Variations and drivers of evapotranspiration in the Tibetan Plateau during 1982–2015
The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this stu...
Saved in:
Published in | Journal of hydrology. Regional studies Vol. 47; p. 101366 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Tibetan Plateau
Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015.
Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change.
[Display omitted]
•Annual ET and its components increased significantly during 1982–2015 in the TP.•Soil moisture was the dominant variable affecting variation in ET, followed by temperature.•Different ET components displayed contrasting responses to environmental drivers.•Impact of vegetation greening on canopy transpiration and interception cannot be neglected. |
---|---|
AbstractList | The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change. The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change. [Display omitted] •Annual ET and its components increased significantly during 1982–2015 in the TP.•Soil moisture was the dominant variable affecting variation in ET, followed by temperature.•Different ET components displayed contrasting responses to environmental drivers.•Impact of vegetation greening on canopy transpiration and interception cannot be neglected. Study region: The Tibetan Plateau Study focus: Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982–2015. New hydrological insights for the region: Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change. |
ArticleNumber | 101366 |
Author | Zhao, Qiudong Ding, Yongjian Chang, Yaping Qin, Jia Zhang, Shiqiang |
Author_xml | – sequence: 1 givenname: Yaping surname: Chang fullname: Chang, Yaping organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Yongjian surname: Ding fullname: Ding, Yongjian email: dyj@lzb.ac.cn organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 3 givenname: Shiqiang surname: Zhang fullname: Zhang, Shiqiang organization: Shanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710027, China – sequence: 4 givenname: Jia surname: Qin fullname: Qin, Jia organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Qiudong surname: Zhao fullname: Zhao, Qiudong email: Zhaoqd@lzb.ac.cn organization: State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China |
BookMark | eNp9kc1qGzEUhUVJoYmbF-hKy2zs6m9GEnRTQtIaAu0izVbI0p1Ew0RyJdmQXd6hb9gnqewJpXSRlcTlfOf-nDN0ElMEhD5QsqKE9h_HFYz5YcUI44cC7_s36JQxKpadourkn_87dF7KSAihSirdk1N0d2dzsDWkWLCNHvsc9pALTgOGvd2mmm0s25CPEhwirg-Ab8MGqo34-2Qr2B32uxziPaZasd_Pvxih3Xv0drBTgfOXd4F-XF_dXn5d3nz7sr78fLN0QvC6pLSTbWxnyaC4Bt1IYEPXMUGlUkDl4Deeec2ZkIwST10PUnCvOq410ZIv0Hr29cmOZpvDo81PJtlgjoWU743NNbgJTN8304FRKb0WzrZhN4wp7nsrhGPNcYEuZq9tTj93UKp5DMXBNNkIaVcMU0q2rp2mTcpmqcuplAzD39aUmEMmZjSHTMwhEzNn0iD1H-RCPd61HTlMr6OfZhTaLfcBsikuQHTgQwZX27LhNfwPJZ6mdg |
CitedBy_id | crossref_primary_10_1093_jpe_rtae052 crossref_primary_10_1029_2023EF004222 crossref_primary_10_1029_2024JD041165 crossref_primary_10_3390_plants14050644 crossref_primary_10_1007_s11629_024_8726_5 crossref_primary_10_3390_f14051058 crossref_primary_10_1029_2024GL109295 crossref_primary_10_3390_land13081230 crossref_primary_10_1007_s11269_024_03820_0 |
Cites_doi | 10.5194/hess-17-3707-2013 10.1007/s11442-013-1003-0 10.1016/j.agrformet.2009.03.014 10.1016/j.jhydrol.2022.128594 10.1016/j.gloplacha.2004.01.010 10.1002/jgrd.50393 10.1088/1748-9326/aac4bb 10.1016/j.jhydrol.2018.09.065 10.5194/essd-13-3513-2021 10.1126/science.1183188 10.1002/jgrd.50696 10.1016/j.rse.2013.08.045 10.1016/j.agrformet.2013.09.003 10.1111/gcb.12187 10.1029/2006JD007718 10.2166/nh.2018.008 10.3390/rs6086929 10.1016/j.jhydrol.2005.07.003 10.1016/j.jhydrol.2012.10.006 10.1016/j.jhydrol.2021.127223 10.1038/nature09396 10.1029/2018WR023477 10.1073/pnas.1504418112 10.3390/rs10111692 10.1088/1748-9326/aa527d 10.1016/j.jhydrol.2022.128102 10.1016/j.scitotenv.2020.143532 10.3390/rs13183712 10.1016/j.jhydrol.2019.124105 10.1175/BAMS-D-17-0057.1 10.1016/j.jhydrol.2022.128678 10.1088/1748-9326/7/1/014026 10.1175/JHM-D-20-0074.1 10.1002/hyp.10977 10.1016/j.rse.2018.12.031 10.1029/2018JD029850 10.1016/j.jhydrol.2011.10.024 10.1016/j.jhydrol.2018.02.065 10.1016/j.rse.2011.02.019 10.1038/s41597-020-0369-y 10.1002/eco.2195 10.1080/01431161.2017.1346400 10.3389/fpls.2021.802664 10.2307/1907187 10.1016/j.agrformet.2012.11.016 10.1016/j.agrformet.2022.108887 10.1007/s41651-019-0031-4 10.5194/gmd-10-1903-2017 10.1016/j.jhydrol.2018.03.054 10.1029/2021WR029638 10.1029/2019WR025196 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ejrh.2023.101366 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2214-5818 |
ExternalDocumentID | oai_doaj_org_article_66417f2177d94ca198b2283d6a44c285 10_1016_j_ejrh_2023_101366 S2214581823000538 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAHBH AAYWO AAYXX ADVLN AFJKZ APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c443t-1157202ca0f839e9015e2f55241788e17fdbd2d93247210d1c6e743d853990973 |
IEDL.DBID | DOA |
ISSN | 2214-5818 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Thu Jul 10 22:17:18 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Tue Jul 01 01:22:53 EDT 2025 Sat Sep 30 17:11:06 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Tibetan Plateau Vegetation greening Evapotranspiration Contribution analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-1157202ca0f839e9015e2f55241788e17fdbd2d93247210d1c6e743d853990973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/66417f2177d94ca198b2283d6a44c285 |
PQID | 2887990591 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66417f2177d94ca198b2283d6a44c285 proquest_miscellaneous_2887990591 crossref_primary_10_1016_j_ejrh_2023_101366 crossref_citationtrail_10_1016_j_ejrh_2023_101366 elsevier_sciencedirect_doi_10_1016_j_ejrh_2023_101366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology. Regional studies |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhang, Gebremichael, Meng, Wen, Iqbal, Jia, Yu, Li (bib59) 2018; 38 Huang, Ma, Wang (bib15) 2022; 615 Martens, Miralles, Lievens, van der Schalie, de Jeu, FernandezPrieto, Beck, Dorigo, Verhoest (bib31) 2017; 10 Meng, Li, Luan (bib33) 2017; 2 Hu, Yu, Zhou, Sun, Li, Shi, Wang, Song, Zheng, Zhang, Li (bib14) 2009; 149 Scott, Biederman (bib38) 2019; 55 Mann (bib30) 1945; 13 Yin, Wu, Zhao, Zheng, Pan (bib57) 2013; 23 Wang, Ma, Su, Wang, Ma (bib44) 2020 Tian, Yao, MacClune, White, Schilla, Vaughn, Vachon, Ichiyanagi (bib42) 2007; 112 Mueller, Hirschi, Jimenez, Ciais, Dirmeyer, Dolman (bib35) 2013; 17 Li, Long, Han, Scanlon, Sun, Han, Hou (bib25) 2019; 55 Immerzeel, van Beek, Bierkens (bib17) 2010; 328 Huntington (bib16) 2006; 319 Ma, Szilagyi, Zhang, Liu (bib29) 2019; 124 Li, Wang, Sun, Chen, Bai, Zhou (bib23) 2018; 10 Wartenburger, Seneviratne, Hirschi, Chang, Ciais, Deryng (bib49) 2018; 13 Chen, Zhu, Shang, Qin, Zhang, Su, Zhang, Zhu, Xu (bib5) 2022; 604 Wang, Xing, Shao (bib46) 2013; 118 Du, Kawashima, Yonemura, Zhang, Chen (bib8) 2004; 41 Song, Zhuang, Yin, Zhu, Wu (bib40) 2017; 12 Kendall, M.G., 1975. Rank Correlation Methods. London: The Griffin. Lin, Wang, Hu, Huang, Sun, Sun, Luo, Xiao (bib26) 2021; 22 He, Yang, Tang, Lu, Qin, Chen, Li (bib13) 2020; 7 Ma, Zhang (bib28) 2022; 317 Zhu, Su, Li, Zhang, Li (bib61) 2013; 476 Han, Ma, Wang, Zhong, Ma, Chen, Su (bib11) 2021; 13 Yang, Yong, Ren, Zhang, Long (bib53) 2017; 38 Yang, Zhang, Zhang, Yue, Zeng, Qi (bib54) 2022; 65 Yang, Feng, Adamowski, Alizadeh, Yin, Wen, Zhu (bib52) 2021; 759 Chang, Ding, Zhao, Qin, Zhang (bib4) 2022 Chen, Fu, Geng, Hao, Tang, Zhang, Xu, Hao (bib6) 2022; 12 Brutsaert (bib2) 2005 Tsuruta, Kosugi, Takanashi, Tani (bib43) 2016; 30 Sun, Song, Chen, Wang, Zhang, Zhang, Zhang, Hao, Chen (bib41) 2020; 13 Yao, Liang, Cheng, Liu, Fisher, Zhang, Jia, Zhao, Qin (bib56) 2013; 171–172 Jia, Li, Yang, Yang, Liu (bib18) 2022; 614 Han, Wang, Wang, Smettem, Mai, Chen (bib12) 2021; 57 Zeng, Piao, Lin, Yin, Peng, Ciais, Myneni (bib58) 2012; 7 Habeeb, Gupta, Chinwan, Barker (bib10) 2019; 3 Bai, Liu (bib1) 2018; 566 Yao, Xue, Chen, Chen, Thompson, Cui, Koike, Lau, Lettenmaier, Mosbrugger, Zhang, Xu, Dozier, Gillespie, Gu, Kang, Piao, Sugimoto, Ueno, Wang, Wang, Zhang, Sheng, Guo, Ailikun, Yang, Ma, Shen, Su, Chen, Liang, Liu, Singh, Yang, Yang, Zhao, Qian, Zhang, Li (bib55) 2019; 100 Zhang, Kong, Gan, Chiew, McVicar, Zhang (bib60) 2019; 222 Kool, Agam, Lazarovitch (bib21) 2014; 184 Mu, Zhao, Running (bib34) 2011; 115 Wang, Li, Yu, Ding, Xing, Lu (bib47) 2018; 559 Li, Wang, Chen, Yang, Wang (bib24) 2014; 119 Guillod, Orlowsky, Miralles, Teuling, Seneviratne (bib9) 2015; 6 Jung, Reichstein, Ciais, Seneviratne, Sheffield, Goulden, Bonan, Cescatti, Chen, de Jeu (bib19) 2010; 467 Xue, Wang, Yang, Tian, Qin, Chen, Li (bib51) 2013; 118 Liu (bib27) 2018; 49 Xu, Guo, Xia (bib50) 2019; 578 Pinzon, Tucker (bib37) 2014; 6 Piao, Sitch, Ciais, Friedlingstein, Peylin, Wang (bib36) 2013; 19 Wang, Cui, Liu, Zheng, Lu, Li, Wang, An (bib48) 2021; 13 Wang, Zhang, Ma (bib45) 2020; 12 Chang, Qin, Ding, Zhao, Zhang (bib3) 2018; 561 Mcvicar, Roderick, Donohue (bib32) 2012; 416–417 Chen, Xia, Liang, Feng, Fisher, Li, Li, Liu, Ma, Miyata, Mu, Sun, Tang, Wang, Wen, Xue, Yu, Zha, Zhang, Zhang, Zhao, Zhao, Yuan (bib7) 2014; 140 Li, Yang, Yang, Liu, Jia, Li, Yang (bib22) 2022; 612 Shen, Piao, Jeong (bib39) 2015; 112 Liu (10.1016/j.ejrh.2023.101366_bib27) 2018; 49 Lin (10.1016/j.ejrh.2023.101366_bib26) 2021; 22 Jia (10.1016/j.ejrh.2023.101366_bib18) 2022; 614 Kool (10.1016/j.ejrh.2023.101366_bib21) 2014; 184 Xue (10.1016/j.ejrh.2023.101366_bib51) 2013; 118 Zhu (10.1016/j.ejrh.2023.101366_bib61) 2013; 476 Wartenburger (10.1016/j.ejrh.2023.101366_bib49) 2018; 13 Tsuruta (10.1016/j.ejrh.2023.101366_bib43) 2016; 30 Xu (10.1016/j.ejrh.2023.101366_bib50) 2019; 578 Chang (10.1016/j.ejrh.2023.101366_bib4) 2022 Pinzon (10.1016/j.ejrh.2023.101366_bib37) 2014; 6 Mueller (10.1016/j.ejrh.2023.101366_bib35) 2013; 17 Yang (10.1016/j.ejrh.2023.101366_bib53) 2017; 38 Chen (10.1016/j.ejrh.2023.101366_bib6) 2022; 12 Wang (10.1016/j.ejrh.2023.101366_bib47) 2018; 559 Zeng (10.1016/j.ejrh.2023.101366_bib58) 2012; 7 Wang (10.1016/j.ejrh.2023.101366_bib44) 2020 Huang (10.1016/j.ejrh.2023.101366_bib15) 2022; 615 Han (10.1016/j.ejrh.2023.101366_bib11) 2021; 13 Wang (10.1016/j.ejrh.2023.101366_bib48) 2021; 13 Mcvicar (10.1016/j.ejrh.2023.101366_bib32) 2012; 416–417 Mann (10.1016/j.ejrh.2023.101366_bib30) 1945; 13 Zhang (10.1016/j.ejrh.2023.101366_bib60) 2019; 222 Guillod (10.1016/j.ejrh.2023.101366_bib9) 2015; 6 Jung (10.1016/j.ejrh.2023.101366_bib19) 2010; 467 Zhang (10.1016/j.ejrh.2023.101366_bib59) 2018; 38 Yao (10.1016/j.ejrh.2023.101366_bib56) 2013; 171–172 Li (10.1016/j.ejrh.2023.101366_bib22) 2022; 612 Tian (10.1016/j.ejrh.2023.101366_bib42) 2007; 112 Sun (10.1016/j.ejrh.2023.101366_bib41) 2020; 13 Ma (10.1016/j.ejrh.2023.101366_bib29) 2019; 124 Chang (10.1016/j.ejrh.2023.101366_bib3) 2018; 561 Piao (10.1016/j.ejrh.2023.101366_bib36) 2013; 19 Habeeb (10.1016/j.ejrh.2023.101366_bib10) 2019; 3 Meng (10.1016/j.ejrh.2023.101366_bib33) 2017; 2 Wang (10.1016/j.ejrh.2023.101366_bib45) 2020; 12 Yao (10.1016/j.ejrh.2023.101366_bib55) 2019; 100 Li (10.1016/j.ejrh.2023.101366_bib24) 2014; 119 Du (10.1016/j.ejrh.2023.101366_bib8) 2004; 41 Yang (10.1016/j.ejrh.2023.101366_bib54) 2022; 65 He (10.1016/j.ejrh.2023.101366_bib13) 2020; 7 Immerzeel (10.1016/j.ejrh.2023.101366_bib17) 2010; 328 Song (10.1016/j.ejrh.2023.101366_bib40) 2017; 12 Bai (10.1016/j.ejrh.2023.101366_bib1) 2018; 566 Hu (10.1016/j.ejrh.2023.101366_bib14) 2009; 149 Shen (10.1016/j.ejrh.2023.101366_bib39) 2015; 112 Chen (10.1016/j.ejrh.2023.101366_bib7) 2014; 140 Scott (10.1016/j.ejrh.2023.101366_bib38) 2019; 55 10.1016/j.ejrh.2023.101366_bib20 Wang (10.1016/j.ejrh.2023.101366_bib46) 2013; 118 Li (10.1016/j.ejrh.2023.101366_bib23) 2018; 10 Yang (10.1016/j.ejrh.2023.101366_bib52) 2021; 759 Chen (10.1016/j.ejrh.2023.101366_bib5) 2022; 604 Ma (10.1016/j.ejrh.2023.101366_bib28) 2022; 317 Han (10.1016/j.ejrh.2023.101366_bib12) 2021; 57 Li (10.1016/j.ejrh.2023.101366_bib25) 2019; 55 Huntington (10.1016/j.ejrh.2023.101366_bib16) 2006; 319 Martens (10.1016/j.ejrh.2023.101366_bib31) 2017; 10 Mu (10.1016/j.ejrh.2023.101366_bib34) 2011; 115 Brutsaert (10.1016/j.ejrh.2023.101366_bib2) 2005 Yin (10.1016/j.ejrh.2023.101366_bib57) 2013; 23 |
References_xml | – volume: 12 year: 2017 ident: bib40 article-title: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010 publication-title: Environ. Res. Lett. – volume: 10 start-page: 1692 year: 2018 ident: bib23 article-title: Assessment of multi-source evapotranspiration products over China using eddy covariance observations publication-title: Remote Sens. – volume: 22 start-page: 955 year: 2021 end-page: 969 ident: bib26 article-title: Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961–2014 publication-title: J. Hydrometeorol. – volume: 112 start-page: 9299 year: 2015 ident: bib39 article-title: Evaporative cooling over the Tibetan Plateau induced by vegetation growth publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 65 start-page: 2813 year: 2022 end-page: 2827 ident: bib54 article-title: Inter-annual variablitiy of evapotranspiration and its response towestly and monsoon circulation over the Tibetan Plateau. Chinese publication-title: J. Geophys. – volume: 612 year: 2022 ident: bib22 article-title: Error characterization of global land evapotranspiration products: Collocation-based approach publication-title: J. Hydrol. – volume: 23 start-page: 195 year: 2013 end-page: 207 ident: bib57 article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan publication-title: Plateau J. Geog. Sci. – volume: 317 year: 2022 ident: bib28 article-title: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation publication-title: Agr. Forest Meteorol. – volume: 57 year: 2021 ident: bib12 article-title: Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient publication-title: Water Resour. Res. – volume: 566 start-page: 743 year: 2018 end-page: 755 ident: bib1 article-title: Intercomparison and evaluation of three global high-resolution evapotranspiration products across China publication-title: J. Hydrol. – volume: 2 start-page: 1 year: 2017 end-page: 12 ident: bib33 article-title: Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau publication-title: Clim. Dyn. – start-page: 558 year: 2020 ident: bib44 article-title: Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau publication-title: Sci. Adv. 6, eaay8 – volume: 614 year: 2022 ident: bib18 article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods publication-title: J. Hydrol. – volume: 328 start-page: 1382 year: 2010 end-page: 1385 ident: bib17 article-title: Climate change will affect the Asian water towers publication-title: Science – volume: 17 start-page: 3707 year: 2013 end-page: 3720 ident: bib35 article-title: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis publication-title: Hydrol. Earth Syst. Sci. – volume: 10 start-page: 1903 year: 2017 end-page: 1925 ident: bib31 article-title: GLEAM v3: satellite based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. – volume: 100 start-page: 423 year: 2019 end-page: 444 ident: bib55 article-title: Recent Third Pole publication-title: Bull. Am. Meteorol. Soc. – volume: 38 start-page: e48 year: 2018 end-page: e56 ident: bib59 article-title: Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010) publication-title: Int. J. Climatol. – volume: 467 start-page: 951 year: 2010 end-page: 954 ident: bib19 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – volume: 319 start-page: 83 year: 2006 end-page: 95 ident: bib16 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: J. Hydrol. – volume: 6 start-page: 6443 year: 2015 ident: bib9 article-title: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature publication-title: Commun. – volume: 578 year: 2019 ident: bib50 article-title: Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States publication-title: J. Hydrol. – volume: 30 start-page: 5012 year: 2016 end-page: 5026 ident: bib43 article-title: Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest publication-title: Hydrol. Process. – volume: 49 start-page: 1977 year: 2018 end-page: 1990 ident: bib27 article-title: Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau publication-title: Hydrol. Res. – reference: Kendall, M.G., 1975. Rank Correlation Methods. London: The Griffin. – volume: 12 start-page: 355 year: 2020 end-page: 370 ident: bib45 article-title: Cryosphere evapotranspiration in the Tibetan Plateau: a review publication-title: Sci. Cold Arid Reg. – volume: 759 year: 2021 ident: bib52 article-title: The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains publication-title: Sci. Total Environ. – year: 2022 ident: bib4 article-title: Elevation-dependent changes the trend of reference evapotranspiration in the Tibetan Plateau from 1960 to 2017 publication-title: Int. J. Climatol. – volume: 19 start-page: 2117 year: 2013 end-page: 2132 ident: bib36 article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO publication-title: Glob. Change Biol. – volume: 13 start-page: 245 year: 1945 end-page: 259 ident: bib30 article-title: Nonparametric tests against trend publication-title: Econometrica – volume: 604 year: 2022 ident: bib5 article-title: Uncertainties in partitioning evapotranspiration by two remote sensing-based models publication-title: J. Hydrol. – volume: 561 start-page: 16 year: 2018 end-page: 30 ident: bib3 article-title: A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China publication-title: J. Hydrol. – volume: 115 start-page: 1781 year: 2011 end-page: 1800 ident: bib34 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. – volume: 6 start-page: 6929 year: 2014 ident: bib37 article-title: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series publication-title: Remote Sens. – volume: 124 start-page: 4326 year: 2019 end-page: 4351 ident: bib29 article-title: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012–validations and spatiotemporal analyses publication-title: J. Geophys. Res. – volume: 119 start-page: 13079 year: 2014 end-page: 13095 ident: bib24 article-title: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan publication-title: Plateau J. Geophys. Res. Atmos. – volume: 55 year: 2019 ident: bib25 article-title: Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing publication-title: Water Resour. Res. – volume: 7 year: 2012 ident: bib58 article-title: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models publication-title: Environ. Res. Lett. – volume: 559 start-page: 471 year: 2018 end-page: 485 ident: bib47 article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying publication-title: J. Hydrol. – volume: 3 start-page: 8 year: 2019 ident: bib10 article-title: Assessing demographic and water sensitivities arising due to urban water insecurity in Haldwani, Uttarakhand (India): a GIS-based spatial analysis. publication-title: J. Geovis. Spat. Anal. – volume: 416–417 start-page: 182 year: 2012 end-page: 205 ident: bib32 article-title: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation publication-title: J. Hydrol. – volume: 38 start-page: 5688 year: 2017 end-page: 5709 ident: bib53 article-title: Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements publication-title: Int. J. Remote Sens. – volume: 112 year: 2007 ident: bib42 article-title: Stable isotopic variations in West China: a consideration of moisture sources publication-title: J. Geophys. Res. Atmos. – volume: 149 start-page: 1410 year: 2009 end-page: 1420 ident: bib14 article-title: Partitioning of evapotranspiration and its controls in four grassland ecosystems–application of a two-source model publication-title: Agr. Forest Meteorol. – volume: 184 start-page: 56 year: 2014 end-page: 70 ident: bib21 article-title: A review of approaches for evapotranspiration partitioning publication-title: Agr. Forest Meteorol. – volume: 13 year: 2020 ident: bib41 article-title: Multimodel-based analyses of evapotranspiration and its controls in China over the last three decades publication-title: Ecohydrology – volume: 118 start-page: 4049 year: 2013 end-page: 4068 ident: bib46 article-title: Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling publication-title: J. Geophys. Res. Atmos. – volume: 615 start-page: 128678 year: 2022 ident: bib15 article-title: Faster increase in evapotranspiration in permafrost-dominated basins in the warming Pan-Arctic publication-title: J. Hydrol. – volume: 171–172 start-page: 187 year: 2013 end-page: 202 ident: bib56 article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm publication-title: Agr. Forest Meteorol. – volume: 13 start-page: 3712 year: 2021 ident: bib48 article-title: Greening of the qinghai–Tibet Plateau and its response to climate variations along elevation gradients publication-title: Remote Sens. – volume: 55 start-page: 574 year: 2019 end-page: 588 ident: bib38 article-title: Critical zone water balance over 13 years in a semiarid savanna publication-title: Water Resour. Res. – volume: 476 start-page: 42 year: 2013 end-page: 51 ident: bib61 article-title: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach publication-title: J. Hydrol. – volume: 12 year: 2022 ident: bib6 article-title: Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient. publication-title: Front. Plant Sci. – volume: 13 year: 2018 ident: bib49 article-title: Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets publication-title: Environ. Res. Lett. – volume: 140 start-page: 279 year: 2014 end-page: 293 ident: bib7 article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China publication-title: Remote Sens. Environ. – volume: 13 start-page: 3513 year: 2021 end-page: 3524 ident: bib11 article-title: Long-term variations in actual evapotranspiration over the Tibetan Plateau publication-title: Earth Syst. Sci. Data – volume: 41 start-page: 241 year: 2004 end-page: 249 ident: bib8 article-title: Mutual influence between human activities and climate change in the Tibetan plateau during recent years publication-title: Glob. Planet. Chang – volume: 7 start-page: 1 year: 2020 end-page: 11 ident: bib13 article-title: The frst high-resolution meteorological forcing dataset for land process studies over China publication-title: Sci. Data – volume: 222 start-page: 165 year: 2019 end-page: 182 ident: bib60 article-title: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 publication-title: Remote Sens. Environ. – year: 2005 ident: bib2 article-title: Hydrology–An Introduction – volume: 118 start-page: 8857 year: 2013 end-page: 8868 ident: bib51 article-title: Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model publication-title: J. Geophys. Res. Atmos. – volume: 17 start-page: 3707 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib35 article-title: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-3707-2013 – volume: 23 start-page: 195 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib57 article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan publication-title: Plateau J. Geog. Sci. doi: 10.1007/s11442-013-1003-0 – volume: 149 start-page: 1410 year: 2009 ident: 10.1016/j.ejrh.2023.101366_bib14 article-title: Partitioning of evapotranspiration and its controls in four grassland ecosystems–application of a two-source model publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2009.03.014 – volume: 614 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib18 article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128594 – volume: 41 start-page: 241 issue: 3–4 year: 2004 ident: 10.1016/j.ejrh.2023.101366_bib8 article-title: Mutual influence between human activities and climate change in the Tibetan plateau during recent years publication-title: Glob. Planet. Change. doi: 10.1016/j.gloplacha.2004.01.010 – volume: 118 start-page: 4049 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib46 article-title: Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50393 – volume: 13 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib49 article-title: Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aac4bb – volume: 566 start-page: 743 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib1 article-title: Intercomparison and evaluation of three global high-resolution evapotranspiration products across China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.065 – volume: 13 start-page: 3513 year: 2021 ident: 10.1016/j.ejrh.2023.101366_bib11 article-title: Long-term variations in actual evapotranspiration over the Tibetan Plateau publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-3513-2021 – volume: 328 start-page: 1382 year: 2010 ident: 10.1016/j.ejrh.2023.101366_bib17 article-title: Climate change will affect the Asian water towers publication-title: Science doi: 10.1126/science.1183188 – volume: 38 start-page: e48 issue: Suppl.1 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib59 article-title: Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010) publication-title: Int. J. Climatol. – volume: 118 start-page: 8857 issue: 16 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib51 article-title: Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50696 – volume: 140 start-page: 279 issue: 1 year: 2014 ident: 10.1016/j.ejrh.2023.101366_bib7 article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.045 – volume: 184 start-page: 56 issue: 1 year: 2014 ident: 10.1016/j.ejrh.2023.101366_bib21 article-title: A review of approaches for evapotranspiration partitioning publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2013.09.003 – volume: 19 start-page: 2117 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib36 article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends publication-title: Glob. Change Biol. doi: 10.1111/gcb.12187 – volume: 112 issue: D10 year: 2007 ident: 10.1016/j.ejrh.2023.101366_bib42 article-title: Stable isotopic variations in West China: a consideration of moisture sources publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2006JD007718 – volume: 49 start-page: 1977 issue: 5–6 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib27 article-title: Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau publication-title: Hydrol. Res. doi: 10.2166/nh.2018.008 – volume: 6 start-page: 6443 year: 2015 ident: 10.1016/j.ejrh.2023.101366_bib9 article-title: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature publication-title: Commun. – volume: 6 start-page: 6929 year: 2014 ident: 10.1016/j.ejrh.2023.101366_bib37 article-title: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series publication-title: Remote Sens. doi: 10.3390/rs6086929 – volume: 319 start-page: 83 issue: 1–4 year: 2006 ident: 10.1016/j.ejrh.2023.101366_bib16 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.07.003 – volume: 476 start-page: 42 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib61 article-title: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.10.006 – volume: 604 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib5 article-title: Uncertainties in partitioning evapotranspiration by two remote sensing-based models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127223 – volume: 467 start-page: 951 year: 2010 ident: 10.1016/j.ejrh.2023.101366_bib19 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature doi: 10.1038/nature09396 – volume: 55 start-page: 574 issue: 1 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib38 article-title: Critical zone water balance over 13 years in a semiarid savanna publication-title: Water Resour. Res. doi: 10.1029/2018WR023477 – volume: 112 start-page: 9299 issue: 30 year: 2015 ident: 10.1016/j.ejrh.2023.101366_bib39 article-title: Evaporative cooling over the Tibetan Plateau induced by vegetation growth publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1504418112 – volume: 10 start-page: 1692 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib23 article-title: Assessment of multi-source evapotranspiration products over China using eddy covariance observations publication-title: Remote Sens. doi: 10.3390/rs10111692 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.ejrh.2023.101366_bib33 article-title: Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau publication-title: Clim. Dyn. – volume: 12 year: 2017 ident: 10.1016/j.ejrh.2023.101366_bib40 article-title: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa527d – volume: 612 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib22 article-title: Error characterization of global land evapotranspiration products: Collocation-based approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128102 – volume: 759 year: 2021 ident: 10.1016/j.ejrh.2023.101366_bib52 article-title: The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143532 – volume: 13 start-page: 3712 year: 2021 ident: 10.1016/j.ejrh.2023.101366_bib48 article-title: Greening of the qinghai–Tibet Plateau and its response to climate variations along elevation gradients publication-title: Remote Sens. doi: 10.3390/rs13183712 – volume: 65 start-page: 2813 issue: 8 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib54 article-title: Inter-annual variablitiy of evapotranspiration and its response towestly and monsoon circulation over the Tibetan Plateau. Chinese publication-title: J. Geophys. – volume: 119 start-page: 13079 year: 2014 ident: 10.1016/j.ejrh.2023.101366_bib24 article-title: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan publication-title: Plateau J. Geophys. Res. Atmos. – volume: 578 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib50 article-title: Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124105 – volume: 100 start-page: 423 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib55 article-title: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensifcation and interactions between monsoon and environment–Multidisciplinary approach with observations, modeling, and analysis publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0057.1 – volume: 615 start-page: 128678 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib15 article-title: Faster increase in evapotranspiration in permafrost-dominated basins in the warming Pan-Arctic publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128678 – volume: 7 year: 2012 ident: 10.1016/j.ejrh.2023.101366_bib58 article-title: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/1/014026 – volume: 22 start-page: 955 year: 2021 ident: 10.1016/j.ejrh.2023.101366_bib26 article-title: Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961–2014 publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-20-0074.1 – year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib4 article-title: Elevation-dependent changes the trend of reference evapotranspiration in the Tibetan Plateau from 1960 to 2017 publication-title: Int. J. Climatol. – volume: 30 start-page: 5012 issue: 26 year: 2016 ident: 10.1016/j.ejrh.2023.101366_bib43 article-title: Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest publication-title: Hydrol. Process. doi: 10.1002/hyp.10977 – volume: 222 start-page: 165 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib60 article-title: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.031 – ident: 10.1016/j.ejrh.2023.101366_bib20 – volume: 124 start-page: 4326 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib29 article-title: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012–validations and spatiotemporal analyses publication-title: J. Geophys. Res. doi: 10.1029/2018JD029850 – volume: 416–417 start-page: 182 issue: 3 year: 2012 ident: 10.1016/j.ejrh.2023.101366_bib32 article-title: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.024 – volume: 559 start-page: 471 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib47 article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.065 – volume: 115 start-page: 1781 issue: 8 year: 2011 ident: 10.1016/j.ejrh.2023.101366_bib34 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.019 – year: 2005 ident: 10.1016/j.ejrh.2023.101366_bib2 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.ejrh.2023.101366_bib13 article-title: The frst high-resolution meteorological forcing dataset for land process studies over China publication-title: Sci. Data doi: 10.1038/s41597-020-0369-y – volume: 12 start-page: 355 issue: 6 year: 2020 ident: 10.1016/j.ejrh.2023.101366_bib45 article-title: Cryosphere evapotranspiration in the Tibetan Plateau: a review publication-title: Sci. Cold Arid Reg. – volume: 13 year: 2020 ident: 10.1016/j.ejrh.2023.101366_bib41 article-title: Multimodel-based analyses of evapotranspiration and its controls in China over the last three decades publication-title: Ecohydrology doi: 10.1002/eco.2195 – volume: 38 start-page: 5688 issue: 20 year: 2017 ident: 10.1016/j.ejrh.2023.101366_bib53 article-title: Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1346400 – start-page: 558 year: 2020 ident: 10.1016/j.ejrh.2023.101366_bib44 article-title: Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau publication-title: Sci. Adv. 6, eaay8 – volume: 12 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib6 article-title: Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.802664 – volume: 13 start-page: 245 year: 1945 ident: 10.1016/j.ejrh.2023.101366_bib30 article-title: Nonparametric tests against trend publication-title: Econometrica doi: 10.2307/1907187 – volume: 171–172 start-page: 187 year: 2013 ident: 10.1016/j.ejrh.2023.101366_bib56 article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2012.11.016 – volume: 317 year: 2022 ident: 10.1016/j.ejrh.2023.101366_bib28 article-title: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation publication-title: Agr. Forest Meteorol. doi: 10.1016/j.agrformet.2022.108887 – volume: 3 start-page: 8 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib10 article-title: Assessing demographic and water sensitivities arising due to urban water insecurity in Haldwani, Uttarakhand (India): a GIS-based spatial analysis. publication-title: J. Geovis. Spat. Anal. doi: 10.1007/s41651-019-0031-4 – volume: 10 start-page: 1903 issue: 5 year: 2017 ident: 10.1016/j.ejrh.2023.101366_bib31 article-title: GLEAM v3: satellite based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-1903-2017 – volume: 561 start-page: 16 year: 2018 ident: 10.1016/j.ejrh.2023.101366_bib3 article-title: A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.054 – volume: 57 issue: 7 year: 2021 ident: 10.1016/j.ejrh.2023.101366_bib12 article-title: Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient publication-title: Water Resour. Res. doi: 10.1029/2021WR029638 – volume: 55 issue: 11 year: 2019 ident: 10.1016/j.ejrh.2023.101366_bib25 article-title: Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing publication-title: Water Resour. Res. doi: 10.1029/2019WR025196 |
SSID | ssj0001878960 |
Score | 2.3732698 |
Snippet | The Tibetan Plateau
Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and... The Tibetan Plateau Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and... Study region: The Tibetan Plateau Study focus: Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However,... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101366 |
SubjectTerms | canopy carbon cycle China Climate change Contribution analysis dry environmental conditions energy evaporation Evapotranspiration humidity soil water Tibetan Plateau transpiration Vegetation greening water management |
Title | Variations and drivers of evapotranspiration in the Tibetan Plateau during 1982–2015 |
URI | https://dx.doi.org/10.1016/j.ejrh.2023.101366 https://www.proquest.com/docview/2887990591 https://doaj.org/article/66417f2177d94ca198b2283d6a44c285 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS_iE-uLCN5ksbub7OOoYimC4qEtvYW8FreUbamt4M3_4D_0lziTbGv1UC9eQzaPmWzmm2TmCyEXqbJ5wUwS8CRTAdO5ChQgg8Aq3jSYqBlKzB1-eEzaXXbf5_2lp74wJszTA3vBXSUJC9MCgHNqcqYl-MgKGVtMIhnTUebYS8HmLTlT7nQlS7PcpQhHUcgCDmapzpjxwV12MMGbiCjGgthRJH5bJUfe_8M4_dqmne1pbZOtGjTSaz_YHbJmq12yUb9f_vy2R3o9cHn92RuVlaFm4sIt6Kig9lWOR1NHYV56bdOyogD7aKdUFqAhfRoC3pQz6jMWKcw9-nz_AJPN90m3dde5bQf1iwmBZiyeBsicA7PSslkA8LFo621UcA5mGlxdC4I0ykQGMBsDLTRNqBMLEMJkyE-LxD0HZL0aVfaQ0GaqM21ZYTIJTg1XeVhA03kssySHTmSDhHOJCV3TieOrFkMxjxsbCJSyQCkLL-UGuVx8M_ZkGitr36AiFjWRCNsVwPIQ9fIQfy2PBuFzNYoaU3isAE2VKzs_n-tcwA-HtyiysqPZi4hgWwZh8Tw8-o8BHpNN7NZHn52Q9elkZk8B50zVmVvSX1ly9E8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+and+drivers+of+evapotranspiration+in+the+Tibetan+Plateau+during+1982%E2%80%932015&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Chang%2C+Yaping&rft.au=Ding%2C+Yongjian&rft.au=Zhang%2C+Shiqiang&rft.au=Qin%2C+Jia&rft.date=2023-06-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=47&rft.spage=101366&rft_id=info:doi/10.1016%2Fj.ejrh.2023.101366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejrh_2023_101366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon |