Regulated mucin secretion from airway epithelial cells

Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several fea...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 4; p. 129
Main Authors Adler, Kenneth B, Tuvim, Michael J, Dickey, Burton F
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 18.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10(6) Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
AbstractList Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10(6) Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP), HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of
Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10 6  Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P 2 Y 2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP 3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
Author Tuvim, Michael J
Adler, Kenneth B
Dickey, Burton F
AuthorAffiliation 2 Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
1 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine , Raleigh, NC , USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine , Raleigh, NC , USA
– name: 2 Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
Author_xml – sequence: 1
  givenname: Kenneth B
  surname: Adler
  fullname: Adler, Kenneth B
  organization: Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine , Raleigh, NC , USA
– sequence: 2
  givenname: Michael J
  surname: Tuvim
  fullname: Tuvim, Michael J
– sequence: 3
  givenname: Burton F
  surname: Dickey
  fullname: Dickey, Burton F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24065956$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLJDEQgIMovu-epI97mTHvx0UQWR8gCKLnkE6qx0h3Z0y6d5l_b8-MitYlRVL1VajvCO32qQeEzgieM6bNRQN9SHOKCZtjTKjZQYdESj6jzNDdH_kBOi3lDU_BMTFG76MDyrEURshDJJ9gMbZugFB1o499VcBnGGLqqyanrnIx_3erCpZxeIU2urby0LblBO01ri1w-nkeo5ebv8_Xd7OHx9v766uHmeecmVmQUjWMCqIJU8yAkUQEDDpQxmVNPBbSa0_rQEF4VYOpCSeskUqJoLgz7Bjdb7khuTe7zLFzeWWTi3ZzkfLCujxE34J1gStRA9EqCE6M0LVTGjzDjePeazexLres5Vh3EDz0Q3btL-jvlz6-2kX6Z5lSkio6Af58AnJ6H6EMtotlvQ7XQxqLJWJaMJZKqqkUb0t9TqVkaL7HEGzX9uzGnl3bsxt7U8v5z-99N3y5Yh_F1ZfU
CitedBy_id crossref_primary_10_1093_rheumatology_kev026
crossref_primary_10_2147_JIR_S280958
crossref_primary_10_1155_2016_7984853
crossref_primary_10_1155_2019_7084734
crossref_primary_10_1038_s41522_018_0067_0
crossref_primary_10_1073_pnas_2205277119
crossref_primary_10_1016_j_prp_2021_153533
crossref_primary_10_1152_ajpgi_00198_2015
crossref_primary_10_3892_mmr_2018_9015
crossref_primary_10_1242_dmm_049266
crossref_primary_10_36106_gjra_5907463
crossref_primary_10_1021_acsanm_2c03887
crossref_primary_10_1186_s13578_024_01220_w
crossref_primary_10_1371_journal_pone_0127267
crossref_primary_10_1172_JCI123524
crossref_primary_10_1183_09031936_00141514
crossref_primary_10_1042_BSR20150004
crossref_primary_10_2174_1568009620666201116113334
crossref_primary_10_1038_mt_2016_182
crossref_primary_10_1186_s12931_016_0446_0
crossref_primary_10_1038_s41578_021_00396_8
crossref_primary_10_1055_s_0043_1769919
crossref_primary_10_1111_jgh_15596
crossref_primary_10_1513_AnnalsATS_201806_368AW
crossref_primary_10_3389_fmicb_2020_589501
crossref_primary_10_1016_j_crtox_2020_08_002
crossref_primary_10_1002_jcp_25044
crossref_primary_10_1016_j_mam_2016_11_009
crossref_primary_10_1021_acs_biomac_3c01170
crossref_primary_10_1016_j_ajpath_2017_07_009
crossref_primary_10_1016_j_toxlet_2017_08_079
crossref_primary_10_1165_rcmb_2022_0334LE
crossref_primary_10_1159_000442794
crossref_primary_10_3389_fendo_2014_00048
crossref_primary_10_1016_j_pupt_2018_11_006
crossref_primary_10_1007_s10555_017_9699_4
crossref_primary_10_1089_ars_2018_7647
crossref_primary_10_3892_ijo_2015_3090
crossref_primary_10_1089_jamp_2014_1190
crossref_primary_10_1002_chem_201800790
crossref_primary_10_1152_ajplung_00123_2019
crossref_primary_10_1177_0192623319873872
crossref_primary_10_1038_mi_2015_53
crossref_primary_10_1186_s12906_023_04251_x
crossref_primary_10_1152_ajpcell_00073_2016
crossref_primary_10_3389_fevo_2023_1202410
crossref_primary_10_1128_mBio_01323_17
crossref_primary_10_1007_s13258_014_0203_z
crossref_primary_10_3390_v10050225
crossref_primary_10_1152_ajplung_00487_2021
crossref_primary_10_1186_s12931_016_0378_8
crossref_primary_10_2131_jts_44_107
crossref_primary_10_1016_j_ceca_2015_10_002
crossref_primary_10_3390_cells11050812
crossref_primary_10_1016_j_addr_2017_09_023
crossref_primary_10_7554_eLife_73926
crossref_primary_10_4049_jimmunol_1400978
crossref_primary_10_2147_JIR_S318327
crossref_primary_10_1165_rcmb_2015_0171OC
crossref_primary_10_3390_ijms24119560
crossref_primary_10_1007_s40265_014_0235_3
crossref_primary_10_1371_journal_pgen_1008306
crossref_primary_10_1007_s11302_020_09700_7
crossref_primary_10_1016_j_yexmp_2017_02_016
crossref_primary_10_7554_eLife_84375
crossref_primary_10_1016_j_redox_2014_01_004
crossref_primary_10_7554_eLife_39729
crossref_primary_10_1016_j_semcancer_2015_04_005
crossref_primary_10_1074_jbc_RA117_000848
crossref_primary_10_1152_ajplung_00157_2018
crossref_primary_10_1016_j_ejps_2023_106567
crossref_primary_10_1177_15330338211043328
crossref_primary_10_3389_fphys_2023_1323865
crossref_primary_10_2147_JIR_S271292
crossref_primary_10_3389_fphys_2024_1392443
crossref_primary_10_1042_BST20170455
crossref_primary_10_3892_ijmm_2015_2133
crossref_primary_10_1021_acs_langmuir_0c02410
crossref_primary_10_3389_fmicb_2018_01939
crossref_primary_10_26508_lsa_201900462
crossref_primary_10_1007_s00011_023_01786_0
crossref_primary_10_1177_03946320221106504
crossref_primary_10_1016_j_taap_2024_116886
crossref_primary_10_1513_AnnalsATS_201806_371AW
crossref_primary_10_1038_mi_2015_32
crossref_primary_10_1097_MIB_0000000000000117
crossref_primary_10_1165_rcmb_2018_0285TR
crossref_primary_10_1007_s00795_020_00274_2
ContentType Journal Article
Copyright Copyright © 2013 Adler, Tuvim and Dickey. 2013
Copyright_xml – notice: Copyright © 2013 Adler, Tuvim and Dickey. 2013
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fendo.2013.00129
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
EndPage 129
ExternalDocumentID oai_doaj_org_article_ad475be187d541958ba78ec30fa4cc8a
10_3389_fendo_2013_00129
24065956
Genre Journal Article
Review
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL097000
– fundername: NHLBI NIH HHS
  grantid: R21 HL094848
– fundername: NHLBI NIH HHS
  grantid: R37 HL036982
– fundername: NHLBI NIH HHS
  grantid: R01 HL036982
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IHR
IPNFZ
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
CITATION
IEA
IHW
7X8
5PM
ID FETCH-LOGICAL-c4439-d667f3251813739e9615d0e8d2346b1c056c8c2bd2e5c7be9b1413f6775d74a93
IEDL.DBID RPM
ISSN 1664-2392
IngestDate Fri Oct 04 13:12:15 EDT 2024
Tue Sep 17 21:24:37 EDT 2024
Fri Aug 16 09:05:47 EDT 2024
Thu Sep 26 18:16:32 EDT 2024
Sat Sep 28 07:52:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MARCKS
secretion
Munc13
mucin
exocytosis
synaptotagmin
Munc18
mucus
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-d667f3251813739e9615d0e8d2346b1c056c8c2bd2e5c7be9b1413f6775d74a93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Edited by: Rafael Vazquez-Martinez, University of Cordoba, Spain
Reviewed by: Ricardo Borges, University of La Laguna, Spain; Gunnar C. Hansson, University of Gothenburg, Sweden
This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776272/
PMID 24065956
PQID 1540106767
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ad475be187d541958ba78ec30fa4cc8a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3776272
proquest_miscellaneous_1540106767
crossref_primary_10_3389_fendo_2013_00129
pubmed_primary_24065956
PublicationCentury 2000
PublicationDate 20130918
PublicationDateYYYYMMDD 2013-09-18
PublicationDate_xml – month: 9
  year: 2013
  text: 20130918
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2013
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 16127146 - Am J Pathol. 2005 Sep;167(3):651-61
23012413 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16528-33
18055557 - Am J Pathol. 2007 Dec;171(6):1822-30
16371599 - Physiol Rev. 2006 Jan;86(1):245-78
19208631 - J Biol Chem. 2009 Apr 10;284(15):9781-7
2726763 - Proc Natl Acad Sci U S A. 1989 Jun;86(11):4012-6
18258655 - J Physiol. 2008 Apr 1;586(7):1977-92
9729478 - Biochem J. 1998 Sep 15;334 ( Pt 3):685-93
23602830 - Arch Biochem Biophys. 2013 Jul 15;535(2):234-40
22403803 - Am J Respir Cell Mol Biol. 2012 Aug;47(2):178-85
18314541 - Am J Respir Cell Mol Biol. 2008 Jul;39(1):68-76
3651126 - Am Rev Respir Dis. 1987 Sep;136(3):698-703
15218074 - J Physiol. 2004 Sep 1;559(Pt 2):555-65
21896166 - Respir Res. 2011 Sep 06;12:118
22923574 - Science. 2012 Aug 24;337(6097):937-41
17463395 - Am J Respir Cell Mol Biol. 2007 Sep;37(3):273-90
20543006 - Am J Physiol Lung Cell Mol Physiol. 2010 Sep;299(3):L345-52
23125200 - Cold Spring Harb Perspect Med. 2012 Nov 01;2(11):null
23125206 - Cold Spring Harb Perspect Med. 2012 Nov 01;2(11):null
19783639 - Am J Physiol Lung Cell Mol Physiol. 2010 Jan;298(1):L15-22
17850213 - Annu Rev Physiol. 2008;70:459-86
23742042 - Am J Respir Cell Mol Biol. 2013 Oct;49(4):511-6
12649728 - Anat Embryol (Berl). 2003 Mar;206(4):301-9
20118925 - Nat Neurosci. 2010 Mar;13(3):338-43
16980555 - Am J Respir Cell Mol Biol. 2007 Feb;36(2):244-53
18096872 - Am J Respir Cell Mol Biol. 2008 Mar;38(3):256-62
16921125 - Proc Am Thorac Soc. 2006 Aug;3(6):493
16460283 - Annu Rev Physiol. 2006;68:543-61
17988208 - Annu Rev Physiol. 2008;70:487-512
12019299 - J Histochem Cytochem. 2002 Jun;50(6):829-38
22259143 - Methods Mol Biol. 2012;842:279-95
23467297 - Am J Physiol Cell Physiol. 2013 May 15;304(10):C976-84
17524805 - Trends Mol Med. 2007 Jun;13(6):231-40
20471239 - Curr Opin Cell Biol. 2010 Aug;22(4):488-95
20203291 - Am J Respir Cell Mol Biol. 2010 Aug;43(2):131-6
23187130 - J Clin Invest. 2012 Dec;122(12):4555-68
14517269 - J Gen Physiol. 2003 Oct;122(4):377-87
20926781 - Am J Physiol Cell Physiol. 2010 Dec;299(6):C1222-33
11753414 - Nat Neurosci. 2002 Jan;5(1):19-26
23442922 - Biophys J. 2013 Feb 5;104(3):716-26
21490149 - Mol Biol Cell. 2011 Jun 15;22(12):2094-105
1878744 - Br J Pharmacol. 1991 May;103(1):1053-6
22694344 - Biochem J. 2012 Sep 15;446(3):383-94
19285919 - Curr Opin Pharmacol. 2009 Jun;9(3):262-7
11533058 - J Biol Chem. 2001 Nov 2;276(44):40982-90
18003965 - N Engl J Med. 2007 Nov 15;357(20):2082-4
9252557 - Am J Physiol. 1997 Jul;273(1 Pt 1):L201-10
22451922 - Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5645-50
8670174 - Biochem J. 1996 Jun 15;316 ( Pt 3):943-51
22711878 - J Exp Med. 2012 Jul 2;209(7):1263-72
22358830 - Nature. 2012 Feb 22;482(7386):474-5
10861235 - Biochem J. 2000 Jul 1;349(Pt 1):247-53
23224297 - Histochem Cell Biol. 2013 May;139(5):717-26
23168839 - Mucosal Immunol. 2013 May;6(3):639-54
19359471 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6950-5
22144578 - J Physiol. 2012 Feb 1;590(3):545-62
22183981 - Glycobiology. 2012 Jun;22(6):736-56
10430018 - Eur J Cell Biol. 1999 Jun;78(6):375-81
16227318 - Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L558-69
22923570 - Science. 2012 Aug 24;337(6097):924-5
11694445 - Am J Respir Cell Mol Biol. 2001 Oct;25(4):409-17
15191915 - Am J Respir Cell Mol Biol. 2004 Oct;31(4):382-94
1712847 - J Physiol. 1990 Dec;431:629-41
1590365 - Am J Physiol. 1992 May;262(5 Pt 1):C1313-23
15231488 - Am J Respir Cell Mol Biol. 2004 Oct;31(4):446-55
17850209 - Annu Rev Physiol. 2008;70:431-57
22945630 - J Clin Invest. 2012 Oct;122(10):3629-34
17192432 - J Neurosci. 2006 Dec 27;26(52):13493-504
21479242 - PLoS One. 2011 Mar 29;6(3):e18444
15923355 - J Histochem Cytochem. 2005 Oct;53(10):1305-9
17728398 - Am J Physiol Cell Physiol. 2007 Nov;293(5):C1445-54
14716307 - Nat Med. 2004 Feb;10(2):193-6
23532850 - J Biol Chem. 2013 May 3;288(18):13046-56
16763221 - Am J Respir Cell Mol Biol. 2006 Nov;35(5):549-58
16946028 - J Appl Physiol (1985). 2007 Jan;102(1):399-405
23377348 - Am J Physiol Lung Cell Mol Physiol. 2013 Apr 15;304(8):L511-8
19164740 - Science. 2009 Jan 23;323(5913):474-7
21121836 - N Engl J Med. 2010 Dec 2;363(23 ):2233-47
References_xml
SSID ssj0000401998
Score 2.3468966
SecondaryResourceType review_article
Snippet Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 129
SubjectTerms Endocrinology
Exocytosis
MARCKS
mucin
Mucus
secretion
synaptotagmin
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaD7CBexG_rFxW8eCiuTZq3Oc6xMYR5UAe7heajOBjd2Afif--btJubCF68doWmzxuW30Oa5yXkLhEsQQrWWAEQEdMpj1RTQ8SzgiN-o0Pw8cX9Z94bsKdhOtxo9eW-CavigSvhXMgtpMrGGZiUuWQUlUNmNW0WOdM6q9AoTjfMlP8PRtuARqLal0QXJh4KWxp32C92iaaxJ8rvdcjH9f_GmD8_ldxYe7oHZL-GxrBVDfaQ7NjyiOz2623xY8Jfqo7y1oT9JV4KXx0MOslDd3wkbI1mH_ln2Jm6AxhjnHFh247H8xMy6Hbe2r2obogQaYbgEBnOoaBIJFlMgQorEEdM02YmoYyrWCPM6EwnyiQ21aCsUKg2LThAaoDlgp6SRjkp7TkJgWuD1ghyZlwXMiWY1bwQMRpilptEBeR-JY-cVrkXEv2Ck1J6KaWTUnopA_Lo9Fvf5xKr_QWso6zrKP-qY0BuV-pLnOFu2yIv7WQ5lwh5PuiOQ0DOqmqsH-V4JMX3CAhs1WlrLNu_lKN3n6JNAdcBSC7-Y_CXZC_xbTJEFGdXpLGYLe01wspC3fh5-QXizOZx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkJcEFA-AgWlUi8cAhvH8cSHqmqrVlWl5QCs1Jvlr0ClVbbsdgX998w4aWGrvfTqRHH8Zpx5I2feAOwJLQWxYE8WQF1IX6vCjTwWqmkV0W_KEJJ88fiLOpvI84v64l959ADgYm1qx_2kJvPppz-_bg5ow-9zxknx9nMbu8B1fCWLlVL8egRbQlaS_X08kP30XaZUQqfmuKVSshDEDPpzy7UPWYlTSc5_HQe9_yvlf7Hp9Bk8HUhlfth7wXPYiN0LeDwejs23QX3tO87HkI-XNJR_Y7LIJsm5vCQ_vJz_tjf5yRUXaEzJI_PjOJ0uXsLk9OT78VkxNEwovCRiUQSlsK2IsTRlhZWOmuhKGMUmCELDlZ7Ijm-8cEHE2qOL2pE1qlYh1gGl1dUr2OxmXXwDOSofKHVCKwN3KXNaRq9aXVLCLG0QLoOPt_CYq14Xw1A-wVCaBKVhKE2CMoMjxu_uPla0TgOz-Q8zbBBjg8TaxbJBmpAVcJzFJvpq1FrpfWMz2L1F39AO4GMN28XZcmGIBCYhPIUZvO6tcTcV85Wa1pEBrthp5V1Wr3SXP5PKdoUUJ1C8fcBC38ETkbpl6KJsdmDzer6M74mzXLsPyRX_AnyH5oQ
  priority: 102
  providerName: Scholars Portal
Title Regulated mucin secretion from airway epithelial cells
URI https://www.ncbi.nlm.nih.gov/pubmed/24065956
https://search.proquest.com/docview/1540106767
https://pubmed.ncbi.nlm.nih.gov/PMC3776272
https://doaj.org/article/ad475be187d541958ba78ec30fa4cc8a
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PSAuiG9CoQoSFw7pbmLHYx_LqqVCCkJApb1Z_gqstM2utl0h_n3HTlLtIk5cfHASOXozid_IM28A3leKV8SCHVkAVcFdLQo7dVgI2Qqi3xQhJPni5ou4vOKf5_X8AOqxFiYl7Tu7OO2W16fd4lfKrVxfu8mYJzb52swY0ieM1eQQDpGxnRA9_X4pYqAYoj-SpABMTdrQ-VjnV0YxU9rfogAwj-eJsWv1zm6URPv_xTT_Tpjc2YEuHsOjgTrmZ_0rPoGD0D2FB81wOP4MxLe-r3zwebOlqfx7pIQR-DwWkeRni81v8yc_X8cyjCX5XT4Ly-XNc7i6OP8xuyyGtgiF40QfCi8Etox4iSwZMhUUkRI_DdJXjAtbOqI0TrrK-irUDm1QljBnrUCsPXKj2As46lZdeAU5CucJBTTcx15kVvHgRKtKCou58ZXN4MMIj1736heaooaIqk6o6oiqTqhm8DHid39f1K1OE6vNTz1YTxvPsbahlEgLRp0ba1AGx6at4c5Jk8G7EX1Nfh4PL0wXVtsbTVQvyd0JzOBlb437pUZrZoB7dtp7l_0r5FpJS3twpdf__eQxPKxShwxVlPINHN1utuEt8ZRbe5Liexo_zUsaGy5PkqfeAd1o6M8
link.rule.ids 230,315,733,786,790,870,891,2115,24346,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKrVc6BtCX6nUSw_Z3TiOHR_pCrS0BFUtVNwsv1JWLNnVsquq_PqOnQTtol7o1U5kx58df6OZ-QbgIxGUIAs2iAAXCTU5S_TA8IQVFUP6jRZCkC8uT9jojH45z883IO9yYULQvtHjXj256tXjixBbObsy_S5OrP-tHGYcjzAn_QfwEM8ryVeM9PADRpsBrYjGKYkmmOhXrrY-0y_1cqZ4w3kJYOo9ir5u9cp9FGT7_8U174ZMrtxBh0_gZzf7JvTksrdc6J65uSPseO_PewrbLSuN95vuZ7Dh6ufwqGz97i-AfW9K1jsbl0tsin94tukxjX1-Srw_nv9Wf-KDmc_wmOCWjoduMrl-CWeHB6fDUdJWXEgMRWaSWMZ4lSHlKdKMZ8IJ5Dt24ApLMsp0apAtmcIQbYnLDddOaIQzqxjnueVUiewVbNbT2u1CzJmxuLxcUevLnGlBnWGVSNHipsoSHcGnbt3lrBHWkGiQeLhkgEt6uGSAK4LPHpjb57wkdmiYzn_JduWkspTn2qUFxwG9hI5WvHAmG1SKGlOoCD50sEo8Qt4vomo3XV5LZJFBSY_xCHYamG-H6rZJBHxtA6zNZb0HYQ0y3S2Me__95nt4PDotj-Xx0cnX17BFQiEOkaTFG9hczJfuLdKhhX4XNv9fx4UIFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSoulGcJzyBx4ZDNJnE88bEsXZXHVhVQqeJi-RVYsc2utruq4NczdpJqt-LUq-PIsb9x_I1m_A3A21ywnFiwIQRQJMyUPNFDgwmvak70mzyEIF88OeZHp-zTWXm2UeorJO0bPR00s_NBM_0VcisX5ybt88TSk8moQNrCmKcLW6e34Q7t2Rw3HPXwEya_gTyJNjBJbphIa9dYf9sv85KmdMp5GWDmo4q-dvXGmRSk-__HN6-nTW6cQ-M9-NHPoE0_-T1Yr_TA_L0m7nijKd6Hex07jQ_aLg_glmsewu6ki78_Av61LV3vbDxZU1P8zbNOj23s76nEB9PlpfoTHy78TY8ZmXY8crPZxWM4HR9-Hx0lXeWFxDBiKInlHOuCqE-VFVgIJ4j32KGrbF4wrjNDrMlUJtc2d6VB7YQmWIuaI5YWmRLFE9hp5o17CjFyY2mJUTHry51pwZzhtcjI82bK5jqCd_3ay0UrsCHJMfGQyQCZ9JDJAFkE7z04V_28NHZomC9_ym71pLIMS-2yCmlAL6WjFVbOFMNaMWMqFcGbHlpJW8nHR1Tj5usLSWwyKOpxjGC_hfpqqN5UIsAtI9j6lu0nBG2Q6-6gfHbjN1_D7smHsfzy8fjzc7ibh3ocIsmqF7CzWq7dS2JFK_0q2P8_HMIKlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulated+Mucin+Secretion+from+Airway+Epithelial+Cells&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Adler%2C+Kenneth+B.&rft.au=Tuvim%2C+Michael+J.&rft.au=Dickey%2C+Burton+F.&rft.date=2013-09-18&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=4&rft_id=info:doi/10.3389%2Ffendo.2013.00129&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2013_00129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon