Variations and drivers of evapotranspiration in the Tibetan Plateau during 1982–2015

The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this stu...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology. Regional studies Vol. 47; p. 101366
Main Authors Chang, Yaping, Ding, Yongjian, Zhang, Shiqiang, Qin, Jia, Zhao, Qiudong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change. [Display omitted] •Annual ET and its components increased significantly during 1982–2015 in the TP.•Soil moisture was the dominant variable affecting variation in ET, followed by temperature.•Different ET components displayed contrasting responses to environmental drivers.•Impact of vegetation greening on canopy transpiration and interception cannot be neglected.
AbstractList The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change.
The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change. [Display omitted] •Annual ET and its components increased significantly during 1982–2015 in the TP.•Soil moisture was the dominant variable affecting variation in ET, followed by temperature.•Different ET components displayed contrasting responses to environmental drivers.•Impact of vegetation greening on canopy transpiration and interception cannot be neglected.
Study region: The Tibetan Plateau Study focus: Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. New hydrological insights for the region: Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change.
ArticleNumber 101366
Author Zhao, Qiudong
Ding, Yongjian
Chang, Yaping
Qin, Jia
Zhang, Shiqiang
Author_xml – sequence: 1
  givenname: Yaping
  surname: Chang
  fullname: Chang, Yaping
  organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 2
  givenname: Yongjian
  surname: Ding
  fullname: Ding, Yongjian
  email: dyj@lzb.ac.cn
  organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 3
  givenname: Shiqiang
  surname: Zhang
  fullname: Zhang, Shiqiang
  organization: Shanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710027, China
– sequence: 4
  givenname: Jia
  surname: Qin
  fullname: Qin, Jia
  organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Qiudong
  surname: Zhao
  fullname: Zhao, Qiudong
  email: Zhaoqd@lzb.ac.cn
  organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
BookMark eNp9kc1qGzEUhUVJoYmbF-hKy2zs6m9GEnRTQtIaAu0izVbI0p1Ew0RyJdmQXd6hb9gnqewJpXSRlcTlfOf-nDN0ElMEhD5QsqKE9h_HFYz5YcUI44cC7_s36JQxKpadourkn_87dF7KSAihSirdk1N0d2dzsDWkWLCNHvsc9pALTgOGvd2mmm0s25CPEhwirg-Ab8MGqo34-2Qr2B32uxziPaZasd_Pvxih3Xv0drBTgfOXd4F-XF_dXn5d3nz7sr78fLN0QvC6pLSTbWxnyaC4Bt1IYEPXMUGlUkDl4Deeec2ZkIwST10PUnCvOq410ZIv0Hr29cmOZpvDo81PJtlgjoWU743NNbgJTN8304FRKb0WzrZhN4wp7nsrhGPNcYEuZq9tTj93UKp5DMXBNNkIaVcMU0q2rp2mTcpmqcuplAzD39aUmEMmZjSHTMwhEzNn0iD1H-RCPd61HTlMr6OfZhTaLfcBsikuQHTgQwZX27LhNfwPJZ6mdg
CitedBy_id crossref_primary_10_1093_jpe_rtae052
crossref_primary_10_1029_2023EF004222
crossref_primary_10_1029_2024JD041165
crossref_primary_10_3390_plants14050644
crossref_primary_10_1007_s11629_024_8726_5
crossref_primary_10_3390_f14051058
crossref_primary_10_1029_2024GL109295
crossref_primary_10_3390_land13081230
crossref_primary_10_1007_s11269_024_03820_0
Cites_doi 10.5194/hess-17-3707-2013
10.1007/s11442-013-1003-0
10.1016/j.agrformet.2009.03.014
10.1016/j.jhydrol.2022.128594
10.1016/j.gloplacha.2004.01.010
10.1002/jgrd.50393
10.1088/1748-9326/aac4bb
10.1016/j.jhydrol.2018.09.065
10.5194/essd-13-3513-2021
10.1126/science.1183188
10.1002/jgrd.50696
10.1016/j.rse.2013.08.045
10.1016/j.agrformet.2013.09.003
10.1111/gcb.12187
10.1029/2006JD007718
10.2166/nh.2018.008
10.3390/rs6086929
10.1016/j.jhydrol.2005.07.003
10.1016/j.jhydrol.2012.10.006
10.1016/j.jhydrol.2021.127223
10.1038/nature09396
10.1029/2018WR023477
10.1073/pnas.1504418112
10.3390/rs10111692
10.1088/1748-9326/aa527d
10.1016/j.jhydrol.2022.128102
10.1016/j.scitotenv.2020.143532
10.3390/rs13183712
10.1016/j.jhydrol.2019.124105
10.1175/BAMS-D-17-0057.1
10.1016/j.jhydrol.2022.128678
10.1088/1748-9326/7/1/014026
10.1175/JHM-D-20-0074.1
10.1002/hyp.10977
10.1016/j.rse.2018.12.031
10.1029/2018JD029850
10.1016/j.jhydrol.2011.10.024
10.1016/j.jhydrol.2018.02.065
10.1016/j.rse.2011.02.019
10.1038/s41597-020-0369-y
10.1002/eco.2195
10.1080/01431161.2017.1346400
10.3389/fpls.2021.802664
10.2307/1907187
10.1016/j.agrformet.2012.11.016
10.1016/j.agrformet.2022.108887
10.1007/s41651-019-0031-4
10.5194/gmd-10-1903-2017
10.1016/j.jhydrol.2018.03.054
10.1029/2021WR029638
10.1029/2019WR025196
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ejrh.2023.101366
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2214-5818
ExternalDocumentID oai_doaj_org_article_66417f2177d94ca198b2283d6a44c285
10_1016_j_ejrh_2023_101366
S2214581823000538
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAHBH
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c443t-1157202ca0f839e9015e2f55241788e17fdbd2d93247210d1c6e743d853990973
IEDL.DBID DOA
ISSN 2214-5818
IngestDate Wed Aug 27 01:27:46 EDT 2025
Thu Jul 10 22:17:18 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Tue Jul 01 01:22:53 EDT 2025
Sat Sep 30 17:11:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Tibetan Plateau
Vegetation greening
Evapotranspiration
Contribution analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-1157202ca0f839e9015e2f55241788e17fdbd2d93247210d1c6e743d853990973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/66417f2177d94ca198b2283d6a44c285
PQID 2887990591
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_66417f2177d94ca198b2283d6a44c285
proquest_miscellaneous_2887990591
crossref_primary_10_1016_j_ejrh_2023_101366
crossref_citationtrail_10_1016_j_ejrh_2023_101366
elsevier_sciencedirect_doi_10_1016_j_ejrh_2023_101366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology. Regional studies
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Gebremichael, Meng, Wen, Iqbal, Jia, Yu, Li (bib59) 2018; 38
Huang, Ma, Wang (bib15) 2022; 615
Martens, Miralles, Lievens, van der Schalie, de Jeu, FernandezPrieto, Beck, Dorigo, Verhoest (bib31) 2017; 10
Meng, Li, Luan (bib33) 2017; 2
Hu, Yu, Zhou, Sun, Li, Shi, Wang, Song, Zheng, Zhang, Li (bib14) 2009; 149
Scott, Biederman (bib38) 2019; 55
Mann (bib30) 1945; 13
Yin, Wu, Zhao, Zheng, Pan (bib57) 2013; 23
Wang, Ma, Su, Wang, Ma (bib44) 2020
Tian, Yao, MacClune, White, Schilla, Vaughn, Vachon, Ichiyanagi (bib42) 2007; 112
Mueller, Hirschi, Jimenez, Ciais, Dirmeyer, Dolman (bib35) 2013; 17
Li, Long, Han, Scanlon, Sun, Han, Hou (bib25) 2019; 55
Immerzeel, van Beek, Bierkens (bib17) 2010; 328
Huntington (bib16) 2006; 319
Ma, Szilagyi, Zhang, Liu (bib29) 2019; 124
Li, Wang, Sun, Chen, Bai, Zhou (bib23) 2018; 10
Wartenburger, Seneviratne, Hirschi, Chang, Ciais, Deryng (bib49) 2018; 13
Chen, Zhu, Shang, Qin, Zhang, Su, Zhang, Zhu, Xu (bib5) 2022; 604
Wang, Xing, Shao (bib46) 2013; 118
Du, Kawashima, Yonemura, Zhang, Chen (bib8) 2004; 41
Song, Zhuang, Yin, Zhu, Wu (bib40) 2017; 12
Kendall, M.G., 1975. Rank Correlation Methods. London: The Griffin.
Lin, Wang, Hu, Huang, Sun, Sun, Luo, Xiao (bib26) 2021; 22
He, Yang, Tang, Lu, Qin, Chen, Li (bib13) 2020; 7
Ma, Zhang (bib28) 2022; 317
Zhu, Su, Li, Zhang, Li (bib61) 2013; 476
Han, Ma, Wang, Zhong, Ma, Chen, Su (bib11) 2021; 13
Yang, Yong, Ren, Zhang, Long (bib53) 2017; 38
Yang, Zhang, Zhang, Yue, Zeng, Qi (bib54) 2022; 65
Yang, Feng, Adamowski, Alizadeh, Yin, Wen, Zhu (bib52) 2021; 759
Chang, Ding, Zhao, Qin, Zhang (bib4) 2022
Chen, Fu, Geng, Hao, Tang, Zhang, Xu, Hao (bib6) 2022; 12
Brutsaert (bib2) 2005
Tsuruta, Kosugi, Takanashi, Tani (bib43) 2016; 30
Sun, Song, Chen, Wang, Zhang, Zhang, Zhang, Hao, Chen (bib41) 2020; 13
Yao, Liang, Cheng, Liu, Fisher, Zhang, Jia, Zhao, Qin (bib56) 2013; 171–172
Jia, Li, Yang, Yang, Liu (bib18) 2022; 614
Han, Wang, Wang, Smettem, Mai, Chen (bib12) 2021; 57
Zeng, Piao, Lin, Yin, Peng, Ciais, Myneni (bib58) 2012; 7
Habeeb, Gupta, Chinwan, Barker (bib10) 2019; 3
Bai, Liu (bib1) 2018; 566
Yao, Xue, Chen, Chen, Thompson, Cui, Koike, Lau, Lettenmaier, Mosbrugger, Zhang, Xu, Dozier, Gillespie, Gu, Kang, Piao, Sugimoto, Ueno, Wang, Wang, Zhang, Sheng, Guo, Ailikun, Yang, Ma, Shen, Su, Chen, Liang, Liu, Singh, Yang, Yang, Zhao, Qian, Zhang, Li (bib55) 2019; 100
Zhang, Kong, Gan, Chiew, McVicar, Zhang (bib60) 2019; 222
Kool, Agam, Lazarovitch (bib21) 2014; 184
Mu, Zhao, Running (bib34) 2011; 115
Wang, Li, Yu, Ding, Xing, Lu (bib47) 2018; 559
Li, Wang, Chen, Yang, Wang (bib24) 2014; 119
Guillod, Orlowsky, Miralles, Teuling, Seneviratne (bib9) 2015; 6
Jung, Reichstein, Ciais, Seneviratne, Sheffield, Goulden, Bonan, Cescatti, Chen, de Jeu (bib19) 2010; 467
Xue, Wang, Yang, Tian, Qin, Chen, Li (bib51) 2013; 118
Liu (bib27) 2018; 49
Xu, Guo, Xia (bib50) 2019; 578
Pinzon, Tucker (bib37) 2014; 6
Piao, Sitch, Ciais, Friedlingstein, Peylin, Wang (bib36) 2013; 19
Wang, Cui, Liu, Zheng, Lu, Li, Wang, An (bib48) 2021; 13
Wang, Zhang, Ma (bib45) 2020; 12
Chang, Qin, Ding, Zhao, Zhang (bib3) 2018; 561
Mcvicar, Roderick, Donohue (bib32) 2012; 416–417
Chen, Xia, Liang, Feng, Fisher, Li, Li, Liu, Ma, Miyata, Mu, Sun, Tang, Wang, Wen, Xue, Yu, Zha, Zhang, Zhang, Zhao, Zhao, Yuan (bib7) 2014; 140
Li, Yang, Yang, Liu, Jia, Li, Yang (bib22) 2022; 612
Shen, Piao, Jeong (bib39) 2015; 112
Liu (10.1016/j.ejrh.2023.101366_bib27) 2018; 49
Lin (10.1016/j.ejrh.2023.101366_bib26) 2021; 22
Jia (10.1016/j.ejrh.2023.101366_bib18) 2022; 614
Kool (10.1016/j.ejrh.2023.101366_bib21) 2014; 184
Xue (10.1016/j.ejrh.2023.101366_bib51) 2013; 118
Zhu (10.1016/j.ejrh.2023.101366_bib61) 2013; 476
Wartenburger (10.1016/j.ejrh.2023.101366_bib49) 2018; 13
Tsuruta (10.1016/j.ejrh.2023.101366_bib43) 2016; 30
Xu (10.1016/j.ejrh.2023.101366_bib50) 2019; 578
Chang (10.1016/j.ejrh.2023.101366_bib4) 2022
Pinzon (10.1016/j.ejrh.2023.101366_bib37) 2014; 6
Mueller (10.1016/j.ejrh.2023.101366_bib35) 2013; 17
Yang (10.1016/j.ejrh.2023.101366_bib53) 2017; 38
Chen (10.1016/j.ejrh.2023.101366_bib6) 2022; 12
Wang (10.1016/j.ejrh.2023.101366_bib47) 2018; 559
Zeng (10.1016/j.ejrh.2023.101366_bib58) 2012; 7
Wang (10.1016/j.ejrh.2023.101366_bib44) 2020
Huang (10.1016/j.ejrh.2023.101366_bib15) 2022; 615
Han (10.1016/j.ejrh.2023.101366_bib11) 2021; 13
Wang (10.1016/j.ejrh.2023.101366_bib48) 2021; 13
Mcvicar (10.1016/j.ejrh.2023.101366_bib32) 2012; 416–417
Mann (10.1016/j.ejrh.2023.101366_bib30) 1945; 13
Zhang (10.1016/j.ejrh.2023.101366_bib60) 2019; 222
Guillod (10.1016/j.ejrh.2023.101366_bib9) 2015; 6
Jung (10.1016/j.ejrh.2023.101366_bib19) 2010; 467
Zhang (10.1016/j.ejrh.2023.101366_bib59) 2018; 38
Yao (10.1016/j.ejrh.2023.101366_bib56) 2013; 171–172
Li (10.1016/j.ejrh.2023.101366_bib22) 2022; 612
Tian (10.1016/j.ejrh.2023.101366_bib42) 2007; 112
Sun (10.1016/j.ejrh.2023.101366_bib41) 2020; 13
Ma (10.1016/j.ejrh.2023.101366_bib29) 2019; 124
Chang (10.1016/j.ejrh.2023.101366_bib3) 2018; 561
Piao (10.1016/j.ejrh.2023.101366_bib36) 2013; 19
Habeeb (10.1016/j.ejrh.2023.101366_bib10) 2019; 3
Meng (10.1016/j.ejrh.2023.101366_bib33) 2017; 2
Wang (10.1016/j.ejrh.2023.101366_bib45) 2020; 12
Yao (10.1016/j.ejrh.2023.101366_bib55) 2019; 100
Li (10.1016/j.ejrh.2023.101366_bib24) 2014; 119
Du (10.1016/j.ejrh.2023.101366_bib8) 2004; 41
Yang (10.1016/j.ejrh.2023.101366_bib54) 2022; 65
He (10.1016/j.ejrh.2023.101366_bib13) 2020; 7
Immerzeel (10.1016/j.ejrh.2023.101366_bib17) 2010; 328
Song (10.1016/j.ejrh.2023.101366_bib40) 2017; 12
Bai (10.1016/j.ejrh.2023.101366_bib1) 2018; 566
Hu (10.1016/j.ejrh.2023.101366_bib14) 2009; 149
Shen (10.1016/j.ejrh.2023.101366_bib39) 2015; 112
Chen (10.1016/j.ejrh.2023.101366_bib7) 2014; 140
Scott (10.1016/j.ejrh.2023.101366_bib38) 2019; 55
10.1016/j.ejrh.2023.101366_bib20
Wang (10.1016/j.ejrh.2023.101366_bib46) 2013; 118
Li (10.1016/j.ejrh.2023.101366_bib23) 2018; 10
Yang (10.1016/j.ejrh.2023.101366_bib52) 2021; 759
Chen (10.1016/j.ejrh.2023.101366_bib5) 2022; 604
Ma (10.1016/j.ejrh.2023.101366_bib28) 2022; 317
Han (10.1016/j.ejrh.2023.101366_bib12) 2021; 57
Li (10.1016/j.ejrh.2023.101366_bib25) 2019; 55
Huntington (10.1016/j.ejrh.2023.101366_bib16) 2006; 319
Martens (10.1016/j.ejrh.2023.101366_bib31) 2017; 10
Mu (10.1016/j.ejrh.2023.101366_bib34) 2011; 115
Brutsaert (10.1016/j.ejrh.2023.101366_bib2) 2005
Yin (10.1016/j.ejrh.2023.101366_bib57) 2013; 23
References_xml – volume: 12
  year: 2017
  ident: bib40
  article-title: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010
  publication-title: Environ. Res. Lett.
– volume: 10
  start-page: 1692
  year: 2018
  ident: bib23
  article-title: Assessment of multi-source evapotranspiration products over China using eddy covariance observations
  publication-title: Remote Sens.
– volume: 22
  start-page: 955
  year: 2021
  end-page: 969
  ident: bib26
  article-title: Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961–2014
  publication-title: J. Hydrometeorol.
– volume: 112
  start-page: 9299
  year: 2015
  ident: bib39
  article-title: Evaporative cooling over the Tibetan Plateau induced by vegetation growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 65
  start-page: 2813
  year: 2022
  end-page: 2827
  ident: bib54
  article-title: Inter-annual variablitiy of evapotranspiration and its response towestly and monsoon circulation over the Tibetan Plateau. Chinese
  publication-title: J. Geophys.
– volume: 612
  year: 2022
  ident: bib22
  article-title: Error characterization of global land evapotranspiration products: Collocation-based approach
  publication-title: J. Hydrol.
– volume: 23
  start-page: 195
  year: 2013
  end-page: 207
  ident: bib57
  article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan
  publication-title: Plateau J. Geog. Sci.
– volume: 317
  year: 2022
  ident: bib28
  article-title: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation
  publication-title: Agr. Forest Meteorol.
– volume: 57
  year: 2021
  ident: bib12
  article-title: Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient
  publication-title: Water Resour. Res.
– volume: 566
  start-page: 743
  year: 2018
  end-page: 755
  ident: bib1
  article-title: Intercomparison and evaluation of three global high-resolution evapotranspiration products across China
  publication-title: J. Hydrol.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib33
  article-title: Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau
  publication-title: Clim. Dyn.
– start-page: 558
  year: 2020
  ident: bib44
  article-title: Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau
  publication-title: Sci. Adv. 6, eaay8
– volume: 614
  year: 2022
  ident: bib18
  article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods
  publication-title: J. Hydrol.
– volume: 328
  start-page: 1382
  year: 2010
  end-page: 1385
  ident: bib17
  article-title: Climate change will affect the Asian water towers
  publication-title: Science
– volume: 17
  start-page: 3707
  year: 2013
  end-page: 3720
  ident: bib35
  article-title: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 10
  start-page: 1903
  year: 2017
  end-page: 1925
  ident: bib31
  article-title: GLEAM v3: satellite based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
– volume: 100
  start-page: 423
  year: 2019
  end-page: 444
  ident: bib55
  article-title: Recent Third Pole
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 38
  start-page: e48
  year: 2018
  end-page: e56
  ident: bib59
  article-title: Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010)
  publication-title: Int. J. Climatol.
– volume: 467
  start-page: 951
  year: 2010
  end-page: 954
  ident: bib19
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
– volume: 319
  start-page: 83
  year: 2006
  end-page: 95
  ident: bib16
  article-title: Evidence for intensification of the global water cycle: review and synthesis
  publication-title: J. Hydrol.
– volume: 6
  start-page: 6443
  year: 2015
  ident: bib9
  article-title: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature
  publication-title: Commun.
– volume: 578
  year: 2019
  ident: bib50
  article-title: Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States
  publication-title: J. Hydrol.
– volume: 30
  start-page: 5012
  year: 2016
  end-page: 5026
  ident: bib43
  article-title: Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest
  publication-title: Hydrol. Process.
– volume: 49
  start-page: 1977
  year: 2018
  end-page: 1990
  ident: bib27
  article-title: Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau
  publication-title: Hydrol. Res.
– reference: Kendall, M.G., 1975. Rank Correlation Methods. London: The Griffin.
– volume: 12
  start-page: 355
  year: 2020
  end-page: 370
  ident: bib45
  article-title: Cryosphere evapotranspiration in the Tibetan Plateau: a review
  publication-title: Sci. Cold Arid Reg.
– volume: 759
  year: 2021
  ident: bib52
  article-title: The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains
  publication-title: Sci. Total Environ.
– year: 2022
  ident: bib4
  article-title: Elevation-dependent changes the trend of reference evapotranspiration in the Tibetan Plateau from 1960 to 2017
  publication-title: Int. J. Climatol.
– volume: 19
  start-page: 2117
  year: 2013
  end-page: 2132
  ident: bib36
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO
  publication-title: Glob. Change Biol.
– volume: 13
  start-page: 245
  year: 1945
  end-page: 259
  ident: bib30
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
– volume: 604
  year: 2022
  ident: bib5
  article-title: Uncertainties in partitioning evapotranspiration by two remote sensing-based models
  publication-title: J. Hydrol.
– volume: 561
  start-page: 16
  year: 2018
  end-page: 30
  ident: bib3
  article-title: A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China
  publication-title: J. Hydrol.
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  ident: bib34
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 6929
  year: 2014
  ident: bib37
  article-title: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series
  publication-title: Remote Sens.
– volume: 124
  start-page: 4326
  year: 2019
  end-page: 4351
  ident: bib29
  article-title: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012–validations and spatiotemporal analyses
  publication-title: J. Geophys. Res.
– volume: 119
  start-page: 13079
  year: 2014
  end-page: 13095
  ident: bib24
  article-title: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan
  publication-title: Plateau J. Geophys. Res. Atmos.
– volume: 55
  year: 2019
  ident: bib25
  article-title: Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing
  publication-title: Water Resour. Res.
– volume: 7
  year: 2012
  ident: bib58
  article-title: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models
  publication-title: Environ. Res. Lett.
– volume: 559
  start-page: 471
  year: 2018
  end-page: 485
  ident: bib47
  article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying
  publication-title: J. Hydrol.
– volume: 3
  start-page: 8
  year: 2019
  ident: bib10
  article-title: Assessing demographic and water sensitivities arising due to urban water insecurity in Haldwani, Uttarakhand (India): a GIS-based spatial analysis.
  publication-title: J. Geovis. Spat. Anal.
– volume: 416–417
  start-page: 182
  year: 2012
  end-page: 205
  ident: bib32
  article-title: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation
  publication-title: J. Hydrol.
– volume: 38
  start-page: 5688
  year: 2017
  end-page: 5709
  ident: bib53
  article-title: Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements
  publication-title: Int. J. Remote Sens.
– volume: 112
  year: 2007
  ident: bib42
  article-title: Stable isotopic variations in West China: a consideration of moisture sources
  publication-title: J. Geophys. Res. Atmos.
– volume: 149
  start-page: 1410
  year: 2009
  end-page: 1420
  ident: bib14
  article-title: Partitioning of evapotranspiration and its controls in four grassland ecosystems–application of a two-source model
  publication-title: Agr. Forest Meteorol.
– volume: 184
  start-page: 56
  year: 2014
  end-page: 70
  ident: bib21
  article-title: A review of approaches for evapotranspiration partitioning
  publication-title: Agr. Forest Meteorol.
– volume: 13
  year: 2020
  ident: bib41
  article-title: Multimodel-based analyses of evapotranspiration and its controls in China over the last three decades
  publication-title: Ecohydrology
– volume: 118
  start-page: 4049
  year: 2013
  end-page: 4068
  ident: bib46
  article-title: Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling
  publication-title: J. Geophys. Res. Atmos.
– volume: 615
  start-page: 128678
  year: 2022
  ident: bib15
  article-title: Faster increase in evapotranspiration in permafrost-dominated basins in the warming Pan-Arctic
  publication-title: J. Hydrol.
– volume: 171–172
  start-page: 187
  year: 2013
  end-page: 202
  ident: bib56
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm
  publication-title: Agr. Forest Meteorol.
– volume: 13
  start-page: 3712
  year: 2021
  ident: bib48
  article-title: Greening of the qinghai–Tibet Plateau and its response to climate variations along elevation gradients
  publication-title: Remote Sens.
– volume: 55
  start-page: 574
  year: 2019
  end-page: 588
  ident: bib38
  article-title: Critical zone water balance over 13 years in a semiarid savanna
  publication-title: Water Resour. Res.
– volume: 476
  start-page: 42
  year: 2013
  end-page: 51
  ident: bib61
  article-title: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach
  publication-title: J. Hydrol.
– volume: 12
  year: 2022
  ident: bib6
  article-title: Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient.
  publication-title: Front. Plant Sci.
– volume: 13
  year: 2018
  ident: bib49
  article-title: Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets
  publication-title: Environ. Res. Lett.
– volume: 140
  start-page: 279
  year: 2014
  end-page: 293
  ident: bib7
  article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 3513
  year: 2021
  end-page: 3524
  ident: bib11
  article-title: Long-term variations in actual evapotranspiration over the Tibetan Plateau
  publication-title: Earth Syst. Sci. Data
– volume: 41
  start-page: 241
  year: 2004
  end-page: 249
  ident: bib8
  article-title: Mutual influence between human activities and climate change in the Tibetan plateau during recent years
  publication-title: Glob. Planet. Chang
– volume: 7
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib13
  article-title: The frst high-resolution meteorological forcing dataset for land process studies over China
  publication-title: Sci. Data
– volume: 222
  start-page: 165
  year: 2019
  end-page: 182
  ident: bib60
  article-title: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017
  publication-title: Remote Sens. Environ.
– year: 2005
  ident: bib2
  article-title: Hydrology–An Introduction
– volume: 118
  start-page: 8857
  year: 2013
  end-page: 8868
  ident: bib51
  article-title: Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model
  publication-title: J. Geophys. Res. Atmos.
– volume: 17
  start-page: 3707
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib35
  article-title: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-3707-2013
– volume: 23
  start-page: 195
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib57
  article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan
  publication-title: Plateau J. Geog. Sci.
  doi: 10.1007/s11442-013-1003-0
– volume: 149
  start-page: 1410
  year: 2009
  ident: 10.1016/j.ejrh.2023.101366_bib14
  article-title: Partitioning of evapotranspiration and its controls in four grassland ecosystems–application of a two-source model
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2009.03.014
– volume: 614
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib18
  article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128594
– volume: 41
  start-page: 241
  issue: 3–4
  year: 2004
  ident: 10.1016/j.ejrh.2023.101366_bib8
  article-title: Mutual influence between human activities and climate change in the Tibetan plateau during recent years
  publication-title: Glob. Planet. Change.
  doi: 10.1016/j.gloplacha.2004.01.010
– volume: 118
  start-page: 4049
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib46
  article-title: Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50393
– volume: 13
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib49
  article-title: Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aac4bb
– volume: 566
  start-page: 743
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib1
  article-title: Intercomparison and evaluation of three global high-resolution evapotranspiration products across China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.065
– volume: 13
  start-page: 3513
  year: 2021
  ident: 10.1016/j.ejrh.2023.101366_bib11
  article-title: Long-term variations in actual evapotranspiration over the Tibetan Plateau
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-3513-2021
– volume: 328
  start-page: 1382
  year: 2010
  ident: 10.1016/j.ejrh.2023.101366_bib17
  article-title: Climate change will affect the Asian water towers
  publication-title: Science
  doi: 10.1126/science.1183188
– volume: 38
  start-page: e48
  issue: Suppl.1
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib59
  article-title: Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010)
  publication-title: Int. J. Climatol.
– volume: 118
  start-page: 8857
  issue: 16
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib51
  article-title: Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50696
– volume: 140
  start-page: 279
  issue: 1
  year: 2014
  ident: 10.1016/j.ejrh.2023.101366_bib7
  article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.045
– volume: 184
  start-page: 56
  issue: 1
  year: 2014
  ident: 10.1016/j.ejrh.2023.101366_bib21
  article-title: A review of approaches for evapotranspiration partitioning
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2013.09.003
– volume: 19
  start-page: 2117
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib36
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12187
– volume: 112
  issue: D10
  year: 2007
  ident: 10.1016/j.ejrh.2023.101366_bib42
  article-title: Stable isotopic variations in West China: a consideration of moisture sources
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2006JD007718
– volume: 49
  start-page: 1977
  issue: 5–6
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib27
  article-title: Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2018.008
– volume: 6
  start-page: 6443
  year: 2015
  ident: 10.1016/j.ejrh.2023.101366_bib9
  article-title: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature
  publication-title: Commun.
– volume: 6
  start-page: 6929
  year: 2014
  ident: 10.1016/j.ejrh.2023.101366_bib37
  article-title: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series
  publication-title: Remote Sens.
  doi: 10.3390/rs6086929
– volume: 319
  start-page: 83
  issue: 1–4
  year: 2006
  ident: 10.1016/j.ejrh.2023.101366_bib16
  article-title: Evidence for intensification of the global water cycle: review and synthesis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.07.003
– volume: 476
  start-page: 42
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib61
  article-title: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.10.006
– volume: 604
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib5
  article-title: Uncertainties in partitioning evapotranspiration by two remote sensing-based models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127223
– volume: 467
  start-page: 951
  year: 2010
  ident: 10.1016/j.ejrh.2023.101366_bib19
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
  doi: 10.1038/nature09396
– volume: 55
  start-page: 574
  issue: 1
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib38
  article-title: Critical zone water balance over 13 years in a semiarid savanna
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023477
– volume: 112
  start-page: 9299
  issue: 30
  year: 2015
  ident: 10.1016/j.ejrh.2023.101366_bib39
  article-title: Evaporative cooling over the Tibetan Plateau induced by vegetation growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1504418112
– volume: 10
  start-page: 1692
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib23
  article-title: Assessment of multi-source evapotranspiration products over China using eddy covariance observations
  publication-title: Remote Sens.
  doi: 10.3390/rs10111692
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.ejrh.2023.101366_bib33
  article-title: Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau
  publication-title: Clim. Dyn.
– volume: 12
  year: 2017
  ident: 10.1016/j.ejrh.2023.101366_bib40
  article-title: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa527d
– volume: 612
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib22
  article-title: Error characterization of global land evapotranspiration products: Collocation-based approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128102
– volume: 759
  year: 2021
  ident: 10.1016/j.ejrh.2023.101366_bib52
  article-title: The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143532
– volume: 13
  start-page: 3712
  year: 2021
  ident: 10.1016/j.ejrh.2023.101366_bib48
  article-title: Greening of the qinghai–Tibet Plateau and its response to climate variations along elevation gradients
  publication-title: Remote Sens.
  doi: 10.3390/rs13183712
– volume: 65
  start-page: 2813
  issue: 8
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib54
  article-title: Inter-annual variablitiy of evapotranspiration and its response towestly and monsoon circulation over the Tibetan Plateau. Chinese
  publication-title: J. Geophys.
– volume: 119
  start-page: 13079
  year: 2014
  ident: 10.1016/j.ejrh.2023.101366_bib24
  article-title: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan
  publication-title: Plateau J. Geophys. Res. Atmos.
– volume: 578
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib50
  article-title: Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124105
– volume: 100
  start-page: 423
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib55
  article-title: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensifcation and interactions between monsoon and environment–Multidisciplinary approach with observations, modeling, and analysis
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-17-0057.1
– volume: 615
  start-page: 128678
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib15
  article-title: Faster increase in evapotranspiration in permafrost-dominated basins in the warming Pan-Arctic
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128678
– volume: 7
  year: 2012
  ident: 10.1016/j.ejrh.2023.101366_bib58
  article-title: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/1/014026
– volume: 22
  start-page: 955
  year: 2021
  ident: 10.1016/j.ejrh.2023.101366_bib26
  article-title: Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961–2014
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-20-0074.1
– year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib4
  article-title: Elevation-dependent changes the trend of reference evapotranspiration in the Tibetan Plateau from 1960 to 2017
  publication-title: Int. J. Climatol.
– volume: 30
  start-page: 5012
  issue: 26
  year: 2016
  ident: 10.1016/j.ejrh.2023.101366_bib43
  article-title: Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10977
– volume: 222
  start-page: 165
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib60
  article-title: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.031
– ident: 10.1016/j.ejrh.2023.101366_bib20
– volume: 124
  start-page: 4326
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib29
  article-title: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012–validations and spatiotemporal analyses
  publication-title: J. Geophys. Res.
  doi: 10.1029/2018JD029850
– volume: 416–417
  start-page: 182
  issue: 3
  year: 2012
  ident: 10.1016/j.ejrh.2023.101366_bib32
  article-title: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.024
– volume: 559
  start-page: 471
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib47
  article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.065
– volume: 115
  start-page: 1781
  issue: 8
  year: 2011
  ident: 10.1016/j.ejrh.2023.101366_bib34
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.019
– year: 2005
  ident: 10.1016/j.ejrh.2023.101366_bib2
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.ejrh.2023.101366_bib13
  article-title: The frst high-resolution meteorological forcing dataset for land process studies over China
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0369-y
– volume: 12
  start-page: 355
  issue: 6
  year: 2020
  ident: 10.1016/j.ejrh.2023.101366_bib45
  article-title: Cryosphere evapotranspiration in the Tibetan Plateau: a review
  publication-title: Sci. Cold Arid Reg.
– volume: 13
  year: 2020
  ident: 10.1016/j.ejrh.2023.101366_bib41
  article-title: Multimodel-based analyses of evapotranspiration and its controls in China over the last three decades
  publication-title: Ecohydrology
  doi: 10.1002/eco.2195
– volume: 38
  start-page: 5688
  issue: 20
  year: 2017
  ident: 10.1016/j.ejrh.2023.101366_bib53
  article-title: Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1346400
– start-page: 558
  year: 2020
  ident: 10.1016/j.ejrh.2023.101366_bib44
  article-title: Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau
  publication-title: Sci. Adv. 6, eaay8
– volume: 12
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib6
  article-title: Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.802664
– volume: 13
  start-page: 245
  year: 1945
  ident: 10.1016/j.ejrh.2023.101366_bib30
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
  doi: 10.2307/1907187
– volume: 171–172
  start-page: 187
  year: 2013
  ident: 10.1016/j.ejrh.2023.101366_bib56
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.11.016
– volume: 317
  year: 2022
  ident: 10.1016/j.ejrh.2023.101366_bib28
  article-title: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/j.agrformet.2022.108887
– volume: 3
  start-page: 8
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib10
  article-title: Assessing demographic and water sensitivities arising due to urban water insecurity in Haldwani, Uttarakhand (India): a GIS-based spatial analysis.
  publication-title: J. Geovis. Spat. Anal.
  doi: 10.1007/s41651-019-0031-4
– volume: 10
  start-page: 1903
  issue: 5
  year: 2017
  ident: 10.1016/j.ejrh.2023.101366_bib31
  article-title: GLEAM v3: satellite based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-1903-2017
– volume: 561
  start-page: 16
  year: 2018
  ident: 10.1016/j.ejrh.2023.101366_bib3
  article-title: A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.054
– volume: 57
  issue: 7
  year: 2021
  ident: 10.1016/j.ejrh.2023.101366_bib12
  article-title: Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR029638
– volume: 55
  issue: 11
  year: 2019
  ident: 10.1016/j.ejrh.2023.101366_bib25
  article-title: Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025196
SSID ssj0001878960
Score 2.3732698
Snippet The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and...
The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and...
Study region: The Tibetan Plateau Study focus: Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However,...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101366
SubjectTerms canopy
carbon cycle
China
Climate change
Contribution analysis
dry environmental conditions
energy
evaporation
Evapotranspiration
humidity
soil water
Tibetan Plateau
transpiration
Vegetation greening
water management
Title Variations and drivers of evapotranspiration in the Tibetan Plateau during 1982–2015
URI https://dx.doi.org/10.1016/j.ejrh.2023.101366
https://www.proquest.com/docview/2887990591
https://doaj.org/article/66417f2177d94ca198b2283d6a44c285
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS_iE-uLCN5ksbub7OOoYimC4qEtvYW8FreUbamt4M3_4D_0lziTbGv1UC9eQzaPmWzmm2TmCyEXqbJ5wUwS8CRTAdO5ChQgg8Aq3jSYqBlKzB1-eEzaXXbf5_2lp74wJszTA3vBXSUJC9MCgHNqcqYl-MgKGVtMIhnTUebYS8HmLTlT7nQlS7PcpQhHUcgCDmapzpjxwV12MMGbiCjGgthRJH5bJUfe_8M4_dqmne1pbZOtGjTSaz_YHbJmq12yUb9f_vy2R3o9cHn92RuVlaFm4sIt6Kig9lWOR1NHYV56bdOyogD7aKdUFqAhfRoC3pQz6jMWKcw9-nz_AJPN90m3dde5bQf1iwmBZiyeBsicA7PSslkA8LFo621UcA5mGlxdC4I0ykQGMBsDLTRNqBMLEMJkyE-LxD0HZL0aVfaQ0GaqM21ZYTIJTg1XeVhA03kssySHTmSDhHOJCV3TieOrFkMxjxsbCJSyQCkLL-UGuVx8M_ZkGitr36AiFjWRCNsVwPIQ9fIQfy2PBuFzNYoaU3isAE2VKzs_n-tcwA-HtyiysqPZi4hgWwZh8Tw8-o8BHpNN7NZHn52Q9elkZk8B50zVmVvSX1ly9E8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+and+drivers+of+evapotranspiration+in+the+Tibetan+Plateau+during+1982%E2%80%932015&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Chang%2C+Yaping&rft.au=Ding%2C+Yongjian&rft.au=Zhang%2C+Shiqiang&rft.au=Qin%2C+Jia&rft.date=2023-06-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=47&rft.spage=101366&rft_id=info:doi/10.1016%2Fj.ejrh.2023.101366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejrh_2023_101366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon