Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease
Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 46; pp. 29013 - 29024 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis. |
---|---|
AbstractList | Diabetic kidney disease (DKD) is the most common cause of chronic and end-stage renal failure in the world. In a genetically susceptible host, poor metabolic control contributes to DKD development. The epigenome integrates signals from sequence variations and environmental alterations. We performed genome-wide DNA methylation association analysis in one of the best-characterized kidney disease cohorts: The Chronic Renal Insufficiency Cohort study. Complex computational integration analysis indicated the key role of genetic variations in DNA methylation. Our analysis highlighted loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation of high-confidence genes suggested the causal role of inflammation, specifically, complement activation and apoptotic cell clearance in kidney disease development.
Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis. Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis. Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis. |
Author | Sheng, Xin Hsu, Chi-yuan Liu, Hongbo Isakova, Tamara Townsend, Raymond He, Jiang Hsu, Jesse Y. Rincon-Choles, Hernan Feldman, Harold I. Li, Hongzhe Weir, Matthew R. Raj, Dominic Susztak, Katalin Gluck, Caroline Sha, Daohang Qiu, Chengxiang |
Author_xml | – sequence: 1 givenname: Xin surname: Sheng fullname: Sheng, Xin – sequence: 2 givenname: Chengxiang surname: Qiu fullname: Qiu, Chengxiang – sequence: 3 givenname: Hongbo surname: Liu fullname: Liu, Hongbo – sequence: 4 givenname: Caroline surname: Gluck fullname: Gluck, Caroline – sequence: 5 givenname: Jesse Y. surname: Hsu fullname: Hsu, Jesse Y. – sequence: 6 givenname: Jiang surname: He fullname: He, Jiang – sequence: 7 givenname: Chi-yuan surname: Hsu fullname: Hsu, Chi-yuan – sequence: 8 givenname: Daohang surname: Sha fullname: Sha, Daohang – sequence: 9 givenname: Matthew R. surname: Weir fullname: Weir, Matthew R. – sequence: 10 givenname: Tamara surname: Isakova fullname: Isakova, Tamara – sequence: 11 givenname: Dominic surname: Raj fullname: Raj, Dominic – sequence: 12 givenname: Hernan surname: Rincon-Choles fullname: Rincon-Choles, Hernan – sequence: 13 givenname: Harold I. surname: Feldman fullname: Feldman, Harold I. – sequence: 14 givenname: Raymond surname: Townsend fullname: Townsend, Raymond – sequence: 15 givenname: Hongzhe surname: Li fullname: Li, Hongzhe – sequence: 16 givenname: Katalin surname: Susztak fullname: Susztak, Katalin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33144501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaZyk555aFnrpZZPRx0qrS6GEfkEgh7THICSt1pW7llxJDvjfVxsnbptDQSBG87wzo3lP0FGIwSH0CsM5BkEvNkHncwLQSegwFs_QAoPELWcSjtACgIi2Z4Qdo5OcVwAgux5eoGNKMWMd4AW6vdnl4ta6eNv4UNwy6eKGRgc97bLPTRybpQtuTuswNG7jH8M7nXyVxVB1zeC1uX_96YfgdjXOTmd3hp6Pesru5cN9ir5_-vjt8kt7df356-WHq9YyRkuLMXADEjQYrAEctaMdeyz4yHoBlnMwhnFspGGGDpiMvBuJpLYTQ2-IHugper-vu9matRusCyXpSW2SX-u0U1F79W8m-B9qGe-U4D1hIGuBdw8FUvy1dbmotc_WTZMOLm6zIqyrqBBSVPTtE3QVt6nua6Y46-fTV-rN3xMdRnncfAUu9oBNMefkxgOCQc3eqtlb9cfbquieKKwv9w7UL_npP7rXe90ql5gObQiXAgPh9DdHwLOQ |
CitedBy_id | crossref_primary_10_1016_j_kint_2022_10_030 crossref_primary_10_3390_jpm14121157 crossref_primary_10_1038_s41467_023_37837_7 crossref_primary_10_1016_j_fmre_2022_09_002 crossref_primary_10_1016_j_kint_2024_10_031 crossref_primary_10_1038_s41588_022_01097_w crossref_primary_10_1016_j_ekir_2024_05_033 crossref_primary_10_1007_s00125_022_05735_0 crossref_primary_10_20517_2574_1209_2024_21 crossref_primary_10_1007_s10528_023_10402_z crossref_primary_10_1038_s41581_021_00463_x crossref_primary_10_1016_j_kint_2024_05_015 crossref_primary_10_3390_jcm12237349 crossref_primary_10_1016_j_ekir_2023_02_1085 crossref_primary_10_3390_ijms241713038 crossref_primary_10_1038_s41598_023_35485_x crossref_primary_10_1016_j_ajpath_2024_06_006 crossref_primary_10_1186_s13148_024_01642_w crossref_primary_10_3389_fneph_2022_923068 crossref_primary_10_1186_s13018_023_04029_4 crossref_primary_10_1002_advs_202301169 crossref_primary_10_1126_scitranslmed_adj3385 crossref_primary_10_1038_s41467_022_34963_6 crossref_primary_10_3389_fendo_2023_1163001 crossref_primary_10_3389_fimmu_2024_1342837 crossref_primary_10_1681_ASN_0000000000000437 crossref_primary_10_1093_hmg_ddae203 crossref_primary_10_3390_ijms25063086 crossref_primary_10_3390_ijms232112863 crossref_primary_10_1016_j_xops_2024_100497 crossref_primary_10_3389_fphys_2021_637480 crossref_primary_10_1152_ajprenal_00115_2024 crossref_primary_10_1186_s12916_023_03027_x crossref_primary_10_1016_j_trsl_2022_12_009 crossref_primary_10_3390_ijms23020843 crossref_primary_10_1161_CIR_0000000000001186 crossref_primary_10_3389_fendo_2022_843721 crossref_primary_10_1016_j_numecd_2021_08_046 crossref_primary_10_3390_healthcare10112144 crossref_primary_10_1038_s41598_024_80526_8 crossref_primary_10_1111_bph_15408 crossref_primary_10_1136_bmjopen_2021_051165 crossref_primary_10_1172_JCI165654 crossref_primary_10_1096_fj_202201340RR crossref_primary_10_1186_s13059_023_02993_y crossref_primary_10_3390_ijms232214045 crossref_primary_10_1016_j_kint_2022_05_012 crossref_primary_10_1515_pteridines_2022_0039 crossref_primary_10_1111_dme_15447 crossref_primary_10_1038_s41467_021_25377_x crossref_primary_10_1038_s41467_021_27234_3 crossref_primary_10_1038_s41467_022_32972_z |
Cites_doi | 10.4161/15592294.2014.969637 10.1038/ng.3538 10.1198/106186006X137047 10.1038/nprot.2011.457 10.1681/ASN.2015040385 10.1038/ki.2013.134 10.1186/s12859-017-1511-5 10.2215/CJN.00070109 10.1016/j.cell.2013.03.004 10.1038/nmeth.1906 10.7326/0003-4819-119-12-199312150-00007 10.1016/j.ekir.2019.05.810 10.1016/j.kint.2018.01.036 10.1038/nature14248 10.1126/science.1262110 10.1093/ndt/gfp730 10.1681/ASN.2015101152 10.1038/nrneph.2017.31 10.1093/ndt/gfl465 10.1038/s41467-018-07867-7 10.1093/ndt/gfu026 10.1038/nmeth.3337 10.1210/me.2014-1095 10.1016/j.csbj.2017.12.001 10.1097/01.ASN.0000070149.78399.CE 10.1038/s41467-018-07260-4 10.1172/jci.insight.128886 10.1016/j.ebiom.2017.09.014 10.1681/ASN.2016020231 10.1007/s00467-008-1046-0 10.1001/archinternmed.2011.16 10.1038/ng.3259 10.1038/nature21408 10.1093/bioinformatics/bts163 10.1093/bib/bbv117 10.1038/ng.3467 10.1038/ng1007-1181 10.1161/CIRCULATIONAHA.117.027844 10.1186/gb-2013-14-10-r115 10.1038/nature20784 10.1097/01.ASN.0000135972.13396.6F 10.1681/ASN.2019030218 10.1007/978-1-4757-3692-2_10 10.1073/pnas.1603712113 10.1126/sciadv.aay1057 10.1126/science.aat1699 10.1074/jbc.M400549200 10.2337/db10-1181 10.1038/s41467-019-10378-8 10.1038/nrg.2017.86 10.1038/s41467-018-03371-0 10.1194/jlr.M400341-JLR200 10.1093/bioinformatics/bty532 10.1186/s13059-016-0926-z 10.1016/S0735-1097(18)32382-9 10.1038/s41588-019-0407-x 10.2215/CJN.11491116 10.1038/nm.3762 10.1126/science.aar2131 10.1186/gb-2013-14-10-r108 10.1681/ASN.2005080822 10.1093/bioinformatics/btv722 10.1111/1467-9868.00346 10.1001/jamapediatrics.2016.3508 10.1093/cid/ciz240 10.1016/j.cmet.2007.05.011 10.1001/jamapediatrics.2017.4083 10.1371/journal.pgen.1001039 10.1038/s41467-017-01297-7 10.1038/ng.377 10.1093/bioinformatics/bty147 10.1038/s41467-019-11704-w 10.1681/ASN.2010080795 10.1038/s41591-018-0194-4 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Nov 17, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Nov 17, 2020 – notice: 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2005905117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 29024 |
ExternalDocumentID | PMC7682409 33144501 10_1073_pnas_2005905117 26971026 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK019525 – fundername: NIDDK NIH HHS grantid: U01 DK060963 – fundername: NIDDK NIH HHS grantid: U01 DK060990 – fundername: NIGMS NIH HHS grantid: P20 GM109036 – fundername: NIDDK NIH HHS grantid: U01 DK061021 – fundername: NIDDK NIH HHS grantid: U01 DK061028 – fundername: NIDDK NIH HHS grantid: U01 DK061022 – fundername: NIGMS NIH HHS grantid: R01 GM129781 – fundername: NIDDK NIH HHS grantid: R01 DK087635 – fundername: NIDDK NIH HHS grantid: U01 DK060902 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK06102 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK060963 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK061028 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK60980 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: R01 DK076077 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK061021 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK060902 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: R01 DK105821 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 5U01DK060984 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: R01 DK087635 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-1106b090a0b1a00e3cfcf8176f4870c660bb461b9b4b3d12f65f293c57d8b2ad3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:33:23 EDT 2025 Fri Jul 11 15:29:02 EDT 2025 Mon Jun 30 09:58:00 EDT 2025 Wed Feb 19 02:28:29 EST 2025 Thu Apr 24 22:57:56 EDT 2025 Tue Jul 01 03:40:34 EDT 2025 Thu May 29 09:14:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | methylation quantitative trait loci (mQTL) chronic kidney disease multitrait colocalization analysis (moloc) epigenetics multiomics integration analysis |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-1106b090a0b1a00e3cfcf8176f4870c660bb461b9b4b3d12f65f293c57d8b2ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Rama Natarajan, City of Hope, Duarte, CA, and accepted by Editorial Board Member Christopher K. Glass September 26, 2020 (received for review March 31, 2020) Author contributions: X.S., J.Y.H., H.I.F., H. Li, and K.S. designed research; X.S. performed research; X.S. analyzed data; X.S., J.Y.H., C.-y.H., D.S., M.R.W., T.I., D.R., H.R.-C., R.T., and K.S. wrote the paper.; C.Q., H. Liu, and C.G. helped with data analysis; and J.Y.H., J.H., C.-y.H., D.S., M.R.W., T.I., D.R., H.R.-C., H.I.F., R.T., H. Li, and K.S. helped X.S. with data analysis and assisted with data generation and manuscript revision. |
ORCID | 0000-0002-6346-8669 0000-0003-3559-4374 0000-0001-9647-083X 0000-0002-3620-3577 0000-0001-8820-5702 0000-0002-3215-9118 0000-0003-1880-2506 0000-0002-0733-8616 0000-0002-1005-3726 0000-0001-8182-1238 0000-0002-1229-0768 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7682409 |
PMID | 33144501 |
PQID | 2464864868 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682409 proquest_miscellaneous_2457687797 proquest_journals_2464864868 pubmed_primary_33144501 crossref_primary_10_1073_pnas_2005905117 crossref_citationtrail_10_1073_pnas_2005905117 jstor_primary_26971026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-17 |
PublicationDateYYYYMMDD | 2020-11-17 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 Albao D. S. (e_1_3_4_37_2) 2019; 28 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 Robinson G. K. (e_1_3_4_67_2) 1991; 6 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_33_2 doi: 10.4161/15592294.2014.969637 – ident: e_1_3_4_49_2 doi: 10.1038/ng.3538 – ident: e_1_3_4_68_2 doi: 10.1198/106186006X137047 – ident: e_1_3_4_73_2 doi: 10.1038/nprot.2011.457 – ident: e_1_3_4_61_2 doi: 10.1681/ASN.2015040385 – ident: e_1_3_4_62_2 doi: 10.1038/ki.2013.134 – ident: e_1_3_4_72_2 doi: 10.1186/s12859-017-1511-5 – ident: e_1_3_4_31_2 doi: 10.2215/CJN.00070109 – ident: e_1_3_4_11_2 doi: 10.1016/j.cell.2013.03.004 – ident: e_1_3_4_39_2 doi: 10.1038/nmeth.1906 – ident: e_1_3_4_2_2 doi: 10.7326/0003-4819-119-12-199312150-00007 – ident: e_1_3_4_63_2 doi: 10.1016/j.ekir.2019.05.810 – ident: e_1_3_4_19_2 doi: 10.1016/j.kint.2018.01.036 – volume: 28 start-page: 4208 year: 2019 ident: e_1_3_4_37_2 article-title: Methylation changes in the peripheral blood of Filipinos with type 2 diabetes suggest spurious transcription initiation at TXNIP publication-title: Hum. Mol. Genet. – ident: e_1_3_4_40_2 doi: 10.1038/nature14248 – ident: e_1_3_4_53_2 doi: 10.1126/science.1262110 – volume: 6 start-page: 15 year: 1991 ident: e_1_3_4_67_2 article-title: That BLUP is a good thing: The estimation of random effects publication-title: Stat. Sci. – ident: e_1_3_4_13_2 doi: 10.1093/ndt/gfp730 – ident: e_1_3_4_26_2 doi: 10.1681/ASN.2015101152 – ident: e_1_3_4_64_2 doi: 10.1038/nrneph.2017.31 – ident: e_1_3_4_58_2 doi: 10.1093/ndt/gfl465 – ident: e_1_3_4_45_2 doi: 10.1038/s41467-018-07867-7 – ident: e_1_3_4_12_2 doi: 10.1093/ndt/gfu026 – ident: e_1_3_4_70_2 doi: 10.1038/nmeth.3337 – ident: e_1_3_4_55_2 doi: 10.1210/me.2014-1095 – ident: e_1_3_4_18_2 doi: 10.1016/j.csbj.2017.12.001 – ident: e_1_3_4_30_2 doi: 10.1097/01.ASN.0000070149.78399.CE – ident: e_1_3_4_47_2 doi: 10.1038/s41467-018-07260-4 – ident: e_1_3_4_16_2 doi: 10.1172/jci.insight.128886 – ident: e_1_3_4_7_2 doi: 10.1016/j.ebiom.2017.09.014 – ident: e_1_3_4_23_2 doi: 10.1681/ASN.2016020231 – ident: e_1_3_4_3_2 doi: 10.1007/s00467-008-1046-0 – ident: e_1_3_4_15_2 doi: 10.1001/archinternmed.2011.16 – ident: e_1_3_4_51_2 doi: 10.1038/ng.3259 – ident: e_1_3_4_59_2 doi: 10.1038/nature21408 – ident: e_1_3_4_74_2 doi: 10.1093/bioinformatics/bts163 – ident: e_1_3_4_32_2 doi: 10.1093/bib/bbv117 – ident: e_1_3_4_48_2 doi: 10.1038/ng.3467 – ident: e_1_3_4_42_2 doi: 10.1038/ng1007-1181 – ident: e_1_3_4_66_2 doi: 10.1161/CIRCULATIONAHA.117.027844 – ident: e_1_3_4_34_2 doi: 10.1186/gb-2013-14-10-r115 – ident: e_1_3_4_35_2 doi: 10.1038/nature20784 – ident: e_1_3_4_22_2 doi: 10.1097/01.ASN.0000135972.13396.6F – ident: e_1_3_4_4_2 doi: 10.1681/ASN.2019030218 – ident: e_1_3_4_69_2 doi: 10.1007/978-1-4757-3692-2_10 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.1603712113 – ident: e_1_3_4_65_2 doi: 10.1126/sciadv.aay1057 – ident: e_1_3_4_52_2 doi: 10.1126/science.aat1699 – ident: e_1_3_4_56_2 doi: 10.1074/jbc.M400549200 – ident: e_1_3_4_6_2 doi: 10.2337/db10-1181 – ident: e_1_3_4_20_2 doi: 10.1038/s41467-019-10378-8 – ident: e_1_3_4_71_2 doi: 10.1038/nrg.2017.86 – ident: e_1_3_4_50_2 doi: 10.1038/s41467-018-03371-0 – ident: e_1_3_4_57_2 doi: 10.1194/jlr.M400341-JLR200 – ident: e_1_3_4_36_2 doi: 10.1093/bioinformatics/bty532 – ident: e_1_3_4_43_2 doi: 10.1186/s13059-016-0926-z – ident: e_1_3_4_10_2 doi: 10.1016/S0735-1097(18)32382-9 – ident: e_1_3_4_28_2 doi: 10.1038/s41588-019-0407-x – ident: e_1_3_4_1_2 doi: 10.2215/CJN.11491116 – ident: e_1_3_4_8_2 doi: 10.1038/nm.3762 – ident: e_1_3_4_41_2 doi: 10.1126/science.aar2131 – ident: e_1_3_4_21_2 doi: 10.1186/gb-2013-14-10-r108 – ident: e_1_3_4_27_2 doi: 10.1681/ASN.2005080822 – ident: e_1_3_4_75_2 doi: 10.1093/bioinformatics/btv722 – ident: e_1_3_4_76_2 doi: 10.1111/1467-9868.00346 – ident: e_1_3_4_17_2 doi: 10.1001/jamapediatrics.2016.3508 – ident: e_1_3_4_38_2 doi: 10.1093/cid/ciz240 – ident: e_1_3_4_54_2 doi: 10.1016/j.cmet.2007.05.011 – ident: e_1_3_4_9_2 doi: 10.1001/jamapediatrics.2017.4083 – ident: e_1_3_4_25_2 doi: 10.1371/journal.pgen.1001039 – ident: e_1_3_4_29_2 doi: 10.1038/s41467-017-01297-7 – ident: e_1_3_4_24_2 doi: 10.1038/ng.377 – ident: e_1_3_4_44_2 doi: 10.1093/bioinformatics/bty147 – ident: e_1_3_4_46_2 doi: 10.1038/s41467-019-11704-w – ident: e_1_3_4_60_2 doi: 10.1681/ASN.2010080795 – ident: e_1_3_4_5_2 doi: 10.1038/s41591-018-0194-4 |
SSID | ssj0009580 |
Score | 2.5533748 |
Snippet | Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from... Diabetic kidney disease (DKD) is the most common cause of chronic and end-stage renal failure in the world. In a genetically susceptible host, poor metabolic... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29013 |
SubjectTerms | Annotations Apoptosis Association analysis Bayes Theorem Bayesian analysis Biological Sciences Cell activation Cohort Studies Complement activation Diabetes Diabetes mellitus Diabetes Mellitus - genetics Diabetic Nephropathies - genetics Diabetic Nephropathies - metabolism Disease control DNA Methylation Epigenesis, Genetic Epigenetics Female Gene Expression Gene mapping Genetic analysis Genetic diversity Genetic Predisposition to Disease Genetic Variation Genome-Wide Association Study Genomes Genomics Genotype Genotypes Humans Kidney diseases Kidneys Male Metabolism Methylation Nucleotide sequence Nucleotides Pathogenesis Phenotype Phenotypes Quantitative Trait Loci Renal insufficiency |
Title | Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease |
URI | https://www.jstor.org/stable/26971026 https://www.ncbi.nlm.nih.gov/pubmed/33144501 https://www.proquest.com/docview/2464864868 https://www.proquest.com/docview/2457687797 https://pubmed.ncbi.nlm.nih.gov/PMC7682409 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OCtIvYtVqapUV_FApOXPZzSb5WA7lEHqctIX7Ikd2s2mDNTnai4g_0V_lbPYlSa2ihSNc9mVyl3kyO7OZfRahN1FAc3DjhU9EIH2a5amfyDDxs1BEgKlcFu1mE8dzNjujH5fRcjT62ctaajZ8LH7cuq7kLlqFMtCrWiX7H5p1QqEAvoN-4QgahuM_6fiko2F2tA-KerXjGYGu0lKyynVpT79BhJzZNEc9_QqlX8q8AhPRf2dj3NaFG-aubVLB3M4iHnVrUoyhuD70DxfzbofjkwupLcqydFD8VDb6bT9UfQeInrvMIF0xq6tzXrvsoMtGm-2p3mVI9icrIDJVCXNxl8vxl5_Wt9IhjJxUr60eS22Ywa_xGdVbizrLbURriNKBIQY_h_RGdTjX8n4bMsDGqX2Oq6wlb48UX5kW2wPQ-muLIEIg_IzM5MuQpXtxPIXADdyj9B66H0LI0iaZzvoE0IleDmX-m6WZism7G9feRg_shQbOks6XvS0SupnQ2_OQTh-hhya0wUcapztoJKvHaMfeeHxgGM7fPkGfO-DiDrjYAhfXBTZIhbIcd8DFDrjQD1vgYg1cbID7FJ19eH86nflmnw9fUEo2gJGA8SANsoBPsiCQRBSiSCYxKyCaDgRjAeeUTXjKKSf5JCxYVICXKqI4T3iY5WQXbVV1JZ8jzIlIUvC_ogJER0maZDws8pCzXLAQ7I-HxvaGroQhwVd7sVyu2mSMmKyUMladMjx04DqsNf_Ln5vuthpy7UKWKv-deWjfqmxlrAf0o4wm6pN46LWrBtuuXthllawb1UbNBsRxCrKfaQ074RYiHooHuncNFG_8sKYqL1r-eAPUvTv3fIG2u4d7H21trhr5EnzzDX_Vgv4Xp-_nYg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+integrated+analysis+of+genetic+and+epigenetic+variation+in+diabetic+kidney+disease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sheng%2C+Xin&rft.au=Qiu%2C+Chengxiang&rft.au=Liu%2C+Hongbo&rft.au=Gluck%2C+Caroline&rft.date=2020-11-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=46&rft.spage=29013&rft.epage=29024&rft_id=info:doi/10.1073%2Fpnas.2005905117&rft_id=info%3Apmid%2F33144501&rft.externalDocID=PMC7682409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |