cells toward terminal differentiation and exhaustion, thereby diminishing their effectiveness. By characterizing the metabolic effects of IL-2 versus IL-21, a closely related cytokine that expands cells but lacks the detrimental effects of IL-2, we identified a pivotal role of lactate dehydrogenase (LDH) in regulating CD8 + T cell effector differentiation. Remarkably, LDH inhibition combined with IL-21 enhanced the formation of T memory stem cells and mitochondrial fitness while suppressing programs of exhaustion and senescence and markedly enhancing antitumor responses. These findings have potential therapeutic implications. Interleukin (IL)-2 and IL-21 dichotomously shape CD8 + T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (T SCM ) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines. IL-2 promoted effector-like metabolism and aerobic glycolysis, robustly inducing lactate dehydrogenase (LDH) and lactate production, whereas IL-21 maintained a metabolically quiescent state dependent on oxidative phosphorylation. LDH inhibition rewired IL-2–induced effects, promoting pyruvate entry into the tricarboxylic acid cycle and inhibiting terminal effector and exhaustion programs, including mRNA expression of members of the NR4A family of nuclear receptors, as well as Prdm1 and Xbp1 . While deletion of Ldha prevented development of cells with antitumor effector function, transient LDH inhibition enhanced the generation of memory cells capable of triggering robust antitumor responses after adoptive transfer. LDH inhibition did not significantly affect IL-21–induced metabolism but caused major transcriptomic changes, including the suppression of IL-21–induced exhaustion markers LAG3, PD1, 2B4, and TIM3. LDH inhibition combined with IL-21 increased the formation of T SCM cells, resulting in more profound antitumor responses and prolonged host survival. These findings indicate a pivotal role for LDH in modulating cytokine-mediated T cell differentiation and underscore the therapeutic potential of transiently inhibiting LDH during adoptive T cell-based immunotherapy, with an unanticipated cooperative antitumor effect of LDH inhibition and IL-21.
Author Fioravanti, Jessica
Leonard, Warren J.
Rabinowitz, Joshua D.
Lin, Jian-Xin
Ebina-Shibuya, Risa
Neckers, Leonard M.
Veenbergen, Sharon
Gromer, Daniel
Bleck, Christopher
Oh, Jangsuk
Hermans, Dalton
Gattinoni, Luca
Christensen, Stephen
Nguyen, Rosa
Gautam, Sanjivan
García-Cañaveras, Juan C.
Mitra, Suman
Li, Peng
Spolski, Rosanne
Du, Ning
Author_xml – sequence: 1
  givenname: Dalton
  surname: Hermans
  fullname: Hermans, Dalton
– sequence: 2
  givenname: Sanjivan
  surname: Gautam
  fullname: Gautam, Sanjivan
– sequence: 3
  givenname: Juan C.
  surname: García-Cañaveras
  fullname: García-Cañaveras, Juan C.
– sequence: 4
  givenname: Daniel
  surname: Gromer
  fullname: Gromer, Daniel
– sequence: 5
  givenname: Suman
  surname: Mitra
  fullname: Mitra, Suman
– sequence: 6
  givenname: Rosanne
  surname: Spolski
  fullname: Spolski, Rosanne
– sequence: 7
  givenname: Peng
  surname: Li
  fullname: Li, Peng
– sequence: 8
  givenname: Stephen
  surname: Christensen
  fullname: Christensen, Stephen
– sequence: 9
  givenname: Rosa
  surname: Nguyen
  fullname: Nguyen, Rosa
– sequence: 10
  givenname: Jian-Xin
  surname: Lin
  fullname: Lin, Jian-Xin
– sequence: 11
  givenname: Jangsuk
  surname: Oh
  fullname: Oh, Jangsuk
– sequence: 12
  givenname: Ning
  surname: Du
  fullname: Du, Ning
– sequence: 13
  givenname: Sharon
  surname: Veenbergen
  fullname: Veenbergen, Sharon
– sequence: 14
  givenname: Jessica
  surname: Fioravanti
  fullname: Fioravanti, Jessica
– sequence: 15
  givenname: Risa
  surname: Ebina-Shibuya
  fullname: Ebina-Shibuya, Risa
– sequence: 16
  givenname: Christopher
  surname: Bleck
  fullname: Bleck, Christopher
– sequence: 17
  givenname: Leonard M.
  surname: Neckers
  fullname: Neckers, Leonard M.
– sequence: 18
  givenname: Joshua D.
  surname: Rabinowitz
  fullname: Rabinowitz, Joshua D.
– sequence: 19
  givenname: Luca
  surname: Gattinoni
  fullname: Gattinoni, Luca
– sequence: 20
  givenname: Warren J.
  surname: Leonard
  fullname: Leonard, Warren J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32123114$$D View this record in MEDLINE/PubMed
BookMark eNpdkc2OEzEQhC20iM0GzpxAlrhwmd1u2-MZX5BQ-FspEpflbHlmnMRRxg62BxRuvBaPw5PgKEv4ObT60F-VulRX5MIHbwl5inCN0PCbvTfpGhUDgRyxeUBmCAorKRRckBkAa6pWMHFJrlLaAoCqW3hELjlDVngxI2Fp-myypYPdHIYY1rY4Wur8xnUuu-BpOngb1-6bTfSryxt6u6wY0hzoPoYxFOXiTfvz-w96R3u729GU7ehtStT4oUx2eRpDpG4cJ-_y4TF5uDK7ZJ_c7zn59O7t3eJDtfz4_nbxeln1QvBcIbbYt3UNwFcApu9BCNmZplNWDbIHWde2U0OLtWpNg3LFVo0VUsLAOEch-Zy8Ovnup260Q299jman99GNJh50ME7_e_Fuo9fhi26gFSixGLy8N4jh82RT1qNLx4TG2zAlzXgDQtVQ84K--A_dhin6Eu9IKQmclxxzcnOi-hhSinZ1fgZBH8vUxzL1nzKL4vnfGc787_YK8OwEbFMO8XxnUjHFpeK_AA1Dp6g
CitedBy_id crossref_primary_10_1002_ctm2_1614
crossref_primary_10_1146_annurev_immunol_110519_071134
crossref_primary_10_1016_j_intimp_2023_110622
crossref_primary_10_1111_imcb_12551
crossref_primary_10_3389_fimmu_2021_745109
crossref_primary_10_1038_s41573_021_00339_6
crossref_primary_10_3389_fimmu_2023_1137037
crossref_primary_10_3390_cancers13133230
crossref_primary_10_1007_s00262_021_02881_z
crossref_primary_10_1186_s12943_023_01844_5
crossref_primary_10_3389_fimmu_2023_1267816
crossref_primary_10_3390_antib10020017
crossref_primary_10_1016_j_ccell_2023_04_001
crossref_primary_10_1016_j_cytogfr_2022_11_001
crossref_primary_10_3389_fimmu_2023_1063454
crossref_primary_10_1016_j_ejca_2022_11_032
crossref_primary_10_3389_fonc_2023_1253783
crossref_primary_10_1101_cshperspect_a041530
crossref_primary_10_1016_j_ejca_2022_08_034
crossref_primary_10_1186_s12967_020_02672_7
crossref_primary_10_3390_ijms242417422
crossref_primary_10_1016_j_cmet_2023_06_003
crossref_primary_10_1002_JLB_5MR0321_145R
crossref_primary_10_1038_s42003_023_04747_9
crossref_primary_10_1016_j_trecan_2024_03_010
crossref_primary_10_1073_pnas_2319254121
crossref_primary_10_1016_j_canlet_2022_215978
crossref_primary_10_1016_j_biopha_2024_116782
crossref_primary_10_1016_j_biopha_2022_114164
crossref_primary_10_1186_s13045_021_01179_y
crossref_primary_10_1590_1414_431x2022e12320
crossref_primary_10_3390_cancers14010183
crossref_primary_10_1016_j_ymthe_2021_08_003
crossref_primary_10_1038_s41388_022_02312_y
crossref_primary_10_1097_CM9_0000000000002989
crossref_primary_10_1016_j_canlet_2023_216396
crossref_primary_10_3389_fimmu_2023_1264882
crossref_primary_10_1016_j_bbcan_2024_189084
crossref_primary_10_1007_s12094_024_03569_3
crossref_primary_10_3389_fimmu_2022_1016646
crossref_primary_10_3389_fmed_2021_778500
crossref_primary_10_3390_cells11193103
crossref_primary_10_3389_fonc_2021_667715
crossref_primary_10_1186_s12943_021_01464_x
crossref_primary_10_1084_jem_20220686
crossref_primary_10_20517_cdr_2023_60
crossref_primary_10_1007_s13402_022_00667_8
crossref_primary_10_1016_j_lfs_2021_120057
crossref_primary_10_1016_j_canlet_2020_12_021
crossref_primary_10_3390_ijms23115970
crossref_primary_10_3389_fimmu_2023_1121565
crossref_primary_10_3390_cancers15153898
crossref_primary_10_3389_fonc_2021_813897
crossref_primary_10_1038_s41590_023_01536_8
crossref_primary_10_3389_fcell_2022_1013885
crossref_primary_10_1038_s41423_021_00833_2
crossref_primary_10_1038_s41577_021_00537_8
crossref_primary_10_3389_fimmu_2022_900826
crossref_primary_10_1016_j_banm_2021_01_018
crossref_primary_10_3389_fimmu_2021_653605
crossref_primary_10_1186_s13148_020_00971_w
crossref_primary_10_1002_1878_0261_13691
crossref_primary_10_3389_fonc_2021_723888
crossref_primary_10_1016_j_celrep_2021_109210
crossref_primary_10_1007_s00251_021_01248_z
crossref_primary_10_1016_j_clim_2022_109078
crossref_primary_10_1158_2326_6066_CIR_20_0791
crossref_primary_10_4049_jimmunol_2000459
crossref_primary_10_1038_s41419_023_06142_y
crossref_primary_10_1007_s10753_022_01680_7
crossref_primary_10_1021_acs_jmedchem_0c00916
crossref_primary_10_1016_j_ejphar_2023_175991
crossref_primary_10_1111_imr_13356
crossref_primary_10_1016_j_semcancer_2022_12_001
crossref_primary_10_1186_s13046_022_02439_6
crossref_primary_10_3390_cancers13061229
crossref_primary_10_1126_science_ade3697
crossref_primary_10_1016_j_jbc_2023_105488
crossref_primary_10_1084_jem_20221839
crossref_primary_10_1038_s41563_024_01825_z
crossref_primary_10_3390_cells10092334
crossref_primary_10_1111_imm_13575
crossref_primary_10_3389_fonc_2023_1175532
crossref_primary_10_1016_j_cmet_2022_07_012
crossref_primary_10_1016_j_molmed_2024_03_008
crossref_primary_10_1136_jitc_2021_002591
crossref_primary_10_1155_2022_4930932
crossref_primary_10_1016_j_bbrc_2022_03_113
crossref_primary_10_1016_j_fsi_2022_04_041
crossref_primary_10_1158_2326_6066_CIR_20_0561
crossref_primary_10_1186_s12964_023_01354_3
crossref_primary_10_1016_j_copbio_2020_10_011
crossref_primary_10_1016_j_jdermsci_2021_07_007
crossref_primary_10_1016_j_ejphar_2022_175482
crossref_primary_10_1016_j_medj_2024_03_001
crossref_primary_10_1515_biol_2022_0636
crossref_primary_10_1038_s41419_022_04632_z
crossref_primary_10_4049_jimmunol_2300339
crossref_primary_10_1097_CJI_0000000000000402
crossref_primary_10_1038_s42255_020_0216_7
crossref_primary_10_3389_fimmu_2023_1104771
crossref_primary_10_1038_s41586_021_03861_0
crossref_primary_10_1155_2022_9086540
crossref_primary_10_1016_j_semcancer_2022_09_001
crossref_primary_10_1016_j_bcp_2022_115197
crossref_primary_10_3390_cancers13050941
crossref_primary_10_1038_s41423_024_01148_8
crossref_primary_10_3389_fonc_2022_1036477
crossref_primary_10_1126_sciimmunol_adi8217
crossref_primary_10_1039_D0MD00221F
crossref_primary_10_1038_s41573_023_00746_x
crossref_primary_10_3390_jcm10143058
crossref_primary_10_1136_jitc_2020_002155
crossref_primary_10_3389_fonc_2023_1235711
crossref_primary_10_1016_j_cellimm_2024_104816
crossref_primary_10_1016_j_ecoenv_2024_116500
crossref_primary_10_1136_jitc_2020_002157
crossref_primary_10_3390_antib10030025
crossref_primary_10_1097_CCO_0000000000000877
crossref_primary_10_1097_MOH_0000000000000615
crossref_primary_10_1016_j_biopha_2023_114824
crossref_primary_10_1111_jcmm_15780
crossref_primary_10_3389_fimmu_2021_691134
crossref_primary_10_1002_hep_32348
crossref_primary_10_3892_ol_2024_14244
crossref_primary_10_1038_s41577_021_00539_6
crossref_primary_10_1016_j_cellimm_2021_104314
Cites_doi 10.1016/j.immuni.2013.01.004
10.18632/oncotarget.24442
10.1038/nri2922
10.1038/nrd4296
10.1038/s41586-018-0597-x
10.1038/nm.4241
10.1038/s41467-017-01477-5
10.1073/pnas.1301138111
10.1182/blood-2006-10-054973
10.1073/pnas.1620498114
10.1084/jem.20151159
10.1182/blood-2009-09-241398
10.1016/j.immuni.2019.03.028
10.12688/f1000research.12202.1
10.1021/acs.jmedchem.7b00941
10.1016/j.celrep.2015.12.095
10.1126/science.aaf6284
10.1038/nature12297
10.1182/blood-2007-09-113050
10.1172/jci.insight.124405
10.1186/gb-2009-10-3-r25
10.1084/jem.20112607
10.1038/s41586-019-1311-3
10.1093/bioinformatics/btp616
10.1093/nar/gkv468
10.1089/ars.2017.7014
10.15252/embj.201488349
10.1101/cshperspect.a028449
10.1016/j.cell.2017.12.025
10.1016/j.immuni.2009.08.005
10.1111/j.1600-065X.2012.01155.x
10.1038/s41467-018-06841-7
10.1016/j.cell.2014.07.048
10.1021/acs.analchem.7b00396
10.1038/nri.2016.70
10.1158/0008-5472.CAN-19-0217
10.1016/j.immuni.2011.12.007
10.1016/j.immuni.2014.06.005
10.1172/JCI69589
10.1038/s41590-018-0311-z
10.1038/ni.3682
10.1016/j.cell.2016.05.035
10.1038/nature20165
10.1038/s41586-019-1678-1
10.1038/nm.1982
10.1182/blood-2015-11-683847
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 17, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Mar 17, 2020
– notice: 2020
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1920413117
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Virology and AIDS Abstracts
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6055
ExternalDocumentID 10_1073_pnas_1920413117
32123114
26929369
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-1181c855003f00acc0446ba7b9e9d6c0655eb9d81598a716f2f7e4660d2331463
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:57 EDT 2024
Fri Aug 16 21:54:04 EDT 2024
Thu Oct 10 22:17:13 EDT 2024
Fri Dec 06 02:30:21 EST 2024
Sat Sep 28 08:28:57 EDT 2024
Tue Dec 10 23:45:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords LDH
IL-2
immunometabolism
IL-21
adoptive immunotherapy
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-1181c855003f00acc0446ba7b9e9d6c0655eb9d81598a716f2f7e4660d2331463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewers: M.A.C., City of Hope National Medical Center; and T.F., University of Pittsburgh.
2Present address: Unidad de Biomarcadores y Medicina de Precisión, Unidad Analítica, Instituto de Investigación Sanitaria Fundación Hospital La Fe, 46026 Valencia, Spain.
3D.G. and S.M. contributed equally to this work.
Contributed by Warren J. Leonard, January 16, 2020 (sent for review December 9, 2019; reviewed by Michael A. Caligiuri and Toren Finkel)
6Present address: Department of Inflammation and Immunology, Pfizer, Cambridge, MA 02139.
1D.H. and S.G. contributed equally to this work.
Author contributions: D.H., S.G., J.C.G.-C., D.G., S.M., R.S., P.L., R.N., J.-X.L., S.V., J.F., L.M.N., J.D.R., L.G., and W.J.L. designed research; D.H., S.G., J.C.G.-C., D.G., S.M., R.S., P.L., R.N., J.-X.L., J.O., N.D., S.V., J.F., R.E.-S., and C.B. performed research; L.M.N. contributed new reagents/analytic tools; D.H., S.G., J.C.G.-C., D.G., S.M., R.S., P.L., S.C., R.N., J.-X.L., S.V., J.F., C.B., J.D.R., L.G., and W.J.L. analyzed data; and D.H., S.G., J.C.G.-C., D.G., R.S., P.L., J.-X.L., C.B., L.M.N., J.D.R., L.G., and W.J.L. wrote the paper.
4Present address: Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.
5Present address: University of Lille, UMR-S-1172-JPARc-Center de Researche Jean-Pierre Aubert Neuroscience et Cancer, F-59000 Lille, France.
7Present address: Laboratory of Pediatric Gastroenterology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
ORCID 0000-0002-5740-7448
0000-0001-7112-1537
0000-0003-1029-3444
0000-0001-9639-7249
OpenAccessLink https://www.pnas.org/content/pnas/117/11/6047.full.pdf
PMID 32123114
PQID 2379603300
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084161
proquest_miscellaneous_2370495053
proquest_journals_2379603300
crossref_primary_10_1073_pnas_1920413117
pubmed_primary_32123114
jstor_primary_26929369
PublicationCentury 2000
PublicationDate 2020-03-17
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References Zhang L. (e_1_3_4_22_2) 2016; 14
Buck M. D. (e_1_3_4_5_2) 2015; 212
Song M. (e_1_3_4_33_2) 2018; 562
Zeng R. (e_1_3_4_14_2) 2007; 109
Leonard W. J. (e_1_3_4_10_2) 2019; 50
Liu Y. (e_1_3_4_34_2) 2018; 9
Mathis D. (e_1_3_4_1_2) 2011; 11
Bailis W. (e_1_3_4_40_2) 2019; 571
Tran E. (e_1_3_4_7_2) 2017; 18
Loschinski R. (e_1_3_4_23_2) 2018; 9
Patten D. A. (e_1_3_4_24_2) 2014; 33
Langmead B. (e_1_3_4_44_2) 2009; 10
Spolski R. (e_1_3_4_12_2) 2014; 13
Liao W. (e_1_3_4_15_2) 2014; 111
Robinson M. D. (e_1_3_4_45_2) 2010; 26
van der Windt G. J. (e_1_3_4_19_2) 2012; 36
Gautam S. (e_1_3_4_29_2) 2019; 20
Finlay D. K. (e_1_3_4_18_2) 2012; 209
Lu W. (e_1_3_4_41_2) 2018; 28
Welsh R. M. (e_1_3_4_32_2) 2009; 31
Wang R. (e_1_3_4_6_2) 2012; 249
Spolski R. (e_1_3_4_11_2) 2017; 6
Sabatino M. (e_1_3_4_38_2) 2016; 128
Buck M. D. (e_1_3_4_21_2) 2016; 166
Gattinoni L. (e_1_3_4_30_2) 2009; 15
Sukumar M. (e_1_3_4_36_2) 2013; 123
Mognol G. P. (e_1_3_4_31_2) 2017; 114
Wang Y. H. (e_1_3_4_46_2) 2014; 158
O’Sullivan D. (e_1_3_4_20_2) 2014; 41
Lin J. X. (e_1_3_4_43_2) 2017; 8
Zhang D. (e_1_3_4_35_2) 2019; 574
Hanada K. I. (e_1_3_4_28_2) 2019; 4
Lin J. X. (e_1_3_4_9_2) 2018; 10
Gattinoni L. (e_1_3_4_39_2) 2017; 23
O’Neill L. A. (e_1_3_4_2_2) 2016; 16
Kim J. (e_1_3_4_4_2) 2018; 2018
Hinrichs C. S. (e_1_3_4_8_2) 2008; 111
Markley J. C. (e_1_3_4_16_2) 2010; 115
Peng M. (e_1_3_4_37_2) 2016; 354
Yeung C. (e_1_3_4_26_2) 2019; 79
Tyrakis P. A. (e_1_3_4_27_2) 2016; 540
Su X. (e_1_3_4_42_2) 2017; 89
Lee Y. S. (e_1_3_4_3_2) 2018; 172
Metsalu T. (e_1_3_4_47_2) 2015; 43
Rai G. (e_1_3_4_25_2) 2017; 60
Liao W. (e_1_3_4_13_2) 2013; 38
Zeng H. (e_1_3_4_17_2) 2013; 499
References_xml – volume: 38
  start-page: 13
  year: 2013
  ident: e_1_3_4_13_2
  article-title: Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.01.004
  contributor:
    fullname: Liao W.
– volume: 9
  start-page: 13125
  year: 2018
  ident: e_1_3_4_23_2
  article-title: IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24442
  contributor:
    fullname: Loschinski R.
– volume: 11
  start-page: 81
  year: 2011
  ident: e_1_3_4_1_2
  article-title: Immunometabolism: An emerging frontier
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2922
  contributor:
    fullname: Mathis D.
– volume: 13
  start-page: 379
  year: 2014
  ident: e_1_3_4_12_2
  article-title: Interleukin-21: A double-edged sword with therapeutic potential
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4296
  contributor:
    fullname: Spolski R.
– volume: 562
  start-page: 423
  year: 2018
  ident: e_1_3_4_33_2
  article-title: IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
  publication-title: Nature
  doi: 10.1038/s41586-018-0597-x
  contributor:
    fullname: Song M.
– volume: 23
  start-page: 18
  year: 2017
  ident: e_1_3_4_39_2
  article-title: T memory stem cells in health and disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.4241
  contributor:
    fullname: Gattinoni L.
– volume: 8
  start-page: 1320
  year: 2017
  ident: e_1_3_4_43_2
  article-title: Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01477-5
  contributor:
    fullname: Lin J. X.
– volume: 111
  start-page: 3508
  year: 2014
  ident: e_1_3_4_15_2
  article-title: Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1301138111
  contributor:
    fullname: Liao W.
– volume: 109
  start-page: 4135
  year: 2007
  ident: e_1_3_4_14_2
  article-title: The molecular basis of IL-21–mediated proliferation
  publication-title: Blood
  doi: 10.1182/blood-2006-10-054973
  contributor:
    fullname: Zeng R.
– volume: 114
  start-page: E2776
  year: 2017
  ident: e_1_3_4_31_2
  article-title: Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1620498114
  contributor:
    fullname: Mognol G. P.
– volume: 212
  start-page: 1345
  year: 2015
  ident: e_1_3_4_5_2
  article-title: T cell metabolism drives immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151159
  contributor:
    fullname: Buck M. D.
– volume: 115
  start-page: 3508
  year: 2010
  ident: e_1_3_4_16_2
  article-title: IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice
  publication-title: Blood
  doi: 10.1182/blood-2009-09-241398
  contributor:
    fullname: Markley J. C.
– volume: 50
  start-page: 832
  year: 2019
  ident: e_1_3_4_10_2
  article-title: The γc family of cytokines: Basic biology to therapeutic ramifications
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.028
  contributor:
    fullname: Leonard W. J.
– volume: 6
  start-page: 1872
  year: 2017
  ident: e_1_3_4_11_2
  article-title: The γ c family of cytokines: Fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response
  publication-title: F1000 Res.
  doi: 10.12688/f1000research.12202.1
  contributor:
    fullname: Spolski R.
– volume: 60
  start-page: 9184
  year: 2017
  ident: e_1_3_4_25_2
  article-title: Discovery and optimization of potent, cell-active pyrazole-based inhibitors of lactate dehydrogenase (LDH)
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b00941
  contributor:
    fullname: Rai G.
– volume: 14
  start-page: 1206
  year: 2016
  ident: e_1_3_4_22_2
  article-title: Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.095
  contributor:
    fullname: Zhang L.
– volume: 354
  start-page: 481
  year: 2016
  ident: e_1_3_4_37_2
  article-title: Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism
  publication-title: Science
  doi: 10.1126/science.aaf6284
  contributor:
    fullname: Peng M.
– volume: 499
  start-page: 485
  year: 2013
  ident: e_1_3_4_17_2
  article-title: mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
  publication-title: Nature
  doi: 10.1038/nature12297
  contributor:
    fullname: Zeng H.
– volume: 111
  start-page: 5326
  year: 2008
  ident: e_1_3_4_8_2
  article-title: IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy
  publication-title: Blood
  doi: 10.1182/blood-2007-09-113050
  contributor:
    fullname: Hinrichs C. S.
– volume: 4
  start-page: 124405
  year: 2019
  ident: e_1_3_4_28_2
  article-title: An effective mouse model for adoptive cancer immunotherapy targeting neoantigens
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124405
  contributor:
    fullname: Hanada K. I.
– volume: 10
  start-page: R25
  year: 2009
  ident: e_1_3_4_44_2
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
  contributor:
    fullname: Langmead B.
– volume: 209
  start-page: 2441
  year: 2012
  ident: e_1_3_4_18_2
  article-title: PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20112607
  contributor:
    fullname: Finlay D. K.
– volume: 571
  start-page: 403
  year: 2019
  ident: e_1_3_4_40_2
  article-title: Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function
  publication-title: Nature
  doi: 10.1038/s41586-019-1311-3
  contributor:
    fullname: Bailis W.
– volume: 26
  start-page: 139
  year: 2010
  ident: e_1_3_4_45_2
  article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
  contributor:
    fullname: Robinson M. D.
– volume: 43
  start-page: W566-70
  year: 2015
  ident: e_1_3_4_47_2
  article-title: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv468
  contributor:
    fullname: Metsalu T.
– volume: 28
  start-page: 167
  year: 2018
  ident: e_1_3_4_41_2
  article-title: Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7014
  contributor:
    fullname: Lu W.
– volume: 33
  start-page: 2676
  year: 2014
  ident: e_1_3_4_24_2
  article-title: OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand
  publication-title: EMBO J.
  doi: 10.15252/embj.201488349
  contributor:
    fullname: Patten D. A.
– volume: 10
  start-page: a028449
  year: 2018
  ident: e_1_3_4_9_2
  article-title: The common cytokine receptor γ chain family of cytokines
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a028449
  contributor:
    fullname: Lin J. X.
– volume: 172
  start-page: 22
  year: 2018
  ident: e_1_3_4_3_2
  article-title: An integrated view of immunometabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.025
  contributor:
    fullname: Lee Y. S.
– volume: 31
  start-page: 178
  year: 2009
  ident: e_1_3_4_32_2
  article-title: Blimp hovers over T cell immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.005
  contributor:
    fullname: Welsh R. M.
– volume: 249
  start-page: 14
  year: 2012
  ident: e_1_3_4_6_2
  article-title: Metabolic reprogramming and metabolic dependency in T cells
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2012.01155.x
  contributor:
    fullname: Wang R.
– volume: 9
  start-page: 4429
  year: 2018
  ident: e_1_3_4_34_2
  article-title: Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06841-7
  contributor:
    fullname: Liu Y.
– volume: 158
  start-page: 1309
  year: 2014
  ident: e_1_3_4_46_2
  article-title: Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.048
  contributor:
    fullname: Wang Y. H.
– volume: 89
  start-page: 5940
  year: 2017
  ident: e_1_3_4_42_2
  article-title: Metabolite spectral accuracy on orbitraps
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00396
  contributor:
    fullname: Su X.
– volume: 16
  start-page: 553
  year: 2016
  ident: e_1_3_4_2_2
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
  contributor:
    fullname: O’Neill L. A.
– volume: 79
  start-page: 5060
  year: 2019
  ident: e_1_3_4_26_2
  article-title: Targeting glycolysis through inhibition of lactate dehydrogenase impairs tumor growth in preclinical models of Ewing sarcoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-0217
  contributor:
    fullname: Yeung C.
– volume: 36
  start-page: 68
  year: 2012
  ident: e_1_3_4_19_2
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
  contributor:
    fullname: van der Windt G. J.
– volume: 41
  start-page: 75
  year: 2014
  ident: e_1_3_4_20_2
  article-title: Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.005
  contributor:
    fullname: O’Sullivan D.
– volume: 123
  start-page: 4479
  year: 2013
  ident: e_1_3_4_36_2
  article-title: Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI69589
  contributor:
    fullname: Sukumar M.
– volume: 20
  start-page: 337
  year: 2019
  ident: e_1_3_4_29_2
  article-title: The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0311-z
  contributor:
    fullname: Gautam S.
– volume: 2018
  start-page: 8605471
  year: 2018
  ident: e_1_3_4_4_2
  article-title: Regulation of immune cell functions by metabolic reprogramming
  publication-title: J. Immunol. Res.
  contributor:
    fullname: Kim J.
– volume: 18
  start-page: 255
  year: 2017
  ident: e_1_3_4_7_2
  article-title: “Final common pathway” of human cancer immunotherapy: Targeting random somatic mutations
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3682
  contributor:
    fullname: Tran E.
– volume: 166
  start-page: 63
  year: 2016
  ident: e_1_3_4_21_2
  article-title: Mitochondrial dynamics controls T cell fate through metabolic programming
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.035
  contributor:
    fullname: Buck M. D.
– volume: 540
  start-page: 236
  year: 2016
  ident: e_1_3_4_27_2
  article-title: S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate
  publication-title: Nature
  doi: 10.1038/nature20165
  contributor:
    fullname: Tyrakis P. A.
– volume: 574
  start-page: 575
  year: 2019
  ident: e_1_3_4_35_2
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
  contributor:
    fullname: Zhang D.
– volume: 15
  start-page: 808
  year: 2009
  ident: e_1_3_4_30_2
  article-title: Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.1982
  contributor:
    fullname: Gattinoni L.
– volume: 128
  start-page: 519
  year: 2016
  ident: e_1_3_4_38_2
  article-title: Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies
  publication-title: Blood
  doi: 10.1182/blood-2015-11-683847
  contributor:
    fullname: Sabatino M.
SSID ssj0009580
Score 2.6772993
Snippet Interleukin (IL)-2 and IL-21 dichotomously shape CD8⁺ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective...
Interleukin (IL)-2 and IL-21 dichotomously shape CD8 T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective...
Interleukin (IL)-2 and IL-21 dichotomously shape CD8 + T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective...
Interleukin (IL)-2 and IL-21 dichotomously shape CD8+ T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective...
Current approaches for producing T cells for adoptive immunotherapy for cancer rely on interleukin (IL)-2–based strategies that generate large numbers of...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6047
SubjectTerms Adoptive transfer
Anticancer properties
Antitumor activity
Biological Sciences
CD8 antigen
Cell differentiation
Clonal deletion
Cytokines
Dehydrogenase
Dehydrogenases
Differentiation (biology)
Effector cells
Exhaustion
Gene expression
Glycolysis
Immunity
Immunological memory
Immunotherapy
Inhibition
Interleukin 2
Interleukin 21
L-Lactate dehydrogenase
Lactate dehydrogenase
Lactic acid
Lymphocytes
Lymphocytes T
Memory cells
Metabolism
Nuclear receptors
Oxidative phosphorylation
PD-1 protein
Phosphorylation
Pyruvic acid
Receptors
Stem cells
Tricarboxylic acid cycle
Tumors
Title Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8⁺ T cell stemness and antitumor immunity
URI https://www.jstor.org/stable/26929369
https://www.ncbi.nlm.nih.gov/pubmed/32123114
https://www.proquest.com/docview/2379603300
https://search.proquest.com/docview/2370495053
https://pubmed.ncbi.nlm.nih.gov/PMC7084161
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBFCgE2spIHIpQdh3biZMjWqgKahGHVuotchxHG4lNVrvpYfn1nXE-YBEnDpEixYmSzNjzxn7zDPAerUpZgw6zSolQmdiGRYxn3OhMWC9BR7XDN9-Tqzv17T6-P4B4rIXxpH1b1LPm52rW1EvPrVyv7Hzkic1_3Cw0p8WyaH4Ihxh-xxR9UtpN-7oTgcOvEmrU89Fyvm7MdoaQhisSmaH99ySN3FGk9qJST0z8F-T8mzn5Ryi6fAZPBwzJPvXvegwHrnkOx0Mv3bKLQUr6wwtYXRtLaJKVbrkrNy16C0YtVjfLuvBcLbbdUfFf_QvvoylZ9vU6FBHrWrb2PD3HFp_Tj-yW0QQ_I9FnGhqZaUo8iGWwajes9jUm3e4l3F1-uV1chcMGC6FVSnYhFZ1aUjTjsuLcWEuru4XRReayMrGITmJXZGWKkCc1mFhVotJOJQkvhZQ4xMoTOGraxr0G_AxujHbYziECo3pZm5Q2iaoqpW1JkwAuxh-cr3sdjdyvf2uZk1ny32YJ4MQbYGonEsRwMskCOB0tkg89bZsLqTEJk5LzAN5Nl7GP0H8xjWsffBtMhBDryQBe9QacHj56QAB6z7RTA9Lf3r-Cbul1uAc3fPPfd76FJ4LSd6IH6lM46jYP7gwxTlecU4SJz71nPwKrNvng
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGOMAFMWAQGGAkDkMorWM7dnJEhamDduLQSbtFjuOokWhStd2h--v3nvMDijhxiBQpdpT4Pdvfs7_3mZCPYFWMGnSYlpKH0sQ2zGO4Y0an3HoJOswdnl-p6bX8fhPfHJG4z4XxpH2bV6P612pUV0vPrVyv7LjniY1_ziea4WZZNH5AHsZCp1EfpA9au0mbecJhAJZc9oo-WozXtdmOANQwiTIzeAKfwLE7iuTBvNRSE_8FOv_mTv4xGV08JU86FEm_tF97Qo5c_YycdP10S887MelPz8lqZiziSVq45b7YNOAvMG_Rql5WuWdr0e0e0_-qO6iHi7L0chbyiO4auvZMPUcnX5PPdEFxiZ-i7DMOjtTUBVzIM1g1G1r5LJPd_gW5vvi2mEzD7oiF0EopdiGmnVrUNGOiZMxYi_u7udF56tJCWcAnscvTIgHQkxgIrUpeaieVYgUXAgZZcUqO66Z2rwj8BjNGOyjnAINhxqxVhVVRWSZ4MKkKyHnfwNm6VdLI_A64FhmaJfttloCcegMM5bgCFCdUGpCz3iJZ19e2GQcXUEwIxgLyYXgMvQTbxdSuufVlIBQCtCcC8rI14PDy3gMCog9MOxRABe7DJ-CYXom7c8TX_13zPXk0Xcxn2ezy6scb8phjMI9kQX1GjnebW_cWEM8uf-f9-x4TovxP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLokAhUMBIHIpQNo6d2MkRbVm1sK16aKXeIsdxtJHYJNpND8uvZ8b5oIs4cYgUKXaUeMb2G_vNMyGfwKoYNSg_LSPuRzo2fh7DHdMq5cZJ0GHu8MWlPLuJvt_Gt_eO-nKkfZNXs_rnelZXK8etbNcmGHliwdXFXDHcLAuDtiiDh-RRLMDJxkB90ttN-uwTDoNwxKNR1UeJoK31dgbAhkUoNYOn8Akcv8Mw2pubenriv4Dn3_zJexPS4hl5OiBJ-rX_4kPywNbPyeHQV7f0ZBCU_vyCrJfaIKakhV3tik0DPgNzF63qVZU7xhbd7jAFsPoF9XBhlp4vfR7SrqGtY-tZOj9NvtBrisv8FKWfcYCkui7gQq7ButnQymWadLuX5Gbx7Xp-5g_HLPgmikTnY-qpQV0zJkrGtDG4x5trlac2LaQBjBLbPC0SAD6JhvCq5KWykZSs4ELAQCuOyEHd1PY1gd9gWisL5SzgMMyaNbIwMizLBA8nlR45GRs4a3s1jcztgiuRoVmyP2bxyJEzwFSOS0ByQqYeOR4tkg39bZtxcAHJhGDMIx-nx9BTsF10bZs7VwbCIUB8wiOvegNOLx89wCNqz7RTAVTh3n8CzunUuAdnfPPfNT-Qx1eni2x5fvnjLXnCMZ5HvqA6Jgfd5s6-A9DT5e-de_8Gv2v9Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactate+dehydrogenase+inhibition+synergizes+with+IL-21+to+promote+CD8%E2%81%BA+T+cell+stemness+and+antitumor+immunity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hermans%2C+Dalton&rft.au=Gautam%2C+Sanjivan&rft.au=Garc%C3%ADa-Ca%C3%B1averas%2C+Juan+C.&rft.au=Gromer%2C+Daniel&rft.date=2020-03-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=11&rft.spage=6047&rft.epage=6055&rft_id=info:doi/10.1073%2Fpnas.1920413117&rft.externalDocID=26929369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon