Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease

Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 46; pp. 29013 - 29024
Main Authors Sheng, Xin, Qiu, Chengxiang, Liu, Hongbo, Gluck, Caroline, Hsu, Jesse Y., He, Jiang, Hsu, Chi-yuan, Sha, Daohang, Weir, Matthew R., Isakova, Tamara, Raj, Dominic, Rincon-Choles, Hernan, Feldman, Harold I., Townsend, Raymond, Li, Hongzhe, Susztak, Katalin
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.
AbstractList Diabetic kidney disease (DKD) is the most common cause of chronic and end-stage renal failure in the world. In a genetically susceptible host, poor metabolic control contributes to DKD development. The epigenome integrates signals from sequence variations and environmental alterations. We performed genome-wide DNA methylation association analysis in one of the best-characterized kidney disease cohorts: The Chronic Renal Insufficiency Cohort study. Complex computational integration analysis indicated the key role of genetic variations in DNA methylation. Our analysis highlighted loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation of high-confidence genes suggested the causal role of inflammation, specifically, complement activation and apoptotic cell clearance in kidney disease development. Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.
Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.
Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.
Author Sheng, Xin
Hsu, Chi-yuan
Liu, Hongbo
Isakova, Tamara
Townsend, Raymond
He, Jiang
Hsu, Jesse Y.
Rincon-Choles, Hernan
Feldman, Harold I.
Li, Hongzhe
Weir, Matthew R.
Raj, Dominic
Susztak, Katalin
Gluck, Caroline
Sha, Daohang
Qiu, Chengxiang
Author_xml – sequence: 1
  givenname: Xin
  surname: Sheng
  fullname: Sheng, Xin
– sequence: 2
  givenname: Chengxiang
  surname: Qiu
  fullname: Qiu, Chengxiang
– sequence: 3
  givenname: Hongbo
  surname: Liu
  fullname: Liu, Hongbo
– sequence: 4
  givenname: Caroline
  surname: Gluck
  fullname: Gluck, Caroline
– sequence: 5
  givenname: Jesse Y.
  surname: Hsu
  fullname: Hsu, Jesse Y.
– sequence: 6
  givenname: Jiang
  surname: He
  fullname: He, Jiang
– sequence: 7
  givenname: Chi-yuan
  surname: Hsu
  fullname: Hsu, Chi-yuan
– sequence: 8
  givenname: Daohang
  surname: Sha
  fullname: Sha, Daohang
– sequence: 9
  givenname: Matthew R.
  surname: Weir
  fullname: Weir, Matthew R.
– sequence: 10
  givenname: Tamara
  surname: Isakova
  fullname: Isakova, Tamara
– sequence: 11
  givenname: Dominic
  surname: Raj
  fullname: Raj, Dominic
– sequence: 12
  givenname: Hernan
  surname: Rincon-Choles
  fullname: Rincon-Choles, Hernan
– sequence: 13
  givenname: Harold I.
  surname: Feldman
  fullname: Feldman, Harold I.
– sequence: 14
  givenname: Raymond
  surname: Townsend
  fullname: Townsend, Raymond
– sequence: 15
  givenname: Hongzhe
  surname: Li
  fullname: Li, Hongzhe
– sequence: 16
  givenname: Katalin
  surname: Susztak
  fullname: Susztak, Katalin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33144501$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaZyk555aFnrpZZPRx0qrS6GEfkEgh7THICSt1pW7llxJDvjfVxsnbptDQSBG87wzo3lP0FGIwSH0CsM5BkEvNkHncwLQSegwFs_QAoPELWcSjtACgIi2Z4Qdo5OcVwAgux5eoGNKMWMd4AW6vdnl4ta6eNv4UNwy6eKGRgc97bLPTRybpQtuTuswNG7jH8M7nXyVxVB1zeC1uX_96YfgdjXOTmd3hp6Pesru5cN9ir5_-vjt8kt7df356-WHq9YyRkuLMXADEjQYrAEctaMdeyz4yHoBlnMwhnFspGGGDpiMvBuJpLYTQ2-IHugper-vu9matRusCyXpSW2SX-u0U1F79W8m-B9qGe-U4D1hIGuBdw8FUvy1dbmotc_WTZMOLm6zIqyrqBBSVPTtE3QVt6nua6Y46-fTV-rN3xMdRnncfAUu9oBNMefkxgOCQc3eqtlb9cfbquieKKwv9w7UL_npP7rXe90ql5gObQiXAgPh9DdHwLOQ
CitedBy_id crossref_primary_10_1016_j_kint_2022_10_030
crossref_primary_10_3390_jpm14121157
crossref_primary_10_1038_s41467_023_37837_7
crossref_primary_10_1016_j_fmre_2022_09_002
crossref_primary_10_1016_j_kint_2024_10_031
crossref_primary_10_1038_s41588_022_01097_w
crossref_primary_10_1016_j_ekir_2024_05_033
crossref_primary_10_1007_s00125_022_05735_0
crossref_primary_10_20517_2574_1209_2024_21
crossref_primary_10_1007_s10528_023_10402_z
crossref_primary_10_1038_s41581_021_00463_x
crossref_primary_10_1016_j_kint_2024_05_015
crossref_primary_10_3390_jcm12237349
crossref_primary_10_1016_j_ekir_2023_02_1085
crossref_primary_10_3390_ijms241713038
crossref_primary_10_1038_s41598_023_35485_x
crossref_primary_10_1016_j_ajpath_2024_06_006
crossref_primary_10_1186_s13148_024_01642_w
crossref_primary_10_3389_fneph_2022_923068
crossref_primary_10_1186_s13018_023_04029_4
crossref_primary_10_1002_advs_202301169
crossref_primary_10_1126_scitranslmed_adj3385
crossref_primary_10_1038_s41467_022_34963_6
crossref_primary_10_3389_fendo_2023_1163001
crossref_primary_10_3389_fimmu_2024_1342837
crossref_primary_10_1681_ASN_0000000000000437
crossref_primary_10_1093_hmg_ddae203
crossref_primary_10_3390_ijms25063086
crossref_primary_10_3390_ijms232112863
crossref_primary_10_1016_j_xops_2024_100497
crossref_primary_10_3389_fphys_2021_637480
crossref_primary_10_1152_ajprenal_00115_2024
crossref_primary_10_1186_s12916_023_03027_x
crossref_primary_10_1016_j_trsl_2022_12_009
crossref_primary_10_3390_ijms23020843
crossref_primary_10_1161_CIR_0000000000001186
crossref_primary_10_3389_fendo_2022_843721
crossref_primary_10_1016_j_numecd_2021_08_046
crossref_primary_10_3390_healthcare10112144
crossref_primary_10_1038_s41598_024_80526_8
crossref_primary_10_1111_bph_15408
crossref_primary_10_1136_bmjopen_2021_051165
crossref_primary_10_1172_JCI165654
crossref_primary_10_1096_fj_202201340RR
crossref_primary_10_1186_s13059_023_02993_y
crossref_primary_10_3390_ijms232214045
crossref_primary_10_1016_j_kint_2022_05_012
crossref_primary_10_1515_pteridines_2022_0039
crossref_primary_10_1111_dme_15447
crossref_primary_10_1038_s41467_021_25377_x
crossref_primary_10_1038_s41467_021_27234_3
crossref_primary_10_1038_s41467_022_32972_z
Cites_doi 10.4161/15592294.2014.969637
10.1038/ng.3538
10.1198/106186006X137047
10.1038/nprot.2011.457
10.1681/ASN.2015040385
10.1038/ki.2013.134
10.1186/s12859-017-1511-5
10.2215/CJN.00070109
10.1016/j.cell.2013.03.004
10.1038/nmeth.1906
10.7326/0003-4819-119-12-199312150-00007
10.1016/j.ekir.2019.05.810
10.1016/j.kint.2018.01.036
10.1038/nature14248
10.1126/science.1262110
10.1093/ndt/gfp730
10.1681/ASN.2015101152
10.1038/nrneph.2017.31
10.1093/ndt/gfl465
10.1038/s41467-018-07867-7
10.1093/ndt/gfu026
10.1038/nmeth.3337
10.1210/me.2014-1095
10.1016/j.csbj.2017.12.001
10.1097/01.ASN.0000070149.78399.CE
10.1038/s41467-018-07260-4
10.1172/jci.insight.128886
10.1016/j.ebiom.2017.09.014
10.1681/ASN.2016020231
10.1007/s00467-008-1046-0
10.1001/archinternmed.2011.16
10.1038/ng.3259
10.1038/nature21408
10.1093/bioinformatics/bts163
10.1093/bib/bbv117
10.1038/ng.3467
10.1038/ng1007-1181
10.1161/CIRCULATIONAHA.117.027844
10.1186/gb-2013-14-10-r115
10.1038/nature20784
10.1097/01.ASN.0000135972.13396.6F
10.1681/ASN.2019030218
10.1007/978-1-4757-3692-2_10
10.1073/pnas.1603712113
10.1126/sciadv.aay1057
10.1126/science.aat1699
10.1074/jbc.M400549200
10.2337/db10-1181
10.1038/s41467-019-10378-8
10.1038/nrg.2017.86
10.1038/s41467-018-03371-0
10.1194/jlr.M400341-JLR200
10.1093/bioinformatics/bty532
10.1186/s13059-016-0926-z
10.1016/S0735-1097(18)32382-9
10.1038/s41588-019-0407-x
10.2215/CJN.11491116
10.1038/nm.3762
10.1126/science.aar2131
10.1186/gb-2013-14-10-r108
10.1681/ASN.2005080822
10.1093/bioinformatics/btv722
10.1111/1467-9868.00346
10.1001/jamapediatrics.2016.3508
10.1093/cid/ciz240
10.1016/j.cmet.2007.05.011
10.1001/jamapediatrics.2017.4083
10.1371/journal.pgen.1001039
10.1038/s41467-017-01297-7
10.1038/ng.377
10.1093/bioinformatics/bty147
10.1038/s41467-019-11704-w
10.1681/ASN.2010080795
10.1038/s41591-018-0194-4
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 17, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Nov 17, 2020
– notice: 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2005905117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 29024
ExternalDocumentID PMC7682409
33144501
10_1073_pnas_2005905117
26971026
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK019525
– fundername: NIDDK NIH HHS
  grantid: U01 DK060963
– fundername: NIDDK NIH HHS
  grantid: U01 DK060990
– fundername: NIGMS NIH HHS
  grantid: P20 GM109036
– fundername: NIDDK NIH HHS
  grantid: U01 DK061021
– fundername: NIDDK NIH HHS
  grantid: U01 DK061028
– fundername: NIDDK NIH HHS
  grantid: U01 DK061022
– fundername: NIGMS NIH HHS
  grantid: R01 GM129781
– fundername: NIDDK NIH HHS
  grantid: R01 DK087635
– fundername: NIDDK NIH HHS
  grantid: U01 DK060902
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK06102
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK060963
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK061028
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK60980
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: R01 DK076077
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK061021
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK060902
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: R01 DK105821
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 5U01DK060984
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: R01 DK087635
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-1106b090a0b1a00e3cfcf8176f4870c660bb461b9b4b3d12f65f293c57d8b2ad3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:33:23 EDT 2025
Fri Jul 11 15:29:02 EDT 2025
Mon Jun 30 09:58:00 EDT 2025
Wed Feb 19 02:28:29 EST 2025
Thu Apr 24 22:57:56 EDT 2025
Tue Jul 01 03:40:34 EDT 2025
Thu May 29 09:14:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords methylation quantitative trait loci (mQTL)
chronic kidney disease
multitrait colocalization analysis (moloc)
epigenetics
multiomics integration analysis
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-1106b090a0b1a00e3cfcf8176f4870c660bb461b9b4b3d12f65f293c57d8b2ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Rama Natarajan, City of Hope, Duarte, CA, and accepted by Editorial Board Member Christopher K. Glass September 26, 2020 (received for review March 31, 2020)
Author contributions: X.S., J.Y.H., H.I.F., H. Li, and K.S. designed research; X.S. performed research; X.S. analyzed data; X.S., J.Y.H., C.-y.H., D.S., M.R.W., T.I., D.R., H.R.-C., R.T., and K.S. wrote the paper.; C.Q., H. Liu, and C.G. helped with data analysis; and J.Y.H., J.H., C.-y.H., D.S., M.R.W., T.I., D.R., H.R.-C., H.I.F., R.T., H. Li, and K.S. helped X.S. with data analysis and assisted with data generation and manuscript revision.
ORCID 0000-0002-6346-8669
0000-0003-3559-4374
0000-0001-9647-083X
0000-0002-3620-3577
0000-0001-8820-5702
0000-0002-3215-9118
0000-0003-1880-2506
0000-0002-0733-8616
0000-0002-1005-3726
0000-0001-8182-1238
0000-0002-1229-0768
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7682409
PMID 33144501
PQID 2464864868
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682409
proquest_miscellaneous_2457687797
proquest_journals_2464864868
pubmed_primary_33144501
crossref_primary_10_1073_pnas_2005905117
crossref_citationtrail_10_1073_pnas_2005905117
jstor_primary_26971026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-17
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
Albao D. S. (e_1_3_4_37_2) 2019; 28
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
Robinson G. K. (e_1_3_4_67_2) 1991; 6
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_33_2
  doi: 10.4161/15592294.2014.969637
– ident: e_1_3_4_49_2
  doi: 10.1038/ng.3538
– ident: e_1_3_4_68_2
  doi: 10.1198/106186006X137047
– ident: e_1_3_4_73_2
  doi: 10.1038/nprot.2011.457
– ident: e_1_3_4_61_2
  doi: 10.1681/ASN.2015040385
– ident: e_1_3_4_62_2
  doi: 10.1038/ki.2013.134
– ident: e_1_3_4_72_2
  doi: 10.1186/s12859-017-1511-5
– ident: e_1_3_4_31_2
  doi: 10.2215/CJN.00070109
– ident: e_1_3_4_11_2
  doi: 10.1016/j.cell.2013.03.004
– ident: e_1_3_4_39_2
  doi: 10.1038/nmeth.1906
– ident: e_1_3_4_2_2
  doi: 10.7326/0003-4819-119-12-199312150-00007
– ident: e_1_3_4_63_2
  doi: 10.1016/j.ekir.2019.05.810
– ident: e_1_3_4_19_2
  doi: 10.1016/j.kint.2018.01.036
– volume: 28
  start-page: 4208
  year: 2019
  ident: e_1_3_4_37_2
  article-title: Methylation changes in the peripheral blood of Filipinos with type 2 diabetes suggest spurious transcription initiation at TXNIP
  publication-title: Hum. Mol. Genet.
– ident: e_1_3_4_40_2
  doi: 10.1038/nature14248
– ident: e_1_3_4_53_2
  doi: 10.1126/science.1262110
– volume: 6
  start-page: 15
  year: 1991
  ident: e_1_3_4_67_2
  article-title: That BLUP is a good thing: The estimation of random effects
  publication-title: Stat. Sci.
– ident: e_1_3_4_13_2
  doi: 10.1093/ndt/gfp730
– ident: e_1_3_4_26_2
  doi: 10.1681/ASN.2015101152
– ident: e_1_3_4_64_2
  doi: 10.1038/nrneph.2017.31
– ident: e_1_3_4_58_2
  doi: 10.1093/ndt/gfl465
– ident: e_1_3_4_45_2
  doi: 10.1038/s41467-018-07867-7
– ident: e_1_3_4_12_2
  doi: 10.1093/ndt/gfu026
– ident: e_1_3_4_70_2
  doi: 10.1038/nmeth.3337
– ident: e_1_3_4_55_2
  doi: 10.1210/me.2014-1095
– ident: e_1_3_4_18_2
  doi: 10.1016/j.csbj.2017.12.001
– ident: e_1_3_4_30_2
  doi: 10.1097/01.ASN.0000070149.78399.CE
– ident: e_1_3_4_47_2
  doi: 10.1038/s41467-018-07260-4
– ident: e_1_3_4_16_2
  doi: 10.1172/jci.insight.128886
– ident: e_1_3_4_7_2
  doi: 10.1016/j.ebiom.2017.09.014
– ident: e_1_3_4_23_2
  doi: 10.1681/ASN.2016020231
– ident: e_1_3_4_3_2
  doi: 10.1007/s00467-008-1046-0
– ident: e_1_3_4_15_2
  doi: 10.1001/archinternmed.2011.16
– ident: e_1_3_4_51_2
  doi: 10.1038/ng.3259
– ident: e_1_3_4_59_2
  doi: 10.1038/nature21408
– ident: e_1_3_4_74_2
  doi: 10.1093/bioinformatics/bts163
– ident: e_1_3_4_32_2
  doi: 10.1093/bib/bbv117
– ident: e_1_3_4_48_2
  doi: 10.1038/ng.3467
– ident: e_1_3_4_42_2
  doi: 10.1038/ng1007-1181
– ident: e_1_3_4_66_2
  doi: 10.1161/CIRCULATIONAHA.117.027844
– ident: e_1_3_4_34_2
  doi: 10.1186/gb-2013-14-10-r115
– ident: e_1_3_4_35_2
  doi: 10.1038/nature20784
– ident: e_1_3_4_22_2
  doi: 10.1097/01.ASN.0000135972.13396.6F
– ident: e_1_3_4_4_2
  doi: 10.1681/ASN.2019030218
– ident: e_1_3_4_69_2
  doi: 10.1007/978-1-4757-3692-2_10
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.1603712113
– ident: e_1_3_4_65_2
  doi: 10.1126/sciadv.aay1057
– ident: e_1_3_4_52_2
  doi: 10.1126/science.aat1699
– ident: e_1_3_4_56_2
  doi: 10.1074/jbc.M400549200
– ident: e_1_3_4_6_2
  doi: 10.2337/db10-1181
– ident: e_1_3_4_20_2
  doi: 10.1038/s41467-019-10378-8
– ident: e_1_3_4_71_2
  doi: 10.1038/nrg.2017.86
– ident: e_1_3_4_50_2
  doi: 10.1038/s41467-018-03371-0
– ident: e_1_3_4_57_2
  doi: 10.1194/jlr.M400341-JLR200
– ident: e_1_3_4_36_2
  doi: 10.1093/bioinformatics/bty532
– ident: e_1_3_4_43_2
  doi: 10.1186/s13059-016-0926-z
– ident: e_1_3_4_10_2
  doi: 10.1016/S0735-1097(18)32382-9
– ident: e_1_3_4_28_2
  doi: 10.1038/s41588-019-0407-x
– ident: e_1_3_4_1_2
  doi: 10.2215/CJN.11491116
– ident: e_1_3_4_8_2
  doi: 10.1038/nm.3762
– ident: e_1_3_4_41_2
  doi: 10.1126/science.aar2131
– ident: e_1_3_4_21_2
  doi: 10.1186/gb-2013-14-10-r108
– ident: e_1_3_4_27_2
  doi: 10.1681/ASN.2005080822
– ident: e_1_3_4_75_2
  doi: 10.1093/bioinformatics/btv722
– ident: e_1_3_4_76_2
  doi: 10.1111/1467-9868.00346
– ident: e_1_3_4_17_2
  doi: 10.1001/jamapediatrics.2016.3508
– ident: e_1_3_4_38_2
  doi: 10.1093/cid/ciz240
– ident: e_1_3_4_54_2
  doi: 10.1016/j.cmet.2007.05.011
– ident: e_1_3_4_9_2
  doi: 10.1001/jamapediatrics.2017.4083
– ident: e_1_3_4_25_2
  doi: 10.1371/journal.pgen.1001039
– ident: e_1_3_4_29_2
  doi: 10.1038/s41467-017-01297-7
– ident: e_1_3_4_24_2
  doi: 10.1038/ng.377
– ident: e_1_3_4_44_2
  doi: 10.1093/bioinformatics/bty147
– ident: e_1_3_4_46_2
  doi: 10.1038/s41467-019-11704-w
– ident: e_1_3_4_60_2
  doi: 10.1681/ASN.2010080795
– ident: e_1_3_4_5_2
  doi: 10.1038/s41591-018-0194-4
SSID ssj0009580
Score 2.5533748
Snippet Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from...
Diabetic kidney disease (DKD) is the most common cause of chronic and end-stage renal failure in the world. In a genetically susceptible host, poor metabolic...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29013
SubjectTerms Annotations
Apoptosis
Association analysis
Bayes Theorem
Bayesian analysis
Biological Sciences
Cell activation
Cohort Studies
Complement activation
Diabetes
Diabetes mellitus
Diabetes Mellitus - genetics
Diabetic Nephropathies - genetics
Diabetic Nephropathies - metabolism
Disease control
DNA Methylation
Epigenesis, Genetic
Epigenetics
Female
Gene Expression
Gene mapping
Genetic analysis
Genetic diversity
Genetic Predisposition to Disease
Genetic Variation
Genome-Wide Association Study
Genomes
Genomics
Genotype
Genotypes
Humans
Kidney diseases
Kidneys
Male
Metabolism
Methylation
Nucleotide sequence
Nucleotides
Pathogenesis
Phenotype
Phenotypes
Quantitative Trait Loci
Renal insufficiency
Title Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease
URI https://www.jstor.org/stable/26971026
https://www.ncbi.nlm.nih.gov/pubmed/33144501
https://www.proquest.com/docview/2464864868
https://www.proquest.com/docview/2457687797
https://pubmed.ncbi.nlm.nih.gov/PMC7682409
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OCtIvYtVqapUV_FApOXPZzSb5WA7lEHqctIX7Ikd2s2mDNTnai4g_0V_lbPYlSa2ihSNc9mVyl3kyO7OZfRahN1FAc3DjhU9EIH2a5amfyDDxs1BEgKlcFu1mE8dzNjujH5fRcjT62ctaajZ8LH7cuq7kLlqFMtCrWiX7H5p1QqEAvoN-4QgahuM_6fiko2F2tA-KerXjGYGu0lKyynVpT79BhJzZNEc9_QqlX8q8AhPRf2dj3NaFG-aubVLB3M4iHnVrUoyhuD70DxfzbofjkwupLcqydFD8VDb6bT9UfQeInrvMIF0xq6tzXrvsoMtGm-2p3mVI9icrIDJVCXNxl8vxl5_Wt9IhjJxUr60eS22Ywa_xGdVbizrLbURriNKBIQY_h_RGdTjX8n4bMsDGqX2Oq6wlb48UX5kW2wPQ-muLIEIg_IzM5MuQpXtxPIXADdyj9B66H0LI0iaZzvoE0IleDmX-m6WZism7G9feRg_shQbOks6XvS0SupnQ2_OQTh-hhya0wUcapztoJKvHaMfeeHxgGM7fPkGfO-DiDrjYAhfXBTZIhbIcd8DFDrjQD1vgYg1cbID7FJ19eH86nflmnw9fUEo2gJGA8SANsoBPsiCQRBSiSCYxKyCaDgRjAeeUTXjKKSf5JCxYVICXKqI4T3iY5WQXbVV1JZ8jzIlIUvC_ogJER0maZDws8pCzXLAQ7I-HxvaGroQhwVd7sVyu2mSMmKyUMladMjx04DqsNf_Ln5vuthpy7UKWKv-deWjfqmxlrAf0o4wm6pN46LWrBtuuXthllawb1UbNBsRxCrKfaQ074RYiHooHuncNFG_8sKYqL1r-eAPUvTv3fIG2u4d7H21trhr5EnzzDX_Vgv4Xp-_nYg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+integrated+analysis+of+genetic+and+epigenetic+variation+in+diabetic+kidney+disease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sheng%2C+Xin&rft.au=Qiu%2C+Chengxiang&rft.au=Liu%2C+Hongbo&rft.au=Gluck%2C+Caroline&rft.date=2020-11-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=46&rft.spage=29013&rft.epage=29024&rft_id=info:doi/10.1073%2Fpnas.2005905117&rft_id=info%3Apmid%2F33144501&rft.externalDocID=PMC7682409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon